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STATISTICAL MECHANICS OF THE N-POINT VORTEX
SYSTEM WITH RANDOM INTENSITIES ON R2

CASSIO NERI

Abstract. The system of N -point vortices on R2 is considered under the

hypothesis that vortex intensities are independent and identically distributed

random variables with respect to a law P supported on (0, 1]. It is shown that,
in the limit as N approaches∞, the 1-vortex distribution is a minimizer of the

free energy functional and is associated to (some) solutions of the following

non-linear Poisson Equation:

−∆u(x) = C−1

Z
(0,1]

re−βru(x)−γr|x|2P (dr), ∀x ∈ R2,

where C =

Z
(0,1]

Z
R2

e−βru(y)−γr|y|2dyP (dr).

1. Introduction

In a previous work [27] we have studied the system of N point vortices on a
bounded domain of R2 with random-vortice intensities identically distributed with
respect to a law P . We generalized some results of Cagliotti et al. [3] in which all
the vortices have intensity equal to 1, and thus, P is a Dirac measure concentrated
on 1.

Here we will study the same problem on the whole plane. We shall have some
technical difficulties which did not arise on the case of bounded domain [27], since
R2 has infinite Lebesgue measure. However, the presence of factors like e−r|x|2

inside integrals are sufficient to fix most of these problems. Often, the proofs will
be analogous to those in [27] just replacing dx by e−r|x|2dx. Related to this, we
should suppose also that vortex intensities (which correspond to r in e−r|x|2) are
positive and the law P “decreases” fast enough near 0.

The phase space of this Hamiltonian system is, essentially, R2. But despite its
infinity Lebesgue measure dx, the exponential term acts in such a way that the
phase space has e−r|x|2dx finite measure. Therefore, similar to the bounded case,
we shall find for this system, negative temperature states as noticed by Onsager
[28]. These states have been studied by several authors [1, 2, 3, 4, 10, 13, 14, 18,
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21, 22, 23, 24, 25, 27, 28] since they arises naturally on some physical systems. We
emphasize the work of Lundgren and Pointin [22] which also considered the system
on the plane. In their work all the vortices have the same intensities. We weaked
this assumption by modeling intensities as random variables. But, as explained
before, we consider only positive intensities.

Our strategy is the following: we introduce the Gibbs measure µN (where N
is the number of vortices) and its marginal density of the first k coordinates µN

k .
Taking the limit as N → ∞, we observe the same factorization property (the so
called “propagation of chaos”) found in the bounded case. Hence, µN

k behaves like
product measures µ⊗k (or in better terms, as an average of product measures) of
k copies of the 1-vortex distribution µ. Since the Gibbs measure is, naturally, a
solution of a variational problem, we can characterize the 1-vortex distributions as
a solution of a limit variational problem. The Newtonian potentials associated to
this 1-vortex distributions are solutions of

−∆u(x) = C−1

∫
(0,1]

re−βru(x)−γr|x|2P (dr), ∀x ∈ R2,

C =
∫

(0,1]

∫
R2

e−βru(y)−γr|y|2dyP (dr).
(1.1)

(the Mean Field Equation, MFE, for short). The propagation of chaos is related to
the uniqueness of solution for MFE. Even in the easiest case of positive temperature
states the functional minimized by the 1-vortex distribution is not convex and hence
we do not have general results of uniqueness.

Notation. We introduce some notation which will be used in the sequel. Set
Ω = R2 and Ω̃ = Ω × (0, 1]. X̃ = (x̃1, . . . , x̃N ) denotes an arbitrary point in Ω̃N ,
where x̃i = (xi, ri) (xi ∈ Ω and ri ∈ (0, 1]). All ri’s are random variables identically
distributed with respect to a Borelian probability measure P on (0, 1]. On Ω̃ we
consider the product measure Lebesgue×P . By a.e. we mean almost everywhere
with respect to Lebesgue, P , or Lebesgue×P measures without precising which one
we are considering.

For X̃ ∈ Ω̃N and 1 ≤ k ≤ n we set X = (x1, . . . xN ) and define X̃k = (x̃1, . . . , x̃k)
and X̃N−k = (x̃k+1, . . . , x̃N ) (Xk and XN−k are analogous defined.)

For the purpose of integration we set dx̃i = dxiP (dri), dX̃ = dx̃1 · · ·dx̃N , and
dX = dx1 · · ·dxN . In an obvious way we define dX̃k, dX̃N−k, dXk, and dXN−k.

The Hamiltonian of the N -point vortex system is given by

HN (X̃) =
1
2

N∑
i 6=j

rirjV (xi, xj),

where V is the Green function of the Poisson equation in R2, that is,

V (x1, x2) = − 1
2π

log |x1 − x2|. (1.2)

For this system we have other integrals beyond HN named the center of vorticity
MN and the moment of inertia defined by

MN (X̃) =
N∑

i=1

rixi
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which is supposed to be null, and IN (X̃) =
∑N

i=1 ri|xi|2.
Given β ∈ R and γ > 0 we define the canonical Gibbs measure, with inverse

temperature β/N , by

µN (X̃) =
1

Z(N, β, γ)
e−

β
N HN (X̃)−γIN (X̃),

where Z is the partition function given by

Z(N, β, γ) =
∫

Ω̃N

e−
β
N HN (X̃)−γIN (X̃)dX̃.

For simplicity, we denote H = H2 and I = I1.
For ρ ∈ L1(Ω̃N ) symmetric, that is, for which

ρ(x̃1, . . . , x̃i, . . . , x̃j , . . . , x̃N ) = ρ(x̃1, . . . , x̃j , . . . , x̃i, . . . , x̃N ),

we define the family of correlation functions of ρ, (ρk)1≤k<N , by

ρk(X̃k) =
∫

Ω̃N−k

ρ(X̃),dX̃N−k ∀X̃k ∈ Ω̃k.

When ‖ρ‖L1 = 1, ρ is a probability density for the distribution of N vortices in
Ω̃. Thus, ρk is the marginal probability density for the distribution of k vortices
(chosen among the N ones) in Ω̃.

For t > 0 and x1 ∈ Ω̃ we set

B̃t(x1) = {x̃2 ∈ Ω̃ : |x2 − x1| < t} = Bt(x1)× (0, 1].

Finally C, with or without indices, denotes several positive constants, and 1A

denotes the characteristic function of a set A.
We note the presence of factors like e−γI(x̃i) inside integrals (for example, in the

definition of the partition function). The decay of these factors at infinity makes the
problem very similar to the bounded case. Of course, it works only if γI > 0. For
that reason we suppose that vortex intensities and γ are strictly positive. Moreover,
we shall suppose that the “decay” of P near 0 is fast enough. More precisely, we
assume ∫

Ω̃

e−γI(x̃1)dx̃1 =
π

γ

∫
(0,1]

1
r1

P (dr1) < ∞. (1.3)

In the sequel we set

|Ω̃|γ =
∫

Ω̃

e−γI(x̃1)dx̃1.

2. Bounds for the partition function

We start with a proposition giving the range of β and γ for which the partition
function is well defined (and thus, also the Gibbs measure.)

Proposition 2.1. Let β > −8π and γ > 0. There exists some constant C =
C(β, γ) such that

Z(N, β, γ) ≤ CN .

Moreover, C is bounded in β for β on compact subsets of (−8π,∞). In particular,
the Gibbs measure µN is well defined for β > −8π and γ > 0.
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Proof. We take a and b such that −8π < a ≤ β ≤ b. If β > 0, then we have

Z(N, β, γ) =
∫

Ω̃N

[ N∏
i 6=j

|xi − xj |βrirj/4πN
]
e−γIN (X̃)dX̃

≤
∫

Ω̃N

[ N∏
i 6=j

(|xi|+ 1)bri/4πN (|xj |+ 1)brj/4πN
]
e−γIN (X̃)dX̃

=
∫

Ω̃N

N∏
i=1

(|xi|+ 1)bri(N−1)/2πNe−γI(x̃i)dX̃

≤
[ ∫

Ω̃

(|x1|+ 1)br1/2πe−
γ
2 I(x̃1)e−

γ
2 I(x̃1)dx̃1

]N

.

Since the map x̃1 3 Ω̃ 7→ (|x1| + 1)br1/2πe−
γ
2 I(x̃1) is bounded from above by some

constant C = C(b, γ), the conclusion follows from (1.3).
Now, if −8π < β ≤ 0, then we have

Z(N, β, γ) =
∫

Ω̃N

N∏
i=1

e−
γ
N I(x̃i)

N∏
j=1
j 6=i

|xi − xj |βrirj/4πNe−
γ
N I(x̃j)dX̃

≤
N∏

i=1

[ ∫
Ω̃N

e−γI(x̃i)
N∏

j=1
j 6=i

|xi − xj |βrirj/4πe−γI(x̃j)dX̃
]1/N

=
∫

Ω̃

e−γI(x̃1)
[ ∫

Ω̃

|x1 − x2|βr1r2/4πe−γI(x̃2)dx̃2

]N−1

dx̃1.

