A SUBSOLUTION-SUPERSOLUTION METHOD FOR QUASILINEAR SYSTEMS

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

Abstract

Assuming that a system of quasilinear equations of gradient type admits a strict supersolution and a strict subsolution, we show that it also admits a positive solution.

1. INTRODUCTION

Consider the quasilinear elliptic system

$$
\begin{gather*}
-\Delta_{p} u=H_{u}(x, u, v) \quad \text { in } \Omega \\
-\Delta_{q} v=H_{v}(x, u, v) \quad \text { in } \Omega \tag{1.1}\\
u=v=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with boundary of class C^{2}, Δ_{p} and Δ_{q} are the $p-$ and q-Laplace operators with $1<p, q<N$, and $H: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function.

The solvability of system (1.1) has been extensively studied by various methods, fibering [3], bifurcation [4], via the mountain pass theorem [2] etc. We use the superand sub- solution method by assuming that (1.1) admits a strict supersolution and a strict subsolution and construct two sequences of approximate solutions whose limit is shown to be a solution of the system. The same approach can also be applied to nonvariational and Hamiltonian systems. It is worth mentioning that, as far as 1.1) is concerned, the classical super- and sub- solution method is not directly applicable because the "restriction" of the function $H(x, .,$.$) between the$ super- and sub- solution is not necessarily differentiable.

We make the following assumptions:
(H1) $s \mapsto H_{u}(x, s, t)$ and $s \mapsto H_{v}(x, s, t)$ are nondecreasing for a.e. $x \in \Omega$ and every $t>0$.
(H2) $t \mapsto H_{u}(x, s, t)$ and $t \mapsto H_{v}(x, s, t)$ are nondecreasing for a.e. $x \in \Omega$ and every $s>0$.
(H3) $H_{u}(x, 0, t)=H_{v}(x, s, 0)=0$ for a.e. $x \in \Omega$ and every $s, t>0$.

[^0](H4) There exists $C>0$ such that $\left|H_{u}(x, s, t)\right| \leq C\left(1+|s|^{p^{*}-1}+|t|^{\frac{q^{*}\left(p^{*}-1\right)}{p^{*}}}\right)$ and $\left|H_{v}(x, s, t)\right| \leq C\left(1+|s|^{\frac{p^{*}\left(q^{*}-1\right)}{q^{*}}}+|t|^{q^{*}-1}\right)$ a.e. in Ω, where $p^{*}:=\frac{N p}{N-p}$ and $q^{*}:=\frac{N q}{N-q}$ are the critical Sobolev exponents.
Note that if (H1)-(H4) are satisfied then
$$
|H(x, s, t)| \leq c\left(1+|s|^{p^{*}}+|t|^{q^{*}}\right) \text { a.e.in } \Omega,
$$
for some $c>0$.
Let $E=W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$. The energy functional $\Phi: E \rightarrow \mathbb{R}$ associated to (1.1) is
$$
\Phi(u, v)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}+\frac{1}{q} \int_{\Omega}|\nabla v|^{q}-\int_{\Omega} H(x, u(x), v(x)) d x
$$

It is clear that if (H1)-(H4) are satisfied, then Φ is a C^{1}-functional whose critical points are solutions to (1.1).
Definition. A pair of nonnegative functions $(\bar{u}, \bar{v}) \in C^{1}(\bar{\Omega}) \times C^{1}(\bar{\Omega})$ is said to be a strict supersolution for (1.1) if $-\Delta_{p} \bar{u}>H_{u}(x, \bar{u}, \bar{v})$ and $-\Delta_{q} \bar{v}>H_{v}(x, \bar{u}, \bar{v})$ in Ω. A pair of nonnegative functions $(\underline{u}, \underline{v})$ is said to be a strict subsolution if $-\Delta_{p} \underline{u}<H_{u}(x, \underline{u}, \underline{v})$ and $-\Delta_{q} \underline{v}<H_{v}(x, \underline{u}, \underline{v})$ a.e. in Ω.
Theorem 1.1. Assume that hypotheses (H1)-(H4) hold and 1.1) admits a strict supersolution (\bar{u}, \bar{v}) and a strict subsolution $(\underline{u}, \underline{v})$ with $\underline{u}<\bar{u}$ and $\underline{v}<\bar{v}$ in Ω. Then (1.1) has a solution $\left(u_{0}, v_{0}\right)$ with $u_{0}, v_{0}>0$ in Ω.

