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COMPARISON PRINCIPLE FOR PARABOLIC EQUATIONS IN
THE HEISENBERG GROUP

THOMAS BIESKE

Abstract. We define two notions of viscosity solutions to parabolic equations
in the Heisenberg group, depending on whether the test functions concern only

the past or both the past and the future. We then exploit the Heisenberg
geometry to prove a comparison principle for a class of parabolic equations

and show the sufficiency of considering the test functions that concern only

the past.

1. Background and Motivation

In [2], viscosity solutions to a class of fully nonlinear subelliptic equations in
the Heisenberg group were introduced and comparison principles were proved by
heavily exploiting the geometry of the Heisenberg group. It is natural to adapt
the geometric workings of [2] to parabolic equations in the Heisenberg group. For
example, such equations have been recently used by Bonk and Capogna to study
mean curvature [3].

Our objective is to find the Heisenberg analog of the Euclidean comparison prin-
ciple for a class of parabolic equations as found in [5, Section 8]. Relying on the
Heisenberg geometry, we prove such an analog as our main theorem, Theorem 4.4.
In addition, we examine a significant consequence of this comparison principle.
Namely, we are able to prove that for this class of parabolic equations, it is suf-
ficient to consider only test functions that refer to the past. This was originally
proved in the Euclidean case by Juutinen [12].

Before presenting these two results in Section 4, we begin with a brief introduc-
tion to Heisenberg groups in Section 2 and discuss viscosity solutions to parabolic
equations in Section 3.

2. The Heisenberg Group

We begin with R2n+1 using the coordinates (x1, x2, . . . , x2n, z) and consider the
linearly independent vector fields {Xi, Z}, where the index i ranges from 1 to 2n,
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defined by

Xi =

{
∂

∂xi
− xn+i

2
∂
∂z if 1 ≤ i ≤ n

∂
∂xi

+ xi−n

2
∂
∂z if n < i ≤ 2n,

Z =
∂

∂z
.

These vector fields obey the relations

[Xi, Xj ] =

{
Z if j = i+ n

0 otherwise

and for all i,
[Xi, Z] = 0.

We then have a Lie Algebra denoted hn that decomposes as a direct sum

hn = V1 ⊕ V2

where V1 is spanned by the Xi’s and V2 is spanned by Z. We endow hn with an
inner product 〈·, ·〉 and related norm ‖ · ‖ so that this basis is orthonormal. The
corresponding Lie Group is called the general Heisenberg group of dimension n
and is denoted by Hn. The choice of vector fields and their Lie bracket relations
forces the exponential map to be the identity and so elements of hn and Hn can be
identified with each other. Namely,

2n∑
i=1

xiXi + zZ ∈ hn ↔ (x1, x2, . . . , x2n, z) ∈ Hn.

In particular, for any p, q in Hn, written as p = (x1, x2, . . . , x2n, z1) and q =
(y1, y2, . . . , y2n, z2) the group multiplication law is given by

p · q =
(
x1 + y1, x2 + y2, . . . , x2n + y2n, z1 + z2 +

1
2

n∑
i=1

(xiyn+i − xn+iyi)
)
.

The natural metric on Hn is the Carnot-Carathéodory metric given by

dC(p, q) = inf
Γ

∫ 1

0

‖γ′(t)‖dt

where the set Γ is the set of all curves γ such that γ(0) = p, γ(1) = q and γ′(t) ∈ V1.
By Chow’s theorem any two points can be connected by a horizontal curve, which
makes dC(p, q) a left-invariant metric on Hn. (See, for example, [1].) This metric
induces a homogeneous norm on Hn, denoted | · |, by

|p| = dC(0, p)

and we have the estimate

|p| ∼
2n∑
i=1

|xi|+ |z|1/2.

This estimate leads us to define the left-invariant gauge N that is comparable to
the Carnot-Carathéodory metric and is given by

N (p) =
(( 2n∑

i=1

x2
i

)2 + 16z2
)1/4

.
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We define the Carnot-Carathéodory balls B(p, r) and the gauge balls BN (p, r) in
the obvious way.