Hence it is enough to show that there exists some constant C = C(a, γ) which is
an upper bound for the integral inside the brackets. We have,∫

B̃1(x̃1)

|x1 − x2|βr1r2/4πe−γI(x̃2)dx̃2 ≤
∫

B1(x1)

|x1 − x2|a/4πdx2 =
8π2

8π + a

and ∫
Ω̃\B̃1(x̃1)

|x1 − x2|βr1r2/4πe−γI(x̃2)dx̃2 ≤
∫

Ω̃\B̃1(x1)

e−γI(x̃2)dx̃2 ≤ |Ω̃|γ .

�

Remark 2.2. From Proposition 2.1 with N = 2 and β = ±2 it follows that
the function e±H−γI2

is in L1(Ω̃2). Hence, He−γI2 ∈ Lp(Ω̃2), for all p ∈ [1,∞),
which follows from the fact that there exists some constant C = C(p) such that
|t|p ≤ C(et + e−t).

Lemma 2.3. Let β > −8π and γ > 0. There exists some constant C = C(β, γ)
such that

CN ≤ Z(N, β, γ).
Moreover, C is bounded in β for β on bounded sets of (−8π,∞).

Proof. Let α > |β|. By Jensen’s inequality we have

Z(N, β, γ) ≥ |Ω̃|Nγ exp
(
− β

2N |Ω̃|Nγ

N∑
i 6=j

∫
Ω̃N

H(x̃i, x̃j)e−γIN (X̃)dX̃
)
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≥ CN exp
(
− α(N − 1)

2|Ω̃|2γ

∫
Ω̃2
|H(X̃2)|e−γI2(X̃2)dX̃2

)
≥ CN exp(−C(N − 1)) ≥ CN

with C = C(α, γ). �

For the rest of this article, β and γ will be fixed in (−8π,∞) and (0,∞), respec-
tively.

3. Existence of weak cluster points of Gibbs measures

The elements of the Gibbs sequence (µN )N>1 are functions defined on different
domains. They are points in different functional spaces. This leads to a problem
when looking for limits of this sequence. To overcome this problem we proceed as
in [27] by introducing the family of correlation functions (ρk)1≤k≤N of a function
ρ ∈ L1(Ω̃N ), defined by

ρk(X̃k) =
∫

Ω̃N−k

ρ(X̃)dX̃N−k.

Now, for each k ∈ N, (µN
k )N>k is a sequence on L1(Ω̃k) and thus we can look for

its cluster points. Before finding Lp estimates for these sequences we find pointwise
ones. First we have the following lemma.

Lemma 3.1. There exists some constant C = C(β, γ) such that

Z
(
k,

βk

N
, γ

)
≤ CN−kZ(N, β, γ) ∀N > k.

Moreover, C is bounded in β for β on bounded subsets of (−8π,∞).

Proof. Let N > k and fix a > β. It is easy too see that

Z
(
k + 1,

β(k + 1)
N

, γ
)

=
∫

Ω̃k

e−
β
N Hk(X̃k)−γIk(X̃k)f(X̃k)dX̃k, (3.1)

where

f(X̃k) =
∫

Ω̃

e−
β
N

Pk
i=1 rirk+1V (xi,xk+1)−γI(x̃k+1)dx̃k+1.

It follows from Jensen’s inequality that

f(X̃k) ≥ |Ω̃|γ exp
( β

2π|Ω̃|γN

k∑
i=1

∫
Ω̃

rirk+1 log |xi − xk+1|e−γI(x̃k+1)dx̃k+1

)
. (3.2)

Consider β ≥ 0. From (3.2) it follows that

f(X̃k) ≥ C exp
( β

2π|Ω̃|γN

k∑
i=1

∫
B1(xi)

log |xi − xk+1|dxk+1

)
≥ C exp

(
− aCk

N

)
≥ C exp(−aC) = C,

and thus, from (3.1), we conclude that

Z
(
k,

βk

N
, γ

)
≤ CZ

(
k + 1,

β(k + 1)
N

, γ
)
,

with C = C(a, γ). The result follows by induction on k.
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Now, we suppose −8π < β < 0. From

rirk+1 log |xi − xk+1| ≤ rirk+1|xi − xk+1|2 ≤ 2(ri|xi|2 + rk+1|xk+1|2)
we conclude that∫

Ω̃

rirk+1 log |xi − xk+1|e−γI(x̃k+1)dx̃k+1 ≤ 2I(x̃i)|Ω̃|γ + θ(γ),

where
θ(γ) = 2

∫
Ω̃

I(x̃k+1)e−γI(x̃k+1)dx̃k+1 = 2πγ−1|Ω̃|γ .

From (3.2) and (1.3) it follows that

f(X̃k) ≥ |Ω̃|γ exp
( β

2π|Ω̃|γN

k∑
i=1

[
2I(x̃i)|Ω̃|γ + 2πγ−1|Ω̃|γ

] )
≥ Cγ−1 exp

( β

πN
Ik(X̃k)

)
exp

( βk

γN

)
≥ Cγ−1 exp

(
− 8

N
Ik(X̃k)

)
exp

(
− 8π

γ

)
.

Note that the constant C depends neither on β nor on γ, and thus, (3.1) yields

Z
(
k,

βk

N
, γ +

8
N

)
≤ ϕ(γ)Z

(
k + 1,

β(k + 1)
N

, γ
)
,

where ϕ(γ) = Cγe8π/γ is continuous from (0,∞) in (0,∞). By repeating N − k
times this argument and replacing γ by

γ +
8(N − k − 1)

N
, . . . , γ +

8
N

, γ, (3.3)

we obtain

Z
(
k,

βk

N
, γ +

8(N − k)
N

)
≤ ϕ

(
γ +

8(N − k − 1)
N

)
· · ·ϕ(γ)Z(N, β, γ).

All numbers in (3.3) are in [γ, γ + 8]. Since ϕ is continuous, it is bounded from
above on this interval by some constant C = C(γ). Therefore,

Z
(
k,

βk

N
, γ + 8

)
≤ Z

(
k,

βk

N
, γ +

8(N − k)
N

)
≤ CN−kZ(N, β, γ).

The sequence (βk/N)N>k is in a compact subset of (−8π,∞). Hence, Proposition
2.1 and Lemma 2.3 give the existence of constants C1 = C1(α, γ) and C2 = C2(α, γ)
such that

Ck
1 ≤ Z

(
k,

βk

N
, γ + 8

)
≤ Z

(
k,

βk

N
, γ

)
≤ Ck

2 .

Hence,

Z
(
k,

βk

N
, γ

)
≤

[C2

C1

]k

Z
(
k,

βk

N
, γ + 8

)
≤ CN−kZ(N, β, γ).

�

Proposition 3.2. There exists some constant C = C(β, γ) such that for N large
enough,

µN
k (X̃k) ≤ Cke−

β
N Hk(X̃k)− γ

2 Ik(X̃k) .

Proof. Let k ≥ 2, N0, N ∈ N, and r, p, p′ ∈ R such that
• r > 1 with βr ∈ (−8π,∞);
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• N0 = min {N ∈ N : N > 2k and N/(N − 2k) < r} and N ≥ N0;
• p = N/(N − 2k) and p′ = N/2k;

We have

− β

N
HN (X̃) = − β

N
Hk(X̃k)− β

N
HN−k(X̃N−k)− β

N

∑
1≤i≤k

k<j≤N

H(x̃i, x̃j).

Thus,

µN
k (X̃k) =

1
Z(N, β, γ)

e−
β
N Hk(X̃k)−γIk(X̃k)

×
∫

Ω̃N−k

e−
β
N HN−k(X̃N−k)−γIN−k(X̃N−k)− β

N

Pk
i=1

PN
j=k+1 H(x̃i,x̃j)dX̃N−k.

From Hölder’s inequality, it follow that the last integral is bounded from above by[ ∫
Ω̃N−k

e−
βp
N HN−k(X̃N−k)−γIN−k(X̃N−k)dX̃N−k

]1/p

× f(X̃k)

where

f(X̃k) =
[ ∫

Ω̃N−k

e−
βp′
N

Pk
i=1

PN
j=k+1 H(x̃i,x̃j)e−γIN−k(X̃N−k)dX̃N−k

]1/p′

.

Now, we look for bounds on f(X̃k). It is easy to see that

f(X̃k) =
[ ∫

Ω̃N−k

k∏
i=1

N∏
j=k+1

|xi − xj |βp′rirj/2πNe−
γ
k I(x̃j)dX̃N−k

]1/p′

≤
k∏

i=1

[ ∫
Ω̃

|xi − xN |βrirN /4πe−γI(x̃N )dx̃N

](N−k)/kp′

.

Recall that (N − k)/kp′ < 2. By an argument similar to the proof of Proposition
2.1 we can show that there exists a constant C = C(β, γ) such that

f(X̃k) ≤
k∏

i=1

C(|xi|+ 1)βri/2π.

Since the function x̃i ∈ Ω̃ 7→ (|xi| + 1)βri/2πe−
γ
2 I(x̃i) is bounded from above by a

constant C = C(β, γ) we have

f(X̃k)e−
γ
2 Ik(X̃k) ≤

k∏
i=1

C(|xi|+ 1)βr1/2πe−
γ
2 I(x̃i) ≤ Ck.

