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WIRTINGER-BEESACK INTEGRAL INEQUALITIES

GULOMJON M. MUMINOV

Abstract. A uniform method of obtaining various types of integral inequali-

ties involving a function and its first or second derivative is extended to integral

inequalities involving a function and its third derivative

1. Introduction

Integral inequalities of the form∫
I

sh2dt ≤
∫

I

rh′′2dt, h ∈ H, (1.1)

have appeared in publications such as [1, 2]. In the above equation I is the interval
(α, β), with −∞ ≤ α < β ≤ ∞, r > 0, r ∈ AC(I),

s = (rϕ′′)′′ϕ−1 (1.2)

with a given function ϕ ∈ AC1(I) such that ϕ > 0 on the interval I, rϕ′′ ∈ AC1(I),
ω = (rϕ′)′ϕ + 2rϕϕ′′ − 2rϕ′2 ≤ 0 and H is the class of functions h ∈ AC1(I)
satisfying some integral and limit conditions.

In this article, we assume that r ∈ AC1(I), ϕ ∈ AC2(I) and rϕ′′′ ∈ AC2(I) are
such that r > 0, ϕ > 0 on the interval I. Putting

s = −(rϕ′′′)′′′ϕ−1, (1.3)

we obtain the integral inequality∫
I

sh2dt ≤
∫

I

rh′′′
2
dt, h ∈ H. (1.4)

The method used here consists in determining auxiliary functions depending on
the given function r and the auxiliary function ϕ so that these functions determine
the class H for which the inequality (1.4) holds.

2. Main result

Let I = (α, β) be an arbitrary open interval with −∞ ≤ α < β ≤ ∞. We denote
by ACk(I) the set of functions whose k derivative is absolutely continuous on the
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interval I. Let r ∈ AC1(I) and ϕ ∈ AC2(I) be given functions such that r > 0,
ϕ > 0 on the interval I and rϕ′′′ ∈ AC2(I). Let us put

s = −(rϕ′′′)′′′ϕ−1,

Let us denote by H the set of functions h ∈ AC2(I) for which∫
I

rh′′′
2
dt < ∞,

∫
I

sh2dt > −∞ (2.1)

and satisfy the limit conditions

lim
t→α

inf S(t, h, h′, h′′) < ∞, lim
t→β

supS(t, h, h′, h′′) > −∞, (2.2)

lim
t→α

inf S(t, h, h′, h′′) ≤ lim
t→β

supS(t, h, h′, h′′), (2.3)

where

S(t, h, h′, h′′)

= ν0(t)h2 + ν1(t)h′
2 + ν2(t)h′′

2 + 2ε01(t)hh′ + 2ε02(t)hh′′ + 2ε12h
′h′′,

(2.4)

ν0(t) = [(rϕ′′′)′ϕ]′ϕ−2 − 1
2
rϕ′′′ϕ−3(ϕ2)′′ − 3(ϕ′ϕ−1)3

(rϕ′′

ϕ′
)′ − 2rϕ′

3
ϕ−2(ϕ′ϕ−2)′,

(2.5)

ν1(t) = −6(rϕ′′ϕ−1)′ − 2r(ϕ′′ϕ−1)′ + 4r(ϕ′ϕ−1)3, (2.6)

ν2(t) = rϕ′ϕ−1, (2.7)

ε01(t) = −(rϕ′′′ϕ)′ϕ−2 + 3(rϕ′′ϕ−2)′ϕ′ + r[(ϕ′′ϕ−1)2 − 4(ϕ′ϕ−1)4], (2.8)

ε02(t) = r[(ϕ′ϕ−1)′′ + ϕ′ϕ′′ϕ−2], (2.9)

ε12(t) = rϕ(ϕ′ϕ−2)′. (2.10)

These assumptions apply that ν0 ∈ AC(I), ν1, ε01 ∈ AC1(I) and ν2, ε02, ε12 ∈
AC2(I).

The following theorem is the main result of this paper.

Theorem 2.1. Let

ω0(t) = [(rϕ′′′ + (rϕ′′)′ϕ−1]ϕ2 + rϕ′′
2 ≥ 0, (2.11)

ω1(t) = 2rϕ′
2 − 2rϕ′′ϕ− (rϕ′)′ϕ ≥ 0 (2.12)

almost everywhere on the interval I. Then for every function h ∈ H the inequality
(1.4) holds.