Given a smooth function u : Hn 7→ R, we define the horizontal gradient by

∇0u = (X1u,X2u, . . . ,X2nu),

the full gradient by
∇u = (X1u,X2u, . . . ,X2nu, Zu),

and the symmetrized horizontal second derivative matrix (D2u)? by

((D2u)?)ij =
1
2
(XiXju+XjXiu).

A function f is C1 if Xif is continuous for all i and f is C2 if f is C1 and XiXjf is
continuous for all i and j.

For a more complete treatment of the Heisenberg group, the interested reader is
directed to [1], [2], [6], [7] [8], [9], [13], [14] and the references therein.

3. Parabolic Jets and Solutions to Parabolic Equations

In this section, we define and compare various notions of solutions to parabolic
equations in the Heisenberg group, in the spirit of [5, Section 8]. We begin by
letting u(p, t) be a function in Hn × [0, T ] for some T > 0. We consider parabolic
equations of the form

ut + F (t, p, u,∇u, (D2u)?) = 0 (3.1)

for continuous and proper F : [0, T ] × Hn × R × hn × S2n 7→ R. We recall that
Sk is the set of k × k symmetric matrices and the derivatives ∇u and (D2u)? are
taken in the space variable p. Examples of parabolic equations include the parabolic
P -Laplace equation for 2 ≤ P <∞ given by

ut + ∆Pu = ut − div(‖∇0u‖P−2∇0u) = 0

and the parabolic infinite Laplace equation

ut + ∆∞u = ut − 〈(D2u)?∇0u,∇0u〉 = 0.

For such equations, we define the parabolic superjet of u(p, t) at the point
(p0, t0) ∈ OT ≡ O × (0, T ), denoted P 2,+u(p0, t0), by using triples (a, η,X) ∈
R× hn × S2n so that (a, η,X) ∈ P 2,+u(p0, t0) if

u(p, t) ≤ u(p0, t0) + a(t− t0) + 〈η, p−1
0 · p〉+

1
2
〈Xp−1

0 · p, p−1
0 · p〉

+ o(|t− t0|+ |p−1
0 · p|2) as (p, t) → (p0, t0).

We recall that p−1
0 · p is the first 2n coordinates of p−1

0 · p, given by (x1 − x0
1, x2 −

x0
2, . . . , x2n− x0

2n). This definition is analogous to the superjet definition for subel-
liptic equations, as detailed in [2]. We define the subjet P 2,−u(p0, t0) by

P 2,−u(p0, t0) = −P 2,+(−u)(p0, t0).

We define the set theoretic closure of the superjet, denoted P
2,+
u(p0, t0), by re-

quiring (a, η,X) ∈ P 2,+
u(p0, t0) exactly when there is a sequence

(an, pn, tn, u(pn, tn), ηn, Xn) → (a, p0, t0, u(p0, t0), η,X)

with the triple (an, ηn, Xn) ∈ P 2,+u(pn, tn). A similar definition holds for the
closure of the subjet.
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As in the subelliptic case, we may also define jets using the appropriate test
functions. Namely, we consider the set Au(p0, t0) by

Au(p0, t0) = {φ ∈ C2(OT ) : u(p, t)− φ(p, t) ≤ u(p0, t0)− φ(p0, t0) = 0}
consisting of all test functions that touch from above. We define the set of all
test functions that touch from below, denoted Bu(p0, t0), similarly. The following
lemma is proved in the same way as the Euclidean version ([4] and [11]) except we
replace the Euclidean distance |p− p0| with the Heisenberg gauge N (p−1

0 · p).

Lemma 3.1.

P 2,+u(p0, t0) = {(φt(p0, t0),∇φ(p0, t0), (D2φ(p0, t0))?) : φ ∈ Au(p0, t0)}.