It remains to show that there exists some constant C = C(β, γ) such that

1
Z(N, β, γ)

[ ∫
Ω̃N−k

e−
βp
N HN−k(X̃N−k)−γIN−k(X̃N−k)dX̃N−k

]1/p

=
Z

(
N − k, βp(N−k)

N , γ
)

Z(N, β, γ)

1/p

≤ Ck.
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By Lemma 3.1 (notice that βp ∈ (−8π, |β|r)) there exists a constant C = C(β, γ)
such that

Z
(
N − k, βp(N−k)

N , γ
)

Z(N, β, γ)

1/p

≤ Ck/p Z(N, βp, γ)
Z(N, β, γ)

1/p

≤ Ck Z(N, βp, γ)
Z(N, β, γ)

1/p

.

Applying Hölder’s inequality, we have

Z(N, βp, γ)1/p ≤ Z(N, βr, γ)θ/rZ(N, β, γ)1−θ,

where θ ∈ (0, 1) is such that

1
p

=
θ

r
+

1− θ

1
i.e. θ =

2kr

N(r − 1)
.

Therefore,
Z(N, βp, γ)
Z(N, β, γ)

1/p

≤ Z(N, βr, γ)θ/rZ(N, β)−θ.

Since βr > −8π, from Proposition 2.1 and Lemma 2.3, it follows that there exist
constants C1 = C1(β, γ) and C2 = C2(β, γ) such that

Z(N, βr, γ)θ/r ≤ C
Nθ/r
2 ≤ Ck and Z(N, β, γ)−θ ≤ C−Nθ

1 ≤ Ck.

�

Corollary 3.3. Let p ∈ [1,∞). Thus µN
k ∈ Lp(Ω̃k) for all k ∈ N and for all N

large enough. Moreover, there exists a constant C = C(β, γ, p) such that

‖µN
k ‖Lp ≤ Ck, ∀k ∈ N, for N large enough.

Hence, if p > 1, then there exists µk ∈ Lp(Ω̃k) and a subsequence (µNj

k )j∈N such
that µ

Nj

k ⇀ µk weakly in Lp(Ω̃k).

For the proof of the above corollary, see [27, Corollary 4, p. 386.].

Remark 3.4. A priori the index choice (Nj)j∈N depends on p and k. But we can
always, by a diagonalization process, suppose that

µ
Nj

k ⇀ µk weakly in Lp(Ω̃k), ∀k ∈ N, ∀p ∈ [1,∞).

This holds even for p = 1 by Proposition 3.6 (by taking f ∈ L∞(Ω̃k).) In the
sequel, we shall say that µ∗ = (µk)k∈N is a weak cluster point of (µN )N>1 in that
sense and we shall denote the index sequence always by (Nj)j∈N.

Lemma 3.5. There exists some constant C such that∫
BN

r

dX̃ ≤ CNrN , ∀r > 0, ∀N ∈ N,

where BN
r = {X̃ ∈ Ω̃N : IN (X̃) < r}. In particular, 1 ∈ L1(BN

r ).

Proof. Let r > 0. We proceed by induction on N . We have∫
B1

r

dx̃1 =
∫

(0,1]

[ ∫
{|x1|2<r/r1}

dx1

]
P (dr1) = 2π

∫
(0,1]

[ ∫ √
r/r1

0

s ds
]
P (dr1)

= πr

∫
(0,1]

1
r1

P (dr1) = Cr.
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Let N ≥ 2 and suppose the result is true for N − 1. Then,∫
BN

r

dX̃ =
∫

B1
r

∫
BN−1

r−I(x̃1)

dX̃N−1dx̃1 ≤
∫

B1
r

CN−1(r − I(x̃1))N−1dx̃1

≤ CN−1rN−1

∫
B1

r

dx̃1 = CNrN .

�

Proposition 3.6. Let f : Ω̃k → R be a measurable function such that |f | ≤ Ce
γ
4 Ik

,
for some constant C > 0. Then, fµN

k ∈ L1(Ω̃k) for N large enough. Moreover, if
µ

Nj

k ⇀ µk weakly in L2(Ω̃k), then fµk ∈ L1(Ω̃k) and∫
Ω̃k

f(X̃k)µNj

k (X̃k)dX̃k →
∫

Ω̃k

f(X̃k)µk(X̃k)dX̃k.

Proof. Let r > 1 be such that βr > −8π and let φ ∈ L∞(Ω̃) with 0 ≤ φ ≤ 1. From
the bound on f and Proposition 3.2, there exists a constant C = C(β, γ, k) such
that

φ|f |µN
k ≤ Cφe−

β
N Hk− γ

4 Ik

.

In particular, by taking φ = 1, we have fµN
k ∈ L1(Ω̃k) for N large enough. By

Hölder’s inequality we have∫
Ω̃k

φ|f |µN
k dX̃k ≤ C

[ ∫
Ω̃k

φe−
γ
4 Ik

dX̃k

]1/r′[ ∫
Ω̃k

e−
βr
N Hk− γ

4 Ik

dX̃k

]1/r

= CZ

(
k,

βrk

N
,
γ

4

)1/r [ ∫
Ω̃k

φe−
γ
4 Ik

dX̃k

]1/r′

.

Since (βrk/Nj)Nj>k is in a compact subset of (−8π,∞), Proposition 2.1 yields a
constant C = C(k, β, γ) such that∫

Ω̃k

φ|f |µN
k dX̃k ≤ C

[ ∫
Ω̃k

φ e−
γ
4 Ik

dX̃k

]1/r′

. (3.4)

We have shown that there is a constant C = C(β, γ, k) such that∫
Ω̃k

φ|f |µN
k dX̃k ≤ C, ∀φ ∈ L∞(Ω̃k) such that 0 ≤ φ ≤ 1. (3.5)

For r > 0 we set gr = 1− fr, where fr is given by

fr(X̃k) =

{
1, if Ik(X̃k) < r,

0, otherwise.

From Lemma 3.5 it follows that frf ∈ L2(Ω̃k). Thus, by the weakly convergence
of µ

Nj

k to µk in L2(Ω̃k), we have∫
Ω̃k

frfµ
Nj

k dX̃k →
∫

Ω̃k

frfµkdX̃k when j →∞, ∀r > 0. (3.6)

In the same way,∫
Ω̃k

fr|f |µ
Nj

k dX̃k →
∫

Ω̃k

fr|f |µkdX̃k when j →∞, ∀r > 0.
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By taking φ = fr in (3.5) we conclude that the above sequence is bounded from
above by a constant C = C(β, γ, k). By taking limits we find∫

Ω̃k

fr|f |µkdX̃k ≤ C ∀r > 0.

But fr|f |µk ↗ |f |µk when r → ∞ thus, Monotone Convergence Theorem yields
|f |µk ∈ L1(Ω̃k). Hence (frfµk)r>0 ⊂ L1(Ω̃k) is bounded from above, in absolute
value, by |f |µk ∈ L1(Ω̃k). From Dominated Convergence Theorem it follows that∫

Ω̃k

frfµkdX̃k →
∫

Ω̃k

fµkdX̃k, when r →∞. (3.7)

It is not difficult to see that (gre
− γ

4 Ik

)r>0 ⊂ L1(Ω̃k) is convergent a.e. to 0 and is
bounded from above, in absolute value, by e−

γ
4 Ik ∈ L1(Ω̃k). Again, by Dominated

Convergence Theorem, this sequence converges to 0 in L1(Ω̃k). Hence, by taking
φ = gr in (3.4), we show that∫

Ω̃k

gr|f |µ
Nj

k dX̃k → 0 when r →∞, uniformly on j. (3.8)

By writing f = frf + grf we have∣∣∣ ∫
Ω̃k

fµ
Nj

k dX̃k −
∫

Ω̃k

fµkdX̃k

∣∣∣
≤

∣∣∣ ∫
Ω̃k

frfµ
Nj

k dX̃k −
∫

Ω̃k

frfµkdX̃k

∣∣∣
+

∣∣∣ ∫
Ω̃k

frfµkdX̃k −
∫

Ω̃k

fµkdX̃k

∣∣∣ +
∣∣∣ ∫

Ω̃k

grfµ
Nj

k dX̃k

∣∣∣.
Finally, the result follows from (3.6), (3.7) and (3.8). �

4. Variational problems

For N ∈ N we set

D(FN ) = {ρ ∈ L1(Ω̃N ) : ρ log ρ ∈ L1(Ω̃N ), INρ ∈ L1(Ω̃N )}.
For ρ ∈ D(FN ) we define the following functionals

SN (ρ) =
∫

Ω̃N

ρ(X̃) log ρ(X̃)dX̃ (entropy),

EN (ρ) =
1
N

∫
Ω̃N

HN (X̃)ρ(X̃)dX̃ (energy),

JN (ρ) =
∫

Ω̃N

IN (X̃)ρ(X̃)dX̃ (moment of inertia),

FN (ρ) = SN (ρ) + βEN (ρ) + γJN (ρ) (free energy).

We shall see that D(FN ) is convex. The functional FN is convex, since SN is
convex and EN and JN are linear.

Lemma 4.1. Let N ≥ 2 and ρ ∈ D(FN ). Then HNρ ∈ L1(Ω̃N ).