If ω0 6= 0, ω1 6= 0 and h 6= 0 then (1.4) becomes an equality if and only if h = cϕ
with c a non-zero constant, ϕ ∈ H, and and

lim
t→α

S(t, h, h′, h′′) = lim
t→β

S(t, h, h′, h′′) . (2.13)

Proof. For this proof, we use a standard method for obtaining various types of
integral inequalities involving a function and its third derivative. See, for example,
[1, 2] and the references cited there in.

Let h ∈ AC2(I). From (2.4)–(2.10) and the assumptions, we have ϕ−1h ∈
AC2(I) and S(t, h, h′, h′′) ∈ AC(I). If we substitute h = ϕf , where f ∈ AC2(I),
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in the expression rh′′′
2, then, after simple calculations, we obtain

rh′′′
2 = r (ϕ′′′f + 3ϕ′′f ′ + 3ϕ′f ′′ + ϕf ′′′)2

= rh′′′[ϕ′′′f2 + 3ϕ′′(f2)′ + 3ϕ′(f2)′′ + ϕ(f2)′′′] + r(3ϕ′′f ′ + 3ϕ′f ′′ + ϕf ′′′)2

− 6rϕ′′′(ϕ′f ′2 + ϕf ′f ′′)

= rϕ′′′(ϕf2)′′′ − 3(rϕ′′′ϕf ′
2)′ + 3[(rϕ′′′)′ϕ− rϕ′′′ϕ′]f ′2

+ r
(
3ϕ′′f ′ + 3ϕ′f ′′ + ϕf ′′′

)2
.

Then, using the obvious identity

rϕ′′′(ϕf2)′′′ + (rϕ′′′)′′′ϕf2 = [rϕ′′′(ϕf2)′′ − (rϕ′′′)′(ϕf2)′ + (rϕ′′′)′′ϕf2]′,

and

r
(
3ϕ′′f ′ + 3ϕ′f ′′ + ϕf ′′′

)2

= 3[rϕ′′2 + (rϕ′′)′′ϕ− (rϕ′′)′ϕ′]f ′2 + 3[2rϕ′
2 − 2rϕ′′ϕ− (rϕ′)′ϕ]f ′′2 + rϕ2f ′′′

2

+ 3[2rϕ′′ϕ′f ′
2 + rϕ′ϕf ′′

2 + 2rϕ′′ϕf ′f ′′ − (rϕ′′)′ϕf ′
2]′,

we obtain

rh′′′
2 = sh2 + 3ω0f

′2 + 3ω1f
′′2 + rϕ2f ′′′

2

+
{

[rϕ′′′(ϕf2)′′ − (rϕ′′′)′ · (ϕf2)′ + (rϕ′′′)′′ϕf2]

+ 3[2rϕ′′ϕ′ − (rϕ′′)′ϕ− rϕ′′′ϕ]f ′2 + 6rϕ′′ϕf ′f ′′ + 3rϕ′ϕf ′′
2
}′

.

Now substituting f = ϕ−1h on the right hand side of the above identity, and
using

ϕf2 = ϕ−1h2,

(ϕf2)′ = (ϕ−1)′h2 + 2ϕ−1hh′,

(ϕf2)′′ = (ϕ−1)′′h2 + 4(ϕ−1)′hh′ + 2ϕ−1h′
2 + 2ϕ−1hh′′,

f ′ = (ϕ−1)′h + ϕ−1h′,

f ′′ = (ϕ−1)′′h + 2(ϕ−1)′h′ + ϕ−1h′′,

we obtain the identity

rh′′′
2−sh2 = [S(t, h, h′, h′′)]′+3ω0(ϕ−1h)′

2
+3ω1(ϕ−1h)′′

2
+rϕ2(ϕ−1h)′′′

2
. (2.14)

Now let h ∈ H. Condition (1.3) implies that the function rh′′′
2 is summable on

I since rh′′′
2 ≥ 0 on I. It follows from assumptions that the function sh2 and

[S(t, h, h′, h′′)]′ are summable on each compact interval [a, b] ⊂ I. Thus by (2.14)
we get the summability of the function