We may now relate the traditional Euclidean parabolic jets found in [5] to the
Heisenberg parabolic jets via the following lemma.

Lemma 3.2. Let DLp0 be the differential of the left multiplication map at the point
p0, let P 2,+

euclu(p0, t0) be the traditional Euclidean parabolic superjet of u at the point
(p0, t0) and let (a, η,X) ∈ R× R2n+1 × S2n+1. Then,

(a, η,X) ∈ P 2,+

euclu(p0, t0)

gives the element(
a,DLp0η, (DLp0 X (DLp0)

T )2n

)
∈ P 2,+

u(p0, t0)

with the convention that for any matrix M , Mm is the m×m principal minor.

Proof. This proof is similar to the corresponding result for subelliptic jets as found
in [2]. We then highlight the main details.

We may assume that u(p0, t0) = 0. We first consider the case when p0 is the
origin. Let (a, η,X) ∈ P 2,+

euclu(0, t0). Then we have

u(p, t) ≤ a(t− t0) + 〈η, p〉eucl + 〈Xp, p〉eucl + o(|t− t0|+ ‖p‖2eucl)

for (p, t) near (0, t0). Suppose that α is o(|t− t0|+ ‖p‖2eucl). Then we have

α

|t− t0|+ |p|2
=

α

|t− t0|+ ‖p‖2eucl

× |t− t0|+ ‖p‖2eucl

|t− t0|+ |p|2

≤ α

|t− t0|+ ‖p‖2eucl

×
(
1 +

‖p‖2eucl

|p|2
)
.

We thus conclude that α is o(|t− t0|+ |p|2). Using the fact that 〈η, p〉eucl = 〈η, p〉
at the origin, we obtain

u(p, t) ≤ a(t− t0) + 〈η, p〉+ 〈Xp, p〉eucl + o(|t− t0|+ |p|2).
We next observe that

〈Xp, p〉eucl = 〈(X)2np, p〉+ o(|p|2)
where (X)2n is the 2n× 2n principal minor and p is as above. We therefore obtain
the inequality

u(p, t) ≤ a(t− t0) + 〈η, p〉+ 〈(X)2np, p〉+ o(|t− t0|+ |p|2).
The general case follows from left translation of p0. �

We then use these jets to define subsolutions and supersolutions to Equation
(3.1) in the usual way.
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Definition 3.3. Let (p0, t0) ∈ OT be as above. The upper semicontinuous function
u is a viscosity subsolution in OT if for all (p0, t0) ∈ OT we have (a, η,X) ∈
P 2,+u(p0, t0) produces

a+ F (t0, p0, u(p0, t0), η,X) ≤ 0.

A lower semicontinuous function u is a viscosity supersolution in OT if for all
(p0, t0) ∈ OT we have (b, ν, Y ) ∈ P 2,−u(p0, t0) produces

b+ F (t0, p0, u(p0, t0), ν, Y ) ≥ 0.

A continuous function u is a viscosity solution in OT if it is both a viscosity subso-
lution and viscosity supersolution.

We also wish to define what [12] refers to as parabolic viscosity solutions. We
first need to consider the set

A−u(p0, t0) = {φ ∈ C2(OT ) : u(p, t)− φ(p, t) ≤ u(p0, t0)− φ(p0, t0) = 0 for t < t0}

consisting of all functions that touch from above only when t < t0. Note that this
set is larger than Au and corresponds physically to the past alone playing a role
in determining the present. We define B−u(p0, t0) similarly. We then have the
following definition.

Definition 3.4. An upper semicontinuous function u on OT is a parabolic viscosity
subsolution in OT if φ ∈ A−u(p0, t0) produces

φt(p0, t0) + F (t0, p0, u(p0, t0),∇φ(p0, t0), (D2φ(p0, t0))?) ≤ 0.