Proof. We have

− 1
N

ρ(X̃)HN (X̃) =
1

4πN
ρ(X̃)

N∑
i 6=j

rirj log |xi − xj |
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≤ 1
2πN

ρ(X̃)
N∑

i 6=j

(ri|xi|2 + rj |xj |2) ≤
1
π

ρ(X̃)IN (X̃).

Hence, HNρ is bounded from below by some function in L1(Ω̃N ). Apply the fol-
lowing inequality

sr ≤ r log r +
1
e
es, ∀r ≥ 0, ∀s ∈ R, (4.1)

with r = ρeIN

and s = 1
N HN and, then multiply by e−IN

to find
1
N

ρHN ≤ ρ log ρ + ρIN +
1
e
e

1
N HN−IN

.

Since all the terms on the right hand side are in L1(Ω̃N ) we have HNρ ∈ L1(Ω̃N ).
�

Remark 4.2. Let N ≥ 2 and ρ ∈ D(FN ). If ρ is symmetric, then we have simpler
expressions for the energy and moment of inertia, which are

EN (ρ) =
N − 1

2

∫
Ω̃

∫
Ω̃

H(x̃1, x̃2)ρ2(x̃1x̃2)dx̃1dx̃2,

JN (ρ) = N

∫
Ω̃

I(x̃1)ρ1(x̃1)dx̃1.

Proposition 4.3. Let 1 ≤ k < N and let ρ ∈ D(FN ) be symmetric and such that
‖ρ‖L1 = 1. We have

Sk(ρk) + SN−k(ρN−k) ≤ S(ρ).

Proof. See [27, Proposition 6 on page 387]. Note that in that proof, we have not
used the boundedness of Ω. Thus, the proof works also in the present case. �

Lemma 4.4. There exists measurable functions f, g : Ω̃2 → R such that H = g+f

with |f | ≤ e
γ
4 I2

and g ∈ Lp(Ω̃2) for all p ∈ [1,∞).

Proof. We set

A = {X̃2 ∈ Ω̃2 : H(x̃1, x̃2) > 0} = {X̃2 ∈ Ω̃2 : |x1 − x2| < 1}.
We write H = g + f , where

g =
1
2
1A|H|2e−

γ
4 I2

and f = 1AH − g + 1A{H.

We shall show that f and g satisfy the stated properties.
By Remark 2.2, we have g ∈ Lp(Ω̃2) for all p ∈ [1,∞). From Young’s inequality,

it follows that

1AH = 1AHe−
γ
8 I2

e
γ
8 I2

≤ 1
2
1A|H|2e−

γ
4 I2

+
1
2
e

γ
4 I2

= g +
1
2
e

γ
4 I2

,

and thus, 1AH − g ≤ 1
2e

γ
4 I2

. Finally, for X̃2 ∈ Ω̃2 we have

|1A{(X̃2)H(X̃2)| = 1A{(X̃2)
1
2π

r1r2 log |x1 − x2| ≤
1
2π

r1r2|x1 − x2|2

≤ 1
π

r1r2(|x1|2 + |x2|2) ≤
1
π

(r1|x1|2 + r2|x2|2)

=
1
π

I2(X̃2) ≤ Ce
γ
4 I2(X̃2),

for some constant C = C(γ). �
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Remark 4.5. If N is large enough, then µN ∈ D(FN ). Indeed,

µN log µN = − β

N
HNµN − γINµN − µN log Z(N, β, γ).

Hence, it suffices to show that HNµN , INµN ∈ L1(Ω̃N ). By symmetries of HN

and µN , it is enough to show that HµN
2 ∈ L1(Ω̃2) and IµN

1 ∈ L1(Ω̃). Using the
decomposition of H (Lemma 4.4) we write HµN

2 = gµN
2 + fµN

2 , where g ∈ L2(Ω̃2)
and |f | ≤ Ce

γ
4 I2

. Hence, gµN
2 ∈ L1(Ω̃2) since µN

2 ∈ L2(Ω̃2) (Corollary 3.3.) By
Proposition 3.6 we have fµN

2 ∈ L1(Ω̃2) and IµN
1 ∈ L1(Ω̃) since I ≤ Ce

γ
4 I for some

constant C = C(γ).

Lemma 4.6. Let ρ : Ω̃N → R be a positive measurable function such that INρ ∈
L1(Ω̃N ). Then [ρ log ρ]− ∈ L1(Ω̃N ) and there exists a constant C = C(N) such
that ∫

Ω̃N

[
ρ(X̃) log ρ(X̃)

]−
dX̃ ≤ C + JN (ρ).

Proof. We write∫
Ω̃N

[
ρ(X̃) log ρ(X̃)

]−
dX̃

= −
∫
{ρ≤e−IN }

ρ(X̃) log ρ(X̃)dX̃ −
∫
{e−IN <ρ≤1}

ρ(X̃) log ρ(X̃)dX̃.

Since −t log t ≤ C
√

t for all t ≥ 0 and for some constant C > 0, we have

−
∫
{ρ≤e−IN }

ρ(X̃) log ρ(X̃)dX̃ ≤ C

∫
Ω̃N

e−
1
2 IN (X̃)dX̃ = C.

We have also

−
∫
{e−IN <ρ≤1}

ρ(X̃) log ρ(X̃)dX̃ ≤
∫

Ω̃N

IN (X̃)ρ(X̃)dX̃ = JN (ρ)

which completes the proof. �

It follows immediately from Lemma 4.6 that

D(FN ) = {ρ ∈ L1(Ω̃N ) : [ρ log ρ]+ ∈ L1(Ω̃N ), INρ ∈ L1(Ω̃N )}.
Hence D(FN ) is convex since the map t ∈ [0,∞) 7→ [t log t]+ is convex and JN is
linear.

Lemma 4.7. For C > 0, the set

MC = {ρ ∈ D(FN ) :
∫

Ω̃N

[ρ(X̃) log ρ(X̃)]+dX̃ ≤ C and JN (ρ) ≤ C}

is weakly compact on L1(Ω̃N ).

Proof. We shall show that MC is closed in the strong topology of L1(Ω̃N ). Since
MC is convex, it will follow that MC is weakly closed on L1(Ω̃N ).

Let (ρn)n∈N be a strongly convergent sequence on MC to ρ ∈ L1(Ω̃N ). We
can take a subsequence (ρnj

)j∈N such that ρnj
→ ρ almost everywhere on Ω̃N .

The sequences ([ρnj log ρnj ]
+)j∈N and (INρnj )n∈N are bounded on L1(Ω̃N ), almost

everywhere convergent to [ρ log ρ]+ and INρ, respectively, and composed by positive
functions. From Fatou’s Lemma we conclude that ρ ∈ MC .
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We show now that every sequence on MC has a weakly convergent subsequence
on L1(Ω̃N ). Let (ρn)n∈N ⊂ MC . Given ε > 0, take r > 0 and M > 1 such that

1
r
JN (ρn) ≤ ε and

1
log M

∫
Ω̃N

[
ρn(X̃) log ρn(X̃)

]+

dX̃ ≤ ε, ∀n ∈ N.

We set

B = {X̃ ∈ Ω̃N : IN (X̃) < r} and Cn = {X̃ ∈ Ω̃N : ρn(X̃) ≥ M}.

Let (Ej)j∈N be a decreasing sequence of measurable subsets of Ω̃N with empty
intersection. For n, j ∈ N we have∫

Ej\B
ρn(X̃)dX̃ ≤ 1

r

∫
Ej\B

IN (X̃)ρn(X̃)dX̃ ≤ 1
r
JN (ρn) ≤ ε

and ∫
Ej∩Cn

ρn(X̃)dX̃ ≤ 1
log M

∫
Ej∩Cn

ρn(X̃) log ρn(X̃)dX̃

≤ 1
log M

∫
Ω̃N

[
ρn(X̃) log ρn(X̃)

]+

dX̃ ≤ ε.

The set E1 ∩ B has finite measure by Lemma 3.5. Therefore, the sequence of
measures of Ej ∩B goes to 0 as j →∞. It follows that∫

Ej∩(B\Cn)

ρn(X̃)dX̃ ≤
∫

Ej∩B

MdX̃ ≤ M

∫
Ej∩B

dX̃ ≤ ε

for all n ∈ N and j large enough. Since Ej = [Ej \B] ∪ [Ej ∩Cn] ∪ [Ej ∩ (B \Cn)]
we have ∫

Ej

ρn(X̃)dX̃ ≤ 3ε ∀n ∈ N, ∀j large enough.

We conclude the proof by applying the Dunford-Petis Theorem (see [9, theorem
IV.8.9]). �

Theorem 4.8. For N ∈ N large enough, µN is the unique solution of

min
{
FN (ρ) : ρ ∈ D(FN ), ‖ρ‖L1 = 1

}
.