3ω0(ϕ−1h)′
2

+ 3ω1(ϕ−1h)′′
2

+ rϕ2(ϕ−1h)′′′
2

(2.15)

on each compact interval [a, b] ⊂ I and we obtain the equality∫ b

a

rh′′′
2
dt =

∫ b

a

sh2dt + S(t, h, h′, h′′)
∣∣∣b
a

+
∫ b

a

g(t)dt. (2.16)

for arbitrary α < an < bn < β, an → α, bn → β and

lim
n→∞

S(t, h, h′, h′′)
∣∣∣
an

< ∞, lim
n→∞

S(t, h, h′, h′′)
∣∣∣
bn

> −∞.
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Thus, there is a constant C such that

−S(t, h, h′, h′′)
∣∣∣bn

an

≤ C < ∞.

By condition (2.15), g ≥ 0 a.e. on I. From (2.16), we infer that∫ bn

an

sh2dt ≤
∫ bn

an

rh′′′
2
t + C ≤

∫
In

rh′′′
2
dt + C,

and from this, letting n →∞, we obtain∫
I

sh2dt ≤
∫

I

rh′′′
2
dt + C < ∞.

From this estimate and by the second condition of (2.1), we conclude that sh2 is
summable on I. Next, in a similar way, using (2.16) and the sum ability of the
function sh2 on I, we prove that the function g is sum able on I. Thus all the
integrals in (2.16) have finite limits as a → α or b → β, and hence both of the
limits in (2.2) are proper and finite. Therefore the conditions (2.2) and (2.3) may
be written in the equivalent form

−∞ < lim
t→α

S(t, h, h′, h′′) ≤ lim
t→β

S(t, h, h′, h′′) < ∞.

Now by (2.16) as a → α and b → β, we obtain the equality∫
I

rh′′′
2
dt−

∫
I

sh2dt = lim
t→β

S(t, h, h′, h′′)− lim
t→α

S(t, h, h′, h′′) +
∫

I

gdt, (2.17)

hence, in view of (2.15), the inequality (1.4) follows, since g ≥ 0 a.e. on I.
If (1.4) becomes an equality for a non-vanishing function h ∈ H, then by (2.15)

and (2.17), we have∫
I

gdt = 0, lim
t→α

S(t, h, h′, h′′) = lim
t→β

S(t, h, h′, h′′). (2.18)

Since g ≥ 0 a.e. on I, we obtain g = 0 a.e. on I. In view of g it follows from
assumptions that it g = 0 a.e. on I, then (ϕ−1h)′(t0) = 0 for some t0 ∈ I, and we
get that (ϕ−1h)′ = 0 on I, since (ϕ−1h)′ ∈ AC2(I).

This implies that h = Cϕ, where C = const 6= 0, since ϕ−1h ∈ AC2(I). Thus
ϕ ∈ H, so that we obtain from the condition (2.18) we get the condition (17).

Now let (2.17) be satisfied and let h = Cϕ, where C = const 6= 0. This implies
g = 0 a.e. on I, so that

∫
I
gdt = 0. In view of (2.15)-(2.18), (1.4) becomes equality.

The theorem is proved. �

3. Example

Let I = (−1, 1), r = (1− t2)a and ϕ = (1− t2)3−a on I, where a is an arbitrary
constant such that the case a ∈ (−∞; 1] is considered. Then by (1.3), (2.11) and
(2.12), we have

s = −(rϕ′′′)′′′ϕ−1 = 24(3− a)(2− a)(5− 2a)(1− t2)a−3 > 0,

ω0 = 4− (3− a)(1− t2)2−a[(15− 6a) + (12a− 30)t2 + (15− 29a)t4] > 0,

ω1 = 2(3− a)(1− t2)5−a > 0 on I.
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From Theorem 2.1. we obtain that the inequality (1.4) holds for every function
h ∈ H, where H is the class of function h ∈ AC2((−1, 1)) satisfying the integral
condition ∫ 1

−1

(1− t2)ah′′′
2
dt < ∞ (3.1)

and the limit condition

−∞ < lim
t→−1

S(t, h, h′, h′′) ≤ lim
t→1

S(t, h, h′, h′′) < ∞, (3.2)

where by (2.3)-(2.10)