An lower semicontinuous function u on OT is a parabolic viscosity supersolution in
OT if φ ∈ B−u(p0, t0) produces

φt(p0, t0) + F (t0, p0, u(p0, t0),∇φ(p0, t0), (D2φ(p0, t0))?) ≥ 0.

A continuous function is a parabolic viscosity solution if it is both a parabolic
viscosity supersolution and subsolution.

It is easily checked that parabolic viscosity sub(super-)solutions are viscosity
sub(super-)solutions. The reverse implication will be a consequence of the compar-
ison principle proved in the next section.

4. Comparison Principle

To prove the comparison principle, we need to chose the proper penalty function
that has the desired properties. We consider the function ϕ : Hn ×Hn 7→ R given
by

ϕ(p, q) =
1
2

2n∑
i=1

(xi − yi)2 +
1
2

(
z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i)
)2

.

We observe that we have

ϕ(p, q) =
1
2
‖q−1 · p‖2.

This choice gives us desired properties as detailed in the next lemma.
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Lemma 4.1. Let the vector η be given by

η = q−1 · p =


(x1 − y1)
(x2 − y2)

...
(x2n − y2n)

z1 − z2 + 1
2

∑n
i=1(xn+iyi − xiyn+i)

 .

Recall that the differential of left multiplication with respect to p, denoted DLp, is
given by (

I2n×2n P
01×2n 1

)
with the 2n× 1 vector P given by

(−1
2
xn+1,−

1
2
xn+2, . . . ,−

1
2
x2n,

1
2
x1,

1
2
x2, . . . ,

1
2
xn)T

with a similar definition for DLq using the vector Q. Denoting Euclidean differen-
tiation with respect to the point r by Dr, then have the following properties:

(1) Dpϕ(p, q) = DLqη
(2) Dqϕ(p, q) = −DLpη
(3) Dpη = DLT

q

(4) Dqη = −DLT
p

(5) DLpDLq = DLqDLp

(6) DLpDpϕ(p, q) = −DLqDqϕ(p, q) ≡ Υ(p, q)
(7)

DLp(Dppϕ(p, q)DLT
p +Dpqϕ(p, q)DLT

q )

=
1
2
(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))

0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0


(8)

DLq(Dqqϕ(p, q)DLT
q +Dqpϕ(p, q)DLT

p )

=
1
2
(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))

 0n×n In×n 0n×1

−In×n 0n×n 0n×1

01×n 01×n 0


(9) Let v ∈ hn be a vector. Then

〈Dppϕ(p, q)DLT
p v,DL

T
p v〉+ 〈Dpqϕ(p, q)DLT

q v,DL
T
p v〉

+ 〈Dqpϕ(p, q)DLT
p v,DL

T
q v〉+ 〈Dqqϕ(p, q)DLT

q v,DL
T
q v〉 = 0

(10) Let v ∈ hn be a vector. We recall that v is the first 2n coordinates of v.
Then

‖
(
Dppϕ(p, q) Dpqϕ(p, q)
Dqpϕ(p, q) Dqqϕ(p, q)

) (
DLT

p v
DLT

q v

)
‖2

=
1
2
‖v‖2(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))2 .
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Proof. The first five properties are elementary calculations and left to the reader.
The sixth follows from the fifth and the first two. We therefore turn our attention
to the last four. Let Mpq be the left-hand side of (7). Then,

Mpq = DLp

(
Dp(DLqη)DLT

p +Dq(DLqη)DLT
q

)
= DLp

(
DLqDpηDL

T
p +Dq(DLq)ηDLT

q +DLqDqηDL
T
q

)
= DLp

(
DLqDL

T
q DL

T
p +Dq(DLq)ηDLT

q −DLqDL
T
pDL

T
q

)
= DLp

(
Dq(DLq)ηDLT

q

)
and so we are left to compute only the derivative of the matrix DLq. Knowing
the definition of η above and the formula for DLq as given above, we see that
when 1 ≤ i ≤ n, we have Dyi(DLq) is a matrix with every entry 0 except for the
(i + n, 2n + 1) entry, which is 1

2 . When n < i < 2n, we have Dyi(DLq) has all
entries 0 except for the (i− n, 2n+ 1) entry, which is − 1

2 . Cleary, Dz2(DLq) is the
0 matrix. We then compute

Dq(DLq)η =
1
2
(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))

0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0

 .