Proof. (This proof is similar to Theorem 8 of [27] with minor changes.)
We split the proof into two steps: in the first one we shall show that the problem

has a solution µ̃, and in the second step we shall prove that µ̃ = µN . Let N be
such that µN ∈ D(FN ).
Step 1: Let ρ ∈ D(FN ) and t ≥ 1 such that βt > −8π. From inequality (4.1),
applied to r = 1

t ρ and s = −(βt/N)HN − (γt/2)IN , it follows that

− β

N
HNρ− γ

2
INρ ≤ 1

t
ρ log

(ρ

t

)
+

1
e
e−

βt
N HN− γt

2 IN

.

Therefore,

ρ log ρ +
β

N
HNρ + γINρ ≥

(
1− 1

t

)
ρ log ρ +

1
t
ρ log t− 1

e
e−

βt
N HN− γt

2 IN

+
γ

2
INρ.

(4.2)
In particular, for t = 1 one has

ρ log ρ +
β

N
HNρ + γINρ +

1
e
e−

β
N HN− γ

2 IN

≥ γ

2
INρ ≥ 0. (4.3)
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Let us show that FN is a l.s.c. in the strong topology of L1(Ω̃N ). Hence, by
convexity, FN is also l.s.c. in the weakly topology of L1(Ω̃N ). Let (ρn)n∈N ⊂
D(FN ) be a convergent sequence to ρ ∈ L1(Ω̃N ) in the strong topology. We can
take a subsequence (ρnj

)j∈N such that

ρnj
→ ρ a.e. on Ω̃N

FN (ρnj ) → lim inf
n→∞

FN (ρn) (which is supposed to be finite.)

The sequence (hj)j∈N, given by

hj = ρnj
log ρnj

+
β

N
HNρnj

+ γINρnj
+

1
e
e−

β
N HN− γ

2 IN

,

satisfies
• hj ∈ L1(Ω̃N ), ∀j ∈ N;
• ‖hj‖L1 = FN (ρnj ) + 1

eZ
(
N, β, γ

2

)
≤ C, ∀j ∈ N;

• hj ≥ 0 (by (4.3)), ∀j ∈ N;
• hj → ρ log ρ + β

N HNρ + γINρ + 1
e e−

β
N HN− γ

2 IN

a.e. on Ω̃N .
From Fatou’s Lemma, it follows that

FN (ρ) ≤ lim inf
j→∞

FN (ρnj
) = lim inf

n→∞
FN (ρn).

Now, suppose that (ρn)n∈N is a minimizing sequence for the problem. Taking
t > 1 in (4.2) and integrating on Ω̃N we obtain

C ≥ FN (ρn) ≥
(
1− 1

t

)
SN (ρn) +

1
t

log t +
γ

2
JN (ρn)− 1

e
Z

(
N, βt,

γt

2

)
.

Hence,
SN (ρn) ≤ C, ∀n ∈ N,

and from (4.3) it follows that

JN (ρn) ≤ C, ∀n ∈ N.

From the last two estimates and from Lemma 4.6, we conclude that there exists C
such that ∫

Ω̃N

[ρn(X̃) log ρn(X̃)]+dX̃ ≤ C, ∀n ∈ N.

Hence, we have shown that there exists C > 0 such that (ρn)n∈N is in a set MC

as in Lemma 4.7 and thus it has a subsequence weakly convergent to µ̃ ∈ D(FN ).
It is clear that ‖µ̃‖L1 = 1. Hence, by the lower semi-continuity of FN in the weak
topology of L1(Ω̃N ), µ̃ is a solution for the problem.
Step 2: We are going to show that µ̃ = µN . For δ > 0 we set

Λδ = {X̃ ∈ Ω̃N : µ̃(X̃) > δ} and Uδ = {ϕ ∈ Cc(Ω̃N ) : ‖ϕ‖L∞ <
δ

2
}.

Consider the following functionals

Jδ : Uδ → R and Gδ : Uδ → R
ϕ 7→ FN (µ̃ + 1Λδ

ϕ) ϕ 7→
∫
Ω̃N 1Λδ

ϕ.

Take ϕ ∈ Uδ and ρ = µ̃ + 1Λδ
ϕ. First, we can easily see that 0 ≤ ρ ≤ 2µ̃.

Thus INρ ∈ L1(Ω̃N ) and [ρ log ρ]+ ∈ L1(Ω̃N ). From Lemma 4.6 we deduce that
[ρ log ρ]− ∈ L1(Ω̃N ). Hence, ρ ∈ D(FN ) and thus Jδ is a real valued functional
defined on Uδ.
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Since µ̃ is a minimizer of FN under the constraint ‖ρ‖L1 = 1 we know that

Jδ(0) = min
Gδ(ϕ)=0

Jδ(ϕ).

By the Lagrange Multiplier Theorem, there exists λδ such that J ′δ(0) = λδG
′
δ(0),

that is, for all ϕ ∈ Cc(Ω̃N ) we have∫
Ω̃N

[log µ̃ + 1]1Λδ
ϕ +

β

N

∫
Ω̃N

HN1Λδ
ϕ + γ

∫
Ω̃N

IN1Λδ
ϕ = λδ

∫
Ω̃N

1Λδ
ϕ.

Therefore,

log µ̃ + 1 +
β

N
HN + γIN = λδ a.e. on Λδ.

It follows that µ̃ = Cδe−
β
N HN−γIN

almost everywhere on Λδ.
If δ1 < δ2, then Λδ2 ⊂ Λδ1 . Since µ̃ = Cδ2e

− β
N HN−γIN

on Λδ2 and µ̃ =
Cδ1e

− β
N HN−γIN

on Λδ1 we have Cδ1 = Cδ2 = C (independent on δ). We set

Λ = {X̃ ∈ Ω̃N : µ̃ > 0} =
⋃
δ>0

Λδ.

Hence, µ̃ = 0 on Λ{ and µ̃ = Ce−
β
N HN−γIN

on Λ, where

C =
[∫

Λ

e−
β
N HN (X̃)−γIN (X̃)dX̃

]−1

.

A simple calculus shows that

FN (µ̃) = − log
( ∫

Λ

e−
β
N HN−γIN

)
FN (µN ) = − log

( ∫
Ω̃N

e−
β
N HN−γIN

)
.

Since FN (µ̃) ≤ FN (µN ) we have |Λ{| = 0, and thus µ̃ = µN . �

Remark 4.9. We emphasize that in the last proof we have shown that FN is a
l.s.c. functional on the weak topology of L1(Ω̃N ).

We consider now the limit problem. We define the set D(F ∗) of all ρ∗ =
(ρk)k∈N ∈

∏∞
k=1 D(F k) which verify, for all k ∈ N,

(i) ‖ρk‖L1 = 1;
(ii) ρk is symmetric;
(iii) ρk(X̃k) =

∫
Ω̃

ρk+1(X̃k+1)dx̃k+1;
(iv) there exits C = C(ρ∗) such that ‖ρk‖L∞ ≤ Ck.

Remark 4.10. If µ∗ is a weak cluster point of (µN )N>1, then µ∗ ∈ D(F ∗). Indeed,
the first three properties are easily verified. The fourth property follows from
Proposition 3.2. To verify that µk ∈ D(F k) we note, again by Proposition 3.6,
that Ikµk ∈ L1(Ω̃k). Hence, from Lemma 4.6 it follows that [µk log µk]− ∈ L1(Ω̃k).
Finally, from (iv) we obtain [µk log µk]+ ≤ [µk log Ck]+ = k[log C]+µk ∈ L1(Ω̃k).

For ρ∗ ∈ D(F ∗) we define the following functionals

S∗(ρ∗) = lim
k→∞

1
k

∫
Ω̃k

ρk(X̃k) log ρk(X̃k)dX̃k = lim
k→∞

1
k

Sk(ρk),

E∗(ρ∗) =
1
2

∫
Ω̃

∫
Ω̃

H(x̃1, x̃2)ρ2(x̃1, x̃2)dx̃1dx̃2,



16 C. NERI EJDE-2005/92

J∗(ρ∗) =
∫

Ω̃

I(x̃1)ρ1(x̃1)dx̃1,

F ∗(ρ∗) = S∗(ρ∗) + βE∗(ρ∗) + γJ∗(ρ∗).

For ρ∗ ∈ D(F ∗) is not difficult to see that E∗(ρ∗) ∈ R (apply Lemma 4.1 with
N = 2) and J∗(ρ∗) ∈ R (since ρ1 ∈ D(F 1)). From property (iii), by induction, it
follows that

ρk(X̃k) =
∫

Ω̃N−k

ρN (X̃)dX̃N−k.

By Proposition 4.3, (Sk(ρk))k∈N is sub-additive. Thus the limit which defines S∗

exists but it can be infinity. However, by property (iv), he have the following
bounds

1
k

∫
Ω̃k

ρk(X̃k) log ρk(X̃k)dX̃k ≤
1
k

∫
Ω̃k

ρN (X̃k) log CkdX̃k = log C.

Therefore, S∗(ρ∗) ∈ R and F ∗ are real valued.