Proof. For a function $F: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, we define

$$
\widehat{F}(x, s, t)= \begin{cases}F(x, s, t) & \text { if } \underline{u}(x) \leq s \leq \bar{u}(x), \underline{v}(x) \leq t \leq \bar{v}(x), \\ F(x, \underline{u}(x), t) & \text { if } s<\underline{u}(x), \underline{v}(x) \leq t \leq \bar{v}(x) \\ F(x, s, \underline{v}(x)) & \text { if } \underline{u}(x) \leq s \leq \bar{u}(x), t<\underline{v}(x), \\ F(x, \underline{u}(x), \underline{v}(x)) & \text { if } s<\underline{u}(x), t<\underline{v}(x) \\ F(x, \bar{u}(x), t) & \text { if } \bar{u}(x)<s, \underline{v}(x) \leq t \leq \bar{v}(x), \\ F(x, \bar{u}(x), \bar{v}(x)) & \text { if } \bar{u}(x)<s, \bar{v}(x)<t \\ F(x, \underline{u}(x), \bar{v}(x)) & \text { if } s<\underline{u}(x), \bar{v}(x)<t \\ F(x, \bar{u}(x), \underline{v}(x)) & \text { if } \bar{u}(x)<s, t<\underline{v}(x) \\ F(x, s, \bar{v}(x)) & \text { if } \underline{u}(x) \leq s \leq \bar{u}(x), \bar{v}(x)<t\end{cases}
$$

We will construct two sequences $u_{n} \in W_{0}^{1, p}(\Omega)$ and $v_{n} \in W_{0}^{1, q}(\Omega), n \in \mathbb{N}$, as follows: consider the problem

$$
\begin{gather*}
-\Delta_{p} u=\widehat{H}_{u}(x, u, \bar{v}) \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

The Euler-Lagrange functional associated with the above system is

$$
\widehat{\Phi}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p}-\int_{\Omega} \int_{0}^{u} \widehat{H}_{u}(x, s, \bar{v}) d s d x
$$

which is bounded from below, weakly lower semicontinuous and coercive in $W_{0}^{1, p}(\Omega)$. Therefore, the infimum of $\widehat{\Phi}($.$) is achieved at some point u_{1} \in W_{0}^{1, p}(\Omega) \cap C^{1}(\bar{\Omega})$ which is a solution of 1.2 . We claim that $\underline{u}(x) \leq u_{1}(x) \leq \bar{u}(x)$ for every $x \in \Omega$. Indeed, assume that the set

$$
\widetilde{\Omega}:=\left\{x \in \Omega: u_{1}(x)<\underline{u}(x)\right\}
$$

is nonempty. Since it is open, it must have positive measure and

$$
\begin{equation*}
-\Delta_{p} u_{1}=H_{u}(x, \underline{u}, \bar{v}) \quad \text { in } \widetilde{\Omega} \tag{1.3}
\end{equation*}
$$

while,

$$
\begin{equation*}
-\Delta_{p} \underline{u}<H_{u}(x, \underline{u}, \bar{v}) \quad \text { in } \widetilde{\Omega} \tag{1.4}
\end{equation*}
$$

Multiplying 1.3 and 1.4 with $\underline{u}-u_{1}$ and integrating over $\widetilde{\Omega}$, we get

$$
\int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \nabla u_{1} \nabla\left(\underline{u}-u_{1}\right)=\int_{\Omega} H_{u}(x, \underline{u}, \bar{v})\left(\underline{u}-u_{1}\right),
$$

and

$$
\int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \nabla\left(\underline{u}-u_{1}\right)=\int_{\Omega} H_{u}(x, \underline{u}, \bar{v})\left(\underline{u}-u_{1}\right),
$$

which combined yield

$$
\int_{\Omega}\left[|\nabla \underline{u}|^{p-2} \nabla \underline{u}-\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}\right] \nabla\left(\underline{u}-u_{1}\right)<0
$$

contradicting the strong monotonicity of the $-\Delta_{p}$ operator. Thus $\widetilde{\Omega}$ is empty. Similarly, $u_{1}(x) \leq \bar{u}(x)$ for every $x \in \Omega$.