We then have(
I2n×2n P
01×2n 1

) 0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0

 (
I2n×2n 02n×1

QT 1

)

=
(
I2n×2n P
01×2n 1

) 0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0

 =

0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0


and Property (7) follows. To prove (8), we let Mpq be the left-hand side of (8).
Then

Mpq = DLq

(
−Dq(DLpη)DLT

q +Dp(−DLpη)DLT
p

)
= DLq

(
−DLpDqηDL

T
q −Dp(DLp)ηDLT

p −DLpDpηDL
T
p

)
= DLq

(
DLpDL

T
pDL

T
q −Dp(DLp)ηDLT

p −DLpDL
T
q DL

T
p

)
= −DLq

(
Dp(DLp)ηDLT

p

)
and we computeDp(DLp)η in the same way as the above computation forDq(DLq)η
and arrive at Property (8).

To prove Property (9), we note that the right hand side can be written as

〈DLp(Dppϕ(p, q)DLT
p +Dpqϕ(p, q)DLT

q )v, v〉
+ 〈DLq(Dqqϕ(p, q)DLT

q +Dqpϕ(p, q)DLT
p )v, v〉

Using Properties (7) and (8) we see this is zero. Property (9) then follows.
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Using the proofs of Properties (7) and (8), we have(
Dppϕ(p, q) Dpqϕ(p, q)
Dqpϕ(p, q) Dqqϕ(p, q)

) (
DLT

p v
DLT

q v

)
=

(
(Dppϕ(p, q)DLT

p +Dpqϕ(p, q)DLT
q )v

(Dqpϕ(p, q)DLT
p +Dqqϕ(p, q)DLT

q )v

)

=
1
2
(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))



0n×n −In×n 0n×1

In×n 0n×n 0n×1

01×n 01×n 0

 v 0n×n In×n 0n×1

−In×n 0n×n 0n×1

01×n 01×n 0

 v

 .

We then see that ∥∥(
Dppϕ(p, q) Dpqϕ(p, q)
Dqpϕ(p, q) Dqqϕ(p, q)

) (
DLT

p v
DLT

q v

) ∥∥2

=
1
2
‖v‖2(z1 − z2 +

1
2

n∑
i=1

(xn+iyi − xiyn+i))2

and Property (10) is proved. �

Using the penalty function ϕ we next need to show the existence of Heisenberg
jet elements when considering subsolutions and supersolutions in Hn. This theorem
is based on [5, Thm. 8.2], which details the Euclidean case.

Theorem 4.2. Let u be a viscosity subsolution to Equation (3.1) and v be a vis-
cosity supersolution to Equation (3.1) in the bounded parabolic set Ω× (0, T ) where
Ω is a (bounded) domain. Let τ be a positive real parameter and let ϕ(p, q) be as
above. Suppose the local maximum of

Mτ (p, q, t) ≡ u(p, t)− v(q, t)− τϕ(p, q)

occurs at the interior point (pτ , qτ , tτ ) of the parabolic set Ω × Ω × (0, T ). Then,
for each τ > 0, there are elements (a, τΥ,X τ ) ∈ P

2,+
u(pτ , tτ ) and (a, τΥ,Yτ ) ∈

P
2,−

v(qτ , tτ ) so that if

lim
τ→∞

τϕ(pτ , qτ ) = 0,

then we have X τ ≤ Yτ +Rτ with Rτ → 0 as τ →∞.