Proposition 4.11. Let ρ∗ ∈ D(F ∗) and µ∗ be a weak cluster point of (µN )N>1.
We have

(i) 1
N EN (ρN ) → E∗(ρ∗) as N →∞;

(ii) 1
N JN (ρN ) = J∗(ρ∗) ∀N ∈ N;

(iii) 1
N SN (ρN ) → S∗(ρ∗) as N →∞;

(iv) 1
N FN (ρN ) → F ∗(ρ∗) as N →∞;

(v) 1
Nj

ENj (µNj ) → E∗(µ∗) as j →∞;
(vi) 1

Nj
JNj (µNj ) → J∗(µ∗) as j →∞;

(vii) Sk(µk) ≤ lim infj→∞ Sk(µNj

k );
(viii) 1

Nj
FNj (µNj ) → F ∗(µ∗) as j →∞;

(ix) 1
Nj

SNj (µNj ) → S∗(µ∗) as j →∞;

(x) 1
kSk(µk) ≤ lim infj→∞

1
kSk(µNj

k ) ≤ lim supj→∞
1
kSk(µNj

k ) ≤ S∗(µ∗).

Proof. (i), (ii) and (iii) have trivial proofs. (iv). It follows from (i), (ii) and (iii).
Now we prove (v). By the symmetry of µNj (see Remark 4.2) it is sufficient to show
that ∫

Ω̃

∫
Ω̃

H(x̃1, x̃2)µ
Nj

2 (x̃1, x̃2)dx̃1dx̃2 →
∫

Ω̃

∫
Ω̃

H(x̃1, x̃2)µ2(x̃1, x̃2)dx̃1dx̃2,

as j →∞. But this is a consequence of Proposition 3.6, Lemma 4.4 and the weak
convergence µ

Nj

2 ⇀ µ2 in L2(Ω̃2).
(vi). This point is a consequence of the symmetry of µNj (see Remark 4.2) and
Proposition 3.6 (with k = 1 and f = I.)
(vii). By hypothesis, µ

Nj

k ⇀ µk weakly in L1(Ω̃k). Here, we suppose β = 0. Thus,
from the weak lower semicontinuity of F k in L1(Ω̃k) (Remark 4.9) it follows that

Sk(µk) + γJk(µk) ≤ lim inf
j→∞

(
Sk(µNj

k ) + γJk(µNj

k )
)

.

Hence, it is enough to show that Jk(µNj

k ) → Jk(µk) as j → ∞. We note (see
Remark 4.2) that

1
k

Jk(µNj

k ) =
∫

Ω̃

I(x̃1)µ
Nj

1 (x̃1)dx̃1 =
1

Nj
JNj (µNj

k ).
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The result follows now from (ii) and (vi).
(viii). Fix k ∈ N. For each j ∈ N, large enough, we find integers mj and nj such
that Nj = mjk + nj and 0 < nj ≤ k. By Proposition 4.3 we have

mj

Nj
Sk(µNj

k ) +
1

Nj
Snj (µNj

nj
) ≤ 1

Nj
SNj (µNj ).

But (vii) implies that each one of the following k sequences(
S1(µNj

1 )
)

j∈N
, . . . ,

(
Sk(µNj

k )
)

j∈N

is bounded from below, and thus, there exists C = C(k) such that Snj (µNj
nj ) ≥

−C, ∀j ∈ N. It follows that

mj

Nj
Sk(µNj

k )− C

Nj
≤ 1

Nj
SNj (µNj ). (4.4)

By adding β
Nj

ENj (µNj ) + γ
Nj

JNj (µNj ) to (4.4) and considering that µN minimizes
FN (see Theorem 4.8) we obtain

mj

Nj
Sk(µNj

k ) +
β

Nj
ENj (µNj ) +

γ

Nj
JNj (µNj )− C

Nj
≤ 1

Nj
FNj (µNj )

≤ 1
Nj

FNj (µNj ).

By taking the limit j →∞, from (iv), (v), (vi), (vii) and the fact that mj/Nj → 1/k
we conclude

1
k

Sk(µk) + βE∗(µ∗) + γJ∗(µ∗) ≤ lim inf
j→∞

1
Nj

FNj (µNj )

≤ lim sup
j→∞

1
Nj

FNj (µNj ) ≤ F ∗(µ∗).

Finally, we take k →∞ and we use (iii) to complete the proof of (viii).
(ix). Follows form (v), (vi) and (viii).
(x). The first inequality is just (vii). The second one is trivial. The last one follows
from (ix) by taking limits in (4.4). �

Theorem 4.12. Let µ∗ be a weak cluster point of (µN )N>1. Then µ∗ is a solution
of

min{F ∗(ρ∗) : ρ∗ ∈ D(F ∗)}.

Proof. Take ρ∗ ∈ D(F ∗) and j ∈ N. By Theorem 4.8, we have that µNj minimizes
FNj and thus

FNj (µNj ) ≤ FNj (ρNj
).

The result follows from Proposition 4.11 (iv) and (viii). �

Definition 4.13. By P(Ω̃) we denote the space of Borelian probabilities on Ω̃ en-
dowed with the weak topology. We denote Q(Ω̃) the set of all Borelian probabilities
ν on P(Ω̃) such that for ν-almost all ρ in the support of ν we have

• ρ ∈ L∞(Ω̃) ∩D(F ) (where D(F ) = D(F 1));
• There exists C = C(ν) such that ‖ρ‖L∞ ≤ C.
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Remark 4.14. In the previous definition, we can take the set N(Ω̃) =
{

ρ ∈

L∞(Ω̃) : Iρ ∈ L1(Ω̃)
}

instead of L∞(Ω̃) ∩D(F ). Indeed, it is clear that L∞(Ω̃) ∩
D(F ) ⊂ N(Ω̃). On the other hand, if ρ ∈ N(Ω̃) ∩ P(Ω̃), then ρ ∈ L1(Ω̃) and
[ρ log ρ]+ ≤ ρ log(1 + ‖ρ‖L∞) ∈ L1(Ω̃). From Lemma 4.6 we deduce that ρ log ρ ∈
L1(Ω̃). Hence ρ ∈ D(F ).

Theorem 4.15. The application which maps ν ∈ Q(Ω̃) to ρ∗ ∈ D(F ∗) given by

ρk(X̃k) =
∫
P

(Ω̃)ρ(x̃1) · · · ρ(x̃k)ν(dρ) ∀k ∈ N,

or, equivalently, by∫
Ω̃k

f(X̃k)ρk(X̃k)dX̃k =
∫
P

(Ω̃)
∫

Ω̃k

f(X̃k)ρ(x̃1) · · · ρ(x̃k)dX̃kν(dρ), (4.5)

for all f such that fρk ∈ L1(Ω̃k), is onto.

Proof. Let ρ∗ ∈ D(F ∗). By Hewitt-Savage’s Theorem (see [17], Theorem 7.4) there
exists a (unique) Borelian probability ν on P(Ω̃) such that∫

Ω̃k

f(X̃k)ρk(X̃k)dX̃k =
∫
P(Ω̃)

∫
Ω̃k

f(X̃k)ρ(dx̃1) · · · ρ(dx̃k)ν(dρ) (4.6)

for all f such that fρk ∈ L1(Ω̃k). By taking f(X̃k) = g(x̃1) · · · g(x̃k) (g ∈ L1(Ω̃))
and recalling that ‖ρk‖L∞ ≤ Ck we deduce∫

P
(Ω̃)

[ ∫
Ω̃

g(x̃1)ρ(dx̃1)
]k

ν(dρ) ≤ Ck‖g‖k
L1 , ∀g ∈ L1(Ω̃).

Hence, ∣∣∣ ∫
Ω̃

g(x̃1)ρ(dx̃1)
∣∣∣ ≤ C‖g‖L1 ν − a.e. ρ ∈ P(Ω̃).

This means that the support of ν is included in the ball of L∞(Ω̃) with center 0
and radius C. Thus, the relation (4.6) becomes (4.5). To conclude, we should show
that ν ∈ Q(Ω̃).

Since Iρ1 ∈ L1(Ω̃), by taking f = I in (4.5), Fubini’s Theorem gives

Iρ ∈ L1(Ω̃) ν − a.e. ρ ∈ P(Ω̃),

that is, ν is supported in {ρ ∈ L∞(Ω̃) : Iρ ∈ L1(Ω̃)}. Therefore, ν ∈ Q(Ω̃) (see
Remark 4.14). �

Let ρ∗ ∈ D(F ∗) and ν ∈ Q(Ω̃) for which (4.5) holds. We apply this relation with
f = H (Hρ2 ∈ L1(Ω̃2) by Lemma 4.1) and also with f = I to obtain

E∗(ρ∗) =
∫
P

(Ω̃)E(ρ)ν(dρ), where E(ρ) =
1
2

∫
Ω̃

∫
Ω̃

H(x̃1, x̃2)ρ(x̃1)ρ(x̃2)dx̃1dx̃2,

and

J∗(ρ∗) =
∫
P

(Ω̃)J(ρ)ν(dρ), where J(ρ) =
∫

Ω̃

I(x̃1)ρ(x̃1)dx̃1.