Consider the problem

$$
\begin{gather*}
-\Delta_{q} v=\widehat{H}_{v}\left(x, u_{1}, v\right) \quad \text { in } \Omega \tag{1.5}\\
v=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Working as in we can show that it admits a solution $v_{1} \in W_{0}^{1, p}(\Omega) \cap C^{1}(\bar{\Omega})$ with $\underline{v}(x) \leq v_{1}(x) \leq \bar{v}(x)$. Assuming now that $u_{n} \in W_{0}^{1, p}(\Omega)$ and $v_{n} \in W_{0}^{1, q}(\Omega)$, $n=1, \ldots k-1$, have been defined, we let $u_{k} \in W_{0}^{1, p}(\Omega)$ be a solution of 1.2 with v_{k-1} in the place of \bar{v} and $v_{k} \in W_{0}^{1, p}(\Omega)$ be a solution of 1.5 with u_{k} in the place of u_{1}. Since $\widehat{H}_{u}(x, s, t)$ and $\widehat{H}_{v}(x, s, t)$ are bounded, the sequences $u_{n} \in W_{0}^{1, p}(\Omega)$ and $v_{n} \in W_{0}^{1, q}(\Omega), n \in \mathbb{N}$, are also bounded, so $u_{n} \rightarrow u_{0}$ weakly in $W_{0}^{1, p}(\Omega)$ and $v_{n} \rightarrow v_{0}$ weakly in $W_{0}^{1, q}(\Omega)$. Exploiting the continuity of $H_{u}(x, .,$.$) and H_{v}(x, .,$. and the Sobolev embedding we easily deduce that $\left(u_{0}, v_{0}\right)$ is a solution of the system

$$
\begin{gathered}
-\Delta_{p} u=\widehat{H}_{u}(x, u, v) \quad \text { in } \Omega \\
-\Delta_{q} v=\widehat{H}_{v}(x, u, v) \quad \text { in } \Omega \\
u=v=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

while $\underline{u}(x) \leq u_{0}(x) \leq \bar{u}(x), \underline{v}(x) \leq v_{0}(x) \leq \bar{v}(x)$ for every $x \in \Omega$. Thus

$$
\widehat{H}_{u}\left(x, u_{0}, v_{0}\right)=H_{u}\left(x, u_{0}, v_{0}\right), \quad \widehat{H}_{v}\left(x, u_{0}, v_{0}\right)=H_{v}\left(x, u_{0}, v_{0}\right)
$$

Consequently, $\left(u_{0}, v_{0}\right)$ is a critical point of $\Phi(.,$.$) and therefore a solution of (1.1).$ On account of (H1)(i), we have

$$
-\Delta_{p} \underline{u}<H_{u}(x, \underline{u}, \underline{v}) \leq H_{u}\left(x, u_{0}, v_{0}\right)=-\Delta_{p} u_{0} \quad \text { in } \Omega
$$

and so, by the strong comparison principle in [5, Proposition 2.2], we deduce that

$$
0 \leq \underline{u}<u_{0} \text { in } \Omega .
$$

Similarly, $v_{0}>0$ in Ω.

Remark 1.2. In the case of a single equation, the existence of a solution is established by minimizing (locally) the energy functional. By making use of the fact that this solution is a minimizer, an application of the mountain pass principle provides a second solution [1, 3]. However, in our case it is not clear that the solution $\left(u_{0}, v_{0}\right)$ provided by the previous Theorem is a (local) minimizer of $\Phi(.,$.$) .$

Let λ_{1} denote the principal eigenvalue of the p-Laplace operator and μ_{1} the principal eigenvalue of the q-Laplace operator in Ω.

Corollary 1.3. Assume that hypotheses (H1)-(H4) hold. Then 1.1) admits a strict supersolution (\bar{u}, \bar{v}) and

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{H_{u}(x, s, t)}{s^{p-1}}>\lambda_{1}, \quad \lim _{t \rightarrow 0^{+}} \frac{H_{v}(x, s, t)}{t^{q-1}}>\mu_{1} \tag{1.6}
\end{equation*}
$$

for a.e. $x \in \Omega$ and $s, t>0$. Then (1.1) has a solution $\left(u_{0}, v_{0}\right)$ with $u_{0}, v_{0}>0$ in Ω.
Proof. Let $\varphi_{1}>0$ be an eigenfunction corresponding to λ_{1} and $\psi_{1}>0$ an eigenfunction corresponding to μ_{1}. In view of 1.6 there exists $\varepsilon>0$ such that $\left(\varepsilon \varphi_{1}, \varepsilon \psi_{1}\right)$ is a strict subsolution of 1.1 . Furthermore, as a consequence of the maximum principle [6], by taking ε sufficiently small we have that $\varepsilon \varphi_{1}<\bar{u}$ and $\varepsilon \psi_{1}<\bar{v}$ in Ω. Theorem 1.1 implies that 1.1 has a solution $\left(u_{0}, v_{0}\right)$ with $u_{0}, v_{0}>0$ in Ω.