Proof. We first need to check that Condition 8.5 in [5] is satisfied, namely that
there exists an r > 0 so that for each M , there exists a C so that b ≤ C when
(b, η,X) ∈ P 2,+

euclu(p, t), |p− pτ |+ |t− tτ | < r, and |u(p, t)|+ ‖η‖+ ‖X‖ ≤M with a
similar statement holding for −v. If this condition is not met, then for each r > 0,
we have an M so that for all C, b > C when (b, η,X) ∈ P 2,+

euclu(p, t). By Lemma 3.2
we would have

(b,DLpη, (DLp X DLT
p )2n) ∈ P 2,+u(p, t)

contradicting the fact that u is a subsolution. A similar conclusion is reached for
−v and so we conclude that this condition holds. We may then apply Theorem 8.3
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of [5] and obtain, by our choice of ϕ,

(a, τDpϕ(pτ , qτ ), Xτ ) ∈ P 2,+

euclu(pτ , tτ )

(a,−τDqϕ(pτ , qτ ), Y τ ) ∈ P 2,−
euclv(qτ , tτ )

and by Lemma 3.2 we have

(a, τΥ(pτ , qτ ),X τ ) ∈ P 2,+
u(pτ , tτ )

(a, τΥ(pτ , qτ ),Yτ ) ∈ P 2,−
v(qτ , tτ )

where

X τ = (DLpτ X
τ DLT

pτ
)2n

Yτ = (DLqτ Y
τ DLT

qτ
)2n.

Given a vector v = (v1, v2, . . . , v2n), we consider the extension v̂ to all of hn by
v̂ = (v, 0). We then have

〈X τv, v〉 − 〈Yτv, v〉 = 〈DLpτ
Xτ DLT

pτ
v̂, v̂〉 − 〈DLqτ

Y τ DLT
qτ
v̂, v̂〉

≤ τ〈(A2 +A)
(
DLT

pτ
v̂ ⊕DLT

qτ
v̂
)
,
(
DLT

pτ
v̂ ⊕DLT

qτ
v̂
)
〉

where the matrix A is given by

A =
(
Dppϕ(pτ , qτ ) Dpqϕ(pτ , qτ )
Dqpϕ(pτ , qτ ) Dqqϕ(pτ , qτ )

)
.

We may then combine Properties (9) and (10) of Lemma 4.1 and the fact that
τϕ(pτ , qτ ) → 0 as τ →∞ to obtain the matrix estimate. �

Using the vector Υ, we may define a class of parabolic equations to which we
shall prove a comparison principle.

Definition 4.3. We say the continuous, proper function

F : [0, T ]× Ω× R× hn × S2n 7→ R

is admissable if for each t ∈ [0, T ], there is the same function ω : [0,∞] 7→ [0,∞]
with ω(0+) = 0 so that F satisfies

F (t, q, r, τΥ, Y )− F (t, p, r, τΥ, X) ≤ ω(dC(p, q) + τ‖Υ(p, q)‖2 + ‖X − Y ‖). (4.1)

Note that ‖Υ(p, q)‖2 ∼ ϕ(p, q) by the calculations above.

We now formulate the comparison principle for the problem

ut + F (t, p, u,∇u, (D2u)?) = 0 in (0, T )× Ω (E)

u(p, t) = g(p, t) p ∈ ∂Ω, t ∈ [0, T ) (BC)

u(p, 0) = ψ(p) p ∈ Ω (IC)

(4.2)

Here, ψ ∈ C(Ω) and g ∈ C(Ω × [0, T )). Note that this is the Heisenberg version
of the problem considered in [5]. We also adopt their definition that a subsolution
u(p, t) to Problem (4.2) is a viscosity subsolution to (E), u(p, t) ≤ g(p, t) on ∂Ω
with 0 ≤ t < T and u(p, 0) ≤ ψ(p) on Ω. Supersolutions and solutions are defined
in an analogous matter.
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Theorem 4.4. Let Ω be a bounded domain in Hn. Let F be admissible. If u is a
viscosity subsolution and v a viscosity supersolution to Problem (4.2) then u ≤ v
on [0, T )× Ω.