In [29] it is shown that

S∗(ρ∗) =
∫
P

(Ω̃)S(ρ)ν(dρ), where S(ρ) =
∫

Ω̃

ρ(x̃1) log ρ(x̃1)dx̃1.
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Hence, by setting F = S + βE + γJ we find

F ∗(ρ∗) =
∫
P

(Ω̃)F (ρ)ν(dρ). (4.7)

All the functionals E, J , S and F are defined on D(F ).
For the rest of this article, ξ stands for an element of Q(Ω̃) associated (as stated

in Theorem 4.15) to a weak cluster point µ∗ = (µk)k∈N of (µN )N>1. That is, µ∗
and ξ are related by

µk(X̃k) =
∫
P

(Ω̃)µ(x̃1) · · ·µ(x̃k)ξ(dµ), ∀k ∈ N. (4.8)

Using (4.7) one can rewrite the claim of Theorem 4.12 to find that ξ is a solution
of

min
{ ∫

P
(Ω̃)F (ρ)dν(ρ), ν ∈ Q(Ω̃)

}
.

Thus we obtain easily the following theorem.

Theorem 4.16. The functional F is ξ-almost everywhere constant on the support
of ξ and equal to its minimum value. In other words, ξ-almost all µ ∈ supp ξ is a
solution of

min
{

F (ρ) : ρ ∈ P(Ω̃) ∩ L∞(Ω̃) ∩D(F )
}

.

Any solution of this problem will be called minimizer of F .

5. The mean field equation

For each cluster point µ∗ of (µN )N>1 we have a measure ξ ∈ Q(Ω̃) such that
(4.8) holds. Theorem 4.16, essentially, says that the minimality of µ∗ is carried to
ξ in the sense that in the support of ξ we should have only minimizers of F . Thus
to each weak cluster point of (µN )N>1 corresponds an “average” (with respect to
ξ) of minimizers of F . In this section we look for such minimizers and we shall see
that they are solutions of a certain partial differential equation.

We recall that N(Ω̃) =
{

ρ ∈ L∞(Ω̃) : Iρ ∈ L1(Ω̃)
}

. The potential of ρ ∈
L1(Ω̃) ∩N(Ω̃), given by

v(x1) =
∫

Ω̃

r2V (x1, x2)ρ(x̃2)dx̃2 = − 1
2π

∫
Ω̃

r2 log |x1 − x2|ρ(x̃2)dx̃2,

is in L∞loc(Ω̃). Indeed, for |x1| < R we have

|v(x1)| ≤
‖ρ‖L∞

2π

∫
|x2|<1

− log |x2|dx2 + C

∫
Ω̃

r2(R2 + |x2|2)|ρ(x̃2)|dx̃2.

Hence, v is a solution (in the distribution sense) of

−∆v(x1) =
∫

(0,1]

r2ρ(x̃2)P (dr2).

If ρ is a minimizer of F , then the corresponding Euler-Lagrange equation gives us
a way to write ρ in terms of its potential v. We can insert this relation into the last
equation and, by a boot-strap argument, show the regularity of v (and consequently
of ρ.)
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Proposition 5.1. Let µ be a minimizer of F and u its potential. Then we have

µ(x̃1) =
[ ∫

Ω̃

e−βr2u(x2)−γI(x̃2)dx̃2

]−1

e−βr1u(x1)−γI(x̃1).

Proof. First, recall that µ ∈ P(Ω̃) ∩ L∞(Ω̃) ∩D(F ) ⊂ L1(Ω̃) ∩N(Ω̃). We proceed
as in the first step in the proof of Theorem 4.8 to show that

µ(x̃1) =

{
Ce−βr1u(x1)−γI(x̃1) on Λ,

0 on Λ{,

where Λ = {x̃1 ∈ Ω̃ : µ(x̃1) > 0} and C =
[ ∫

Ω̃
e−βr2u(x2)−γI(x̃2)dx̃2

]−1

. We should

show that |Λ{| = 0. Suppose, by contradiction, that |Λ{| > 0. Then there exists a
bounded measurable set A ⊂ Λ{ such that |A| = a > 0. For δ > 0 we set

ρ =
µ + δ1A

1 + δa
.

It is easy to see that ρ ∈ P(Ω̃) ∩ L∞(Ω̃) ∩ D(F ), ‖ρ‖L1 = 1 and, by simple but
tedious computations, we find a constant C, not depending on δ, such that

F (ρ) ≤ F (µ) + Cδ(1 + δ + log δ).

Hence, for δ small enough we have F (ρ) < F (µ), which contradicts the minimality
of µ. �

In view of this theorem we can perform the boot-strap argument to show one of
our main results:

Theorem 5.2. For ξ-almost all µ ∈ supp ξ, its potential u is in C∞(R2) and
verifies the following equation (called Mean Field Equation, or MFE for short):

−∆u(x1) =
[ ∫

Ω̃

e−βr2u(x2)−γI(x̃2)dx̃2

]−1
∫

(0,1]

r1e−βr1u(x1)−γI(x̃1)P (dr1). (5.1)

Proposition 5.3. If, for β > −8π and γ > 0, the MFE has a unique solution u,
then (µN

k )N>k converges in Lp(Ω̃k) to µ⊗k for all k ∈ N and for all p ∈ [1,∞),
where µ is the distribution associated to u.

Proof. Let k ∈ N and p ∈ [1,∞). From Theorem 5.2, we have that for ξ-almost all
µ ∈ supp ξ the associated potential is a solution of MFE, ant thus, by uniqueness,
equals to u. By Proposition 5.1 µ is the distribution associated to u. Thus, ξ is a
Dirac measure concentrated on µ. It follows that µk(X̃k) = µ(x̃1) · · ·µ(x̃k). Hence,

1
k

Sk(µk) =
1
k

∫
Ω̃k

µk(X̃k) log µk(X̃k)dX̃k =
∫

Ω̃

µ(x̃1) log µ(x̃1)dx̃1 = S(µ).

We know also that

S∗(µ∗) =
∫
P

(Ω̃)S(ρ)dξ(ρ) = S(µ).

From Proposition 4.11, item (x), we have Sk(µNj

k ) → Sk(µk). Since S is strictly
convex we conclude that µ

Nj

k → µk strongly in Lp(Ω̃k). We have shown that every
weakly cluster point of (µN

k )N>k is a strongly one and unique. �
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6. An alternative to the study of MFE

One may think that it is straightforward to proceed as we did in [27] by intro-
ducting a functional G on H1(R2) and for which the Euler-Lagrange equation is
the MFE. Thus changing our point of view to a variational problem on potentials.
But there are many technical difficulties which arises. For example:

(i) We need an inequality of Poincaré type over R2. In fact, this is not a
problem because we work with the measure e−γr1|x1|2dx1.

(ii) We need also an R2 version of Trudinger-Moser inequality. It may exist by
the same reason as in (i).

(iii) The potential associated to µ ∈ D(F ) is not always on H1(R2)! Indeed,
even, for example, if µ is compactly supported we have that |∇u(x1)| de-
creases at infinity as fast as |x1|−1 which is not in L2(R2).

Another inconvenience to study the MFE: in general, the hypothesis of Propo-
sition 5.3 does not hold! Take, for example, P = δ1. The MFE becomes

−∆u(x1) =
[ ∫

R2
e−βu(x2)−γ|x2|2dx2

]−1

e−βu(x1)−γ|x1|2 .

It is clear that, if u is a solution, then u+C is also a solution. However the conclusion
of Proposition 5.3 holds by modifying the argument. The fundamental idea of the
proof of Proposition 5.3 was to follow the statistical approach backwards: each
weakly cluster point of (µN )N>1 gives a solution of MFE. Hence, if this equation
has a unique solution, then we have the uniqueness of minimizers of F . We conclude
that (µN )N>1 has a unique weak cluster point and the convergence is strong. Now
we do not have the uniqueness of MFE’s solution anymore, but we can start our
argument from the uniqueness of minimizers of F .

The previous remarks show us that it might be more convenient to forget the po-
tentials and MFE and study the problem by means of distributions and minimizers
of F . Theorem 4.16 gave us the existence now we have a uniqueness result.

Proposition 6.1. If P = δ1 and β > 0, then F has a unique minimizer.

Proof. Considering this measure P , we can identify Ω̃ = R2× (0, 1] to R2×{1} and
thus to R2. Let µ be a minimizer of F . We shall show that∫

R2
x1µ(x1)dx1 = 0.

First note that the integral above is convergent since µ ∈ L1(R2) and |x1|2µ(x1) ∈
L1(R2). Suppose, by contradiction, that the integral above equals to x0 6= 0.
Consider the function µ̃(x1) = µ(x1 + x0).

It is easy to see that µ̃ ∈ P(Ω̃)∩L∞(Ω̃)∩D(F ), S(µ̃) = S(µ) and E(µ̃) = E(µ).
By a change of variables we have

J(µ̃) =
∫

R2
|x1|2µ(x1 + x0)dx1 =

∫
R2
|x1 − x0|2µ(x1)dx1

=
∫

R2
|x1|2µ(x1)dx1 − 2x0 ·

∫
R2

x1µ(x1)dx1 + |x0|2
∫

R2
µ(x1)dx1

= J(µ)− 2|x0|2 + |x0|2 = J(µ)− |x0|2 < J(µ).
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Hence, F (ρ) < F (µ), which contradicts the minimality of F (µ). To complete the
proof, it suffices to show that F is strictly convex on{

ρ ∈ P(Ω̃) ∩ L∞(Ω̃) ∩D(F ) :
∫

R2
x1ρ(x1)dx1 = 0

}
.