We now present a simple (academic) example. Assume that $H(., .,$.$) is a C^{1}$ function satisfying (H1)-(H3) and

$$
H_{u}(x, \xi s, \xi t)=\xi^{\alpha} H_{u}(x, s, t), \quad H_{v}(x, \xi s, \xi t)=\xi^{\alpha} H_{v}(x, s, t)
$$

for some $\alpha \in[1, \min \{p-1, q-1\}]$ and every $s, t, \xi>0$. Then H satisfies (H4) since

$$
\begin{aligned}
H_{u}(s, t) & =H_{u}\left(\sqrt{s^{2}+t^{2}} \frac{s}{\sqrt{s^{2}+t^{2}}}, \sqrt{s^{2}+t^{2}} \frac{t}{\sqrt{s^{2}+t^{2}}}\right) \\
& =\left(s^{2}+t^{2}\right)^{\frac{\alpha}{2}} H_{u}\left(\frac{s}{\sqrt{s^{2}+t^{2}}}, \frac{t}{\sqrt{s^{2}+t^{2}}}\right) \leq M\left(s^{2}+t^{2}\right)^{\frac{\alpha}{2}} \\
& \leq C_{1}\left(1+s^{\alpha}+t^{\alpha}\right)
\end{aligned}
$$

for some $C_{1}>0$, where $M=\sup \left\{H_{u}(s, t): s^{2}+t^{2}=1\right\}$. Similarly, $H_{u}(s, t) \leq$ $C_{2}\left(1+s^{\alpha}+t^{\alpha}\right)$ for some $C_{2}>0$.

If \widehat{u}, \widehat{v} are the solutions of

$$
\begin{gathered}
-\Delta_{p} u=1 \quad \text { in } \Omega \\
-\Delta_{q} v=1 \quad \text { in } \Omega \\
u=v=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

then there exists $\zeta>0$ such that $(\bar{u}, \bar{v}):=(\zeta \widehat{u}, \zeta \widehat{v})$ is a strict supersolution of (1.1). Indeed, if

$$
M=\sup _{x \in \Omega}\left\{H_{u}(x, \widehat{u}(x), \widehat{v}(x)), H_{v}(x, \widehat{u}(x), \widehat{v}(x))\right\}
$$

then for $\zeta>\max \left\{M^{1 /(1-p-\alpha)}, M^{1 /(1-q-\alpha)}\right\}$ we have

$$
-\Delta_{p}(\zeta \widehat{u})=\zeta^{p-1}>M \zeta^{\alpha} \geq \zeta^{\alpha} H_{u}(x, \widehat{u}, \widehat{v})=H_{u}(x, \zeta \widehat{u}, \zeta \widehat{v})
$$

Similarly, $-\Delta_{q}(\zeta \widehat{v})>H_{v}(x, \zeta \widehat{u}, \zeta \widehat{v})$. On the other hand, 1.6 is satisfied because $\alpha<\min \{p-1, q-1\}$. By Corollary 1.3, 1.1 admits a positive solution.

References

[1] A. Ambrosetti, H.Brezis and G. Cerami; Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122, (1994), 519-543.
[2] L. Boccardo and D.G. DeFigueiredo; Some remarks on a system of quasilinear elliptic equations, NoDEA 9, (2002), 309-323
[3] Y. Bozhkov and E. Mitidieri; Existence of multiple solutions for quasilinear systems via fibering method, J. Diff. Eq. 190, (2003), 239-267.
[4] P. Drabek, N.M. Stavrakakis and N. B. Zografopoulos; Multiple nonsemitrivial solutions for quasilinear elliptic systems, Diff. Int. Eq. 16, no 12, (2003), 1519-1531.
[5] M. Guedda and L. Veron; Quasilinear elliptic equations involving critical Sobolev exponents, Nonlin. Anal. TMA 13, no 8, (1989), 879-902.
[6] J. L. Vazquez; A strong maximum principle foe some quasilinear elliptic equations, Appl. Math. Optim. 12, (1984), 191-202.

Dimitrios A. Kandilakis
Department of Sciences, Technical University of Crete, 73100 Chania, Greece
E-mail address: dkan@science.tuc.gr
Manolis Magiropoulos
Science Department, Technological and Educational Institute of Crete, 71500 Heraklion, Greece

E-mail address: mageir@stef.teiher.gr

[^0]: 1991 Mathematics Subject Classification. 35B38, 35D05, 35J50.
 Key words and phrases. Quasilinear System; supersolution; subsolution.
 (C) 2005 Texas State University - San Marcos.

 Submitted April 18, 2005. Published Septebmer 4, 2005.