Proof. Our proof follows that of [5][Thm. 8.2] and so we discuss only the main
parts. For ε > 0, we substitute ũ = u− ε

T−t for u and prove the theorem for

ut + F (t, p, u,∇u, (D2u)?) ≤ − ε

T 2
< 0

lim
t↑T

u(p, t) = −∞ uniformly on Ω

and take limits to obtain the desired result. Assume the maximum occurs at
(p0, t0) ∈ Ω× (0, T ) with

u(p0, t0)− v(p0, t0) = δ > 0.

Let
Mτ = u(pτ , tτ )− v(qτ , tτ )− τϕ(pτ , qτ )

with (pτ , qτ , tτ ) the maximum point in Ω×Ω× [0, T ) of u(p, t)− v(q, t)− τϕ(p, q).
Using the same proof as in [2, Lemma 5.2] we conclude that

lim
τ→∞

τϕ(pτ , qτ ) = 0.

If tτ = 0, we have

0 < δ ≤Mτ ≤ sup
Ω×Ω

(ψ(p)− ψ(q)− τϕ(p, q))

leading to a contradiction for large τ . We therefore conclude tτ > 0 for large τ .
Since u ≤ v on ∂Ω× [0, T ) by Equation (BC) of Problem (4.2), we conclude that for
large τ , we have (pτ , qτ , tτ ) is an interior point. That is, (pτ , qτ , tτ ) ∈ Ω×Ω×(0, T ).
Using the previous theorem, we obtain

(a, τΥ(pτ , qτ ),X τ ) ∈ P 2,+
u(pτ , tτ )

(a, τΥ(pτ , qτ ),Yτ ) ∈ P 2,−
v(qτ , tτ )

that satisfy the equations

a+ F (tτ , pτ , u(pτ , tτ ), τΥ(pτ , qτ ),X τ ) ≤ − ε

T 2

a+ F (tτ , qτ , v(qτ , tτ ), τΥ(pτ , qτ ),Yτ ) ≥ 0.

Using the fact that F is proper and that u(pτ , tτ ) ≥ v(qτ , tτ ) (otherwise Mτ < 0),
we have

0 <
ε

T 2
≤ F (tτ , qτ , v(qτ , tτ ), τΥ(pτ , qτ ),Yτ )− F (tτ , pτ , u(pτ , tτ ), τΥ(pτ , qτ ),X τ )

≤ ω(dC(pτ , qτ ) + Cτϕ(pτ , qτ ) + ‖Rτ‖).

We arrive at a contradiction as τ →∞. �

We then have the following corollary, showing the equivalence of parabolic vis-
cosity solutions and viscosity solutions.

Corollary 4.5. For admissable F , we have the parabolic viscosity solutions are
exactly the viscosity solutions.
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Proof. We showed above that parabolic viscosity sub(super-)solutions are viscosity
sub(super-)solutions. To prove the converse, we will follow the proof of the sub-
solution case found in [12], highlighting the main details. Assume that u is not a
parabolic viscosity subsolution. Let φ ∈ A−u(p0, t0) have the property that

φt(p0, t0) + F (t0, p0, φ(p0, t0),∇φ(p0, t0), (D2φ(p0, t0))?) ≥ ε > 0

for a small parameter ε. We may assume p0 is the origin. Let r > 0 and define
Sr = BN (r)× (t0− r, t0) and let ∂Sr be its parabolic boundary. Then the function

φ̃r(p, t) = φ(p, t) + (t0 − t)8 − r8 + (N (p))8

is a classical supersolution for sufficiently small r. We then observe that u ≤ φ̃r

on ∂Sr but u(0, t0) > φ̃(0, t0). Thus, the comparison prinicple, Theorem 4.4, does
not hold. Thus, u is not a viscosity subsolution. The supersolution case is identical
and omitted. �
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[1] Belläıche, André. The Tangent Space in Sub-Riemannian Geometry. In Sub-Riemannian
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