Since S is strictly convex, J is linear, β > 0 and E is quadratic, it is enough to
show that E(ρ) is positive if ρ ∈ L1(R2) ∩ L∞(R2), |x2|2ρ(x2) ∈ L1(R2),∫

R2
ρ(x2)dx2 = 0 and

∫
R2

x2ρ(x2)dx2 = 0. (6.1)

Take a such ρ and let v ∈ L∞loc(R2) be its potential. We shall show that v ∈ L2(R2).
For x1 ∈ R2, we denote A = A(x1) = {x2 ∈ R2 : |x2| ≤ |x1|/2} and write
v = − 1

2π (v1 + v2), with

v1(x1) =
∫

A

log |x1 − x2|ρ(x2)dx2 and v2(x1) =
∫

A{

log |x1 − x2|ρ(x2)dx2.

Hence, it suffices to show that v1, v2 ∈ L2(R2). From Taylor’s expansion of log |x|
we have

log |x + y| = x · y +O(|y|2) if |x| = 1, |y| ≤ 1
2
,

uniformly on x since log |x| is C2 on the compact {0.5 ≤ |x| ≤ 1}. Hence, take
x = x1/|x1| and y = −x2/|x1| to obtain

log |x1 − x2| = log |x1| −
x1

|x1|2
· x2 +

1
|x1|2

O(|x2|2) if x2 ∈ A.

Thus, from (6.1) it follows that

v1(x1)

= log |x1|
∫

A

ρ(x2)dx2 −
x1

|x1|2
·
∫

A

x2ρ(x2)dx2 +
1
|x2|

∫
A

O(|x2|2)ρ(x2)dx2

= − log |x1|
∫

A{

ρ(x2)dx2 +
x1

|x1|2
·
∫

A{

x2ρ(x2)dx2 +
1
|x2|

∫
A

O(|x2|2)ρ(x2)dx2.

Since |x2|2ρ(x2) ∈ L1(ρ), for |x1| > 1, we have

|v1(x1)| ≤ log |x1|
∫

A{

|ρ(x2)|dx2 +
1
|x1|

∫
A{

|x2||ρ(x2)|dx2 +O
(

1
|x1|2

)
≤ 4 log |x1|

|x1|2

∫
R2
|x2|2|ρ(x2)|dx2 +

2
|x1|2

∫
R2
|x2|2|ρ(x2)|dx2 +O

(
1

|x1|2

)
= O

(
log |x1|
|x1|2

)
.

Therefore v1 ∈ L2(R2).
To show that v2 ∈ L2(R2), we write v2 = w1 + w2, where w1 = v21B1(x1) and

w2 = v21B1(x1){ . Holder’s Inequality yields

|w1(x1)| ≤
[ ∫

A{∩B1(x1)

∣∣∣ log |x1 − x2|
∣∣∣3|ρ(x2)|dx2

] 1
3
[ ∫

A{∩B1(x1)

|ρ(x2)|dx2

] 2
3

≤ ‖ρ‖L∞

[ ∫
B1(0)

∣∣∣ log |x2|
∣∣∣3dx2

] 1
3
[
4

∫
A{

|x2|2

|x1|2
|ρ(x2)|dx2

] 2
3 ≤ C

|x1|4/3
.
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Therefore, w1 ∈ L2(R2). We take C > 0 such that log r ≤ Cr1/4 for all r > 1. It
follows that

|w2(x1)| ≤ C

∫
A{∩B1(x1){

|x1 − x2|1/4|ρ(x2)|dx2

≤ C

∫
A{

|x2|1/4 |x2|7/4

|x1|7/4
|ρ(x2)|dx2 ≤

C

|x1|7/4
.

Therefore, w2 ∈ L2(R2). From Plancherel’s Theorem, we obtain∫
R2

v̂(η)ρ̂(η)dη =
∫

R2
v(x1)ρ(x1)dx1

=
∫

R2

∫
R2

V (x1, x2)ρ(x1)ρ(x2)dx1dx2 = 2E(ρ),

where v̂ and ρ̂ are the Fourier transforms of v and ρ, resp. But, −∆v = ρ and thus
|η|2v̂(η) = ρ̂(η), hence

E(ρ) =
1
2

∫
R2
|η|2|v̂(η)|2dη ≥ 0.

�

The uniqueness of minimizer, as often, has followed from strict convexity of
F . The previous proof can be adapted to a Dirac measure supported on any point.
Unfortunately, without the strict convexity we don’t know whether uniqueness holds
or not. As a bad news, we have that the convexity is a particularity of the case of
a Dirac measure.

Proposition 6.2. If P is not a Dirac measure and β > 0, then the functional F
is not convex on

M =
{

ρ ∈ P(Ω̃) ∩ L∞(Ω̃) ∩D(F ) :
∫

R2
x1ρ(x1)dx1 = 0

}
.

Proof. Since P is not a Dirac measure, we can take 0 < a0 ≤ b0 < a ≤ b such that
P ([a0, b0]) > 0 and P ([a, b]) > 0. Taking a and b close enough, we may suppose
b0b < a2. Let N be an even number such that

b0b < a2 (N − 1)
N

.

We set B0 = B1(0). Take t > 2 (to be chosen later) and consider a regular polygon
of N sides and radius t centered at origin. We denote by Bi the unity ball centered
at its i-th vertex. Let A =

⋃N
i=1 Bi (t is large enough to have a disjoint union). We

define also B̃0 = B0 × [a0, b0], B̃i = Bi × [a, b] (i = 1, . . . , N) and Ã =
⋃N

i=1 B̃i.
Finally, we define ρ0 = α01B̃0

and ρ1 = α11Ã, where α0, α1 > 0 are such that

α0

∫
B̃0

dx̃1 =
∫

Ω̃

ρ0(x̃1)dx̃1 = 1

and

Nα1

∫
B̃i

dx̃1 = α1

∫
Ã

dx̃1 =
∫

Ω̃

ρ1(x̃1)dx̃1 = 1.
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By the symmetries of B̃0 and Ã with respect to origin, it is easy too see that
ρ0, ρ1 ∈ M . Simple computations give

S

(
1
2
(ρ0 + ρ1)

)
=

1
2
S(ρ0) +

1
2
S(ρ1)− log 2

and

J

(
1
2
(ρ0 + ρ1)

)
=

1
2
J(ρ0) +

1
2
J(ρ1).

Since E is quadratic, we have

E

(
1
2
(ρ0 + ρ1)

)
=

1
2
E(ρ0) +

1
2
E(ρ1)−

1
4
E(ρ0 − ρ1).

Hence,

F

(
1
2
(ρ0 + ρ1)

)
=

1
2
F (ρ0) +

1
2
F (ρ1)− log 2− β

4
E(ρ0 − ρ1).

We shall show that E(ρ0− ρ1) → −∞ as t →∞. Therefore, for t large enough, we
shall have

F

(
1
2
(ρ0 + ρ1)

)
>

1
2
F (ρ0) +

1
2
F (ρ1).

The result follows.
Since B̃0, B̃1 . . . , B̃N are disjoints and ρ0 and ρ1 are constants and supported on

these balls, we have

E(ρ0 − ρ1) = −α2
0

4π

∫
B̃0

∫
B̃0

r1r2 log |x1 − x2|dx̃1dx̃2

− α2
1

4π

N∑
i=1

∫
B̃i

∫
B̃i

r1r2 log |x1 − x2|dx̃1dx̃2

+
α0α1

4π

N∑
i=1

∫
B̃0

∫
B̃i

r1r2 log |x1 − x2|dx̃1dx̃2

− α2
1

4π

N∑
i 6=j

∫
B̃i

∫
B̃j

r1r2 log |x1 − x2|dx̃1dx̃2.

Clearly, the first term on the RHS does not depend on t. The second neither, since
by a translation on x variables, the integrand does not change and the domain
becomes, for example, (B0 × [a, b])2. For t large enough the last two terms behave
like

Φ(t) =
α0α1

4π

N∑
i=1

∫
B̃0

∫
B̃i

r1r2 log tdx̃1dx̃2 −
α2

1

4π

N∑
i 6=j

∫
B̃i

∫
B̃j

r1r2 log(θt)dx̃1dx̃2,

where θ is a constant (the ratio side/radius for the regular polygon of N sides).
But, log(θt) = log θ + log t and, by the same translation on x variables as before,
we conclude that the factor multiplying log θ does not depend on t. Therefore, we
may suppose θ = 1. Then

Φ(t) =
log t

4π

[
α0α1

N∑
i=1

∫
B̃0

∫
B̃i

r1r2dx̃1dx̃2 − α2
1

N∑
i 6=j

∫
B̃i

∫
B̃j

r1r2dx̃1dx̃2

]
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≤ log t

4π

[
α0α1bb0

N∑
i=1

∫
B̃0

∫
B̃i

dx̃1dx̃2 − α2
1a

2
N∑

i 6=j

∫
B̃i

∫
B̃j

dx̃1dx̃2

]
=

log t

4π

[
bb0 − a2 (N − 1)

N

]
We conclude that Φ(t) → −∞ as t →∞. �
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