S(t, h, h′, h′′) = ν0(t)(1− t2)a−5h2 + ν1(t)(1− t2)a−3h′
2

+ ν2(t)(1− t2)a−1h′′
2 + 2ε01(t)(1− t2)a−4hh′

+ 2ε02(t)(1− t2)a−3hh′′ + 2ε12(t)(1− t2)a−2hh′′,

(3.3)

ν0(t) =8(3− a)t[−3(a2 − 3a + 1) + (12a3 − 90a2 + 238a− 222)]t2

+ (−4a4 + 60a3 − 319a2 + 811a− 528)t4],

ν1(t) = −8(3− a)t[6− a + 2(7− 2a)t2],

ν2(t) = −2(3− a)t,

ε01(t) = 4(3− a)[2a− 3 + (−10a2 + 52a− 66)t2 + (28a3 − 238a2 + 728a− 803)t4],

ε02(t) = −4(3− a)[a + (2a2 − 11a + 16)t2],

ε12(t) = −4(3− a)[1 + (7− 2a)t2].

Since the second condition of (2.1) is satisfied trivially. Now we show that
a function h ∈ AC2((−1, 1)) that satisfies the integral condition (3.1) and limit
conditions h(±1) = h′(±1) = h′′(±1) = 0 belongs to the class H.

At first we show that, if h(1) = h′(1) = h”(1) = 0 and (3.1) hold, then

lim
t→1

S(t, h, h′, h′′) = 0 .

Let us consider the right-hand neighborhood U of the point 1. In [1], it has been
shown that

|h′(t)| ≤ k(t)(1− t)
1−a
2 (3.4)

for t ∈ U , where

k(t) =
{ A

1− a

∫ 1

t

(1− τ2)ah′′
2(τ)dτ

}1/2
> 0, t ∈ U .

This function is a continuous function on I, limt→1 k(t) ≡ k(1) = 0, and

|h(t)| ≤ k(θ)√
2− a

(1− t)
3−a
2 , (3.5)

for t ∈ U , where t < θ < 1 and limt→1 k(t) ≡ k(1) = 0.
It is easy to see that if we write h′′′ instead of h′′, h′′ instead of h′, and h′ instead

of h in (3.4) and (3.5) then we obtain

|h′′(t)| ≤ k(t)(1− t)
1−a
2 (3.6)
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for t ∈ U , with k as above and

|h′(t)| ≤ k(θ)√
2− a

(1− t)
3−a
2 , (3.7)

for t ∈ U , where t < θ < 1 and limt→1 k(t) ≡ k(1) = 0. From (3.5) we have

|h(t)| ≤ 2k(θ)
(5− a)

√
2− a

(1− t)
5−a
2 . (3.8)

Based on the estimates (3.6), (3.7) and (3.8), from (3.3), we obtain

|S(t, h, h′, h′′)| ≤ 4k2(θ)
(2− a)(5− a)2

|ν0(t)|+
k2(θ)
2− a

|ν1(t)|

+ k2(θ)|ν2(t)|+
2k2(θ)

(2− a)(5− a)
|ε01(t)|

+
2k2(θ)

(5− a)
√

2− a
|ε02(t)|+

k2(θ)√
2− a

|ε12(t)| = m(t)

Whence it follows that limt→1 S(t, h, h′, h′′) = 0. In an analogous way we show that
if h(−1) = h′(−1) = h′′(−1) = 0 and (3.1) hold then limt→−1 S(t, h, h′, h′′) = 0.
Therefore we get the following result.

Theorem 3.1. If a < 1 and the function h ∈ AC2((−1, 1)) satisfies the integral
condition ∫ 1

−1

(1− t2)ah′′′
2
dt < ∞

and the limit condition h(±1) = h′(±1) = h′′(±1) = 0, then∫ 1

−1

(1− t2)ah′′′
2
dt ≥ 24(3− a)(2− a)(5− 2a)

∫ 1

−1

h2dt

(1− t2)3−a
.

holds. The inequality (3.4) becomes on equality if and only if h = C(1 − t2)3−a,
where C is a constant.

In the particular case for a = 0 we obtain∫ 1

−1

h′′′
2
dt ≥ 720

∫ 1

−1

h2dt

(1− t2)3

as deduced in [3].
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