Electronic Journal of Differential Equations, Vol. 2005(2005), No. 98, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

WIRTINGER-BEESACK INTEGRAL INEQUALITIES

GULOMJON M. MUMINOV

Abstract

A uniform method of obtaining various types of integral inequalities involving a function and its first or second derivative is extended to integral inequalities involving a function and its third derivative

1. Introduction

Integral inequalities of the form

$$
\begin{equation*}
\int_{I} s h^{2} d t \leq \int_{I} r h^{\prime \prime 2} d t, \quad h \in H \tag{1.1}
\end{equation*}
$$

have appeared in publications such as [1, 2, In the above equation I is the interval (α, β), with $-\infty \leq \alpha<\beta \leq \infty, r>0, r \in A C(I)$,

$$
\begin{equation*}
s=\left(r \varphi^{\prime \prime}\right)^{\prime \prime} \varphi^{-1} \tag{1.2}
\end{equation*}
$$

with a given function $\varphi \in A C^{1}(I)$ such that $\varphi>0$ on the interval $I, r \varphi^{\prime \prime} \in A C^{1}(I)$, $\omega=\left(r \varphi^{\prime}\right)^{\prime} \varphi+2 r \varphi \varphi^{\prime \prime}-2 r \varphi^{2} \leq 0$ and H is the class of functions $h \in A C^{1}(I)$ satisfying some integral and limit conditions.

In this article, we assume that $r \in A C^{1}(I), \varphi \in A C^{2}(I)$ and $r \varphi^{\prime \prime \prime} \in A C^{2}(I)$ are such that $r>0, \varphi>0$ on the interval I. Putting

$$
\begin{equation*}
s=-\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime \prime} \varphi^{-1} \tag{1.3}
\end{equation*}
$$

we obtain the integral inequality

$$
\begin{equation*}
\int_{I} s h^{2} d t \leq \int_{I} r h^{\prime \prime \prime 2} d t, \quad h \in H \tag{1.4}
\end{equation*}
$$

The method used here consists in determining auxiliary functions depending on the given function r and the auxiliary function φ so that these functions determine the class H for which the inequality 1.4 holds.

2. Main result

Let $I=(\alpha, \beta)$ be an arbitrary open interval with $-\infty \leq \alpha<\beta \leq \infty$. We denote by $A C^{k}(I)$ the set of functions whose k derivative is absolutely continuous on the

[^0]interval I. Let $r \in A C^{1}(I)$ and $\varphi \in A C^{2}(I)$ be given functions such that $r>0$, $\varphi>0$ on the interval I and $r \varphi^{\prime \prime \prime} \in A C^{2}(I)$. Let us put
$$
s=-\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime \prime} \varphi^{-1}
$$

Let us denote by H the set of functions $h \in A C^{2}(I)$ for which

$$
\begin{equation*}
\int_{I} r h^{\prime \prime \prime 2} d t<\infty, \quad \int_{I} s h^{2} d t>-\infty \tag{2.1}
\end{equation*}
$$

and satisfy the limit conditions

$$
\begin{gather*}
\lim _{t \rightarrow \alpha} \inf S\left(t, h, h^{\prime}, h^{\prime \prime}\right)<\infty, \quad \lim _{t \rightarrow \beta} \sup S\left(t, h, h^{\prime}, h^{\prime \prime}\right)>-\infty, \tag{2.2}\\
\lim _{t \rightarrow \alpha} \inf S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \leq \lim _{t \rightarrow \beta} \sup S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \tag{2.3}
\end{gather*}
$$

where

$$
\begin{gather*}
S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \\
=\nu_{0}(t) h^{2}+\nu_{1}(t) h^{\prime 2}+\nu_{2}(t) h^{\prime \prime 2}+2 \varepsilon_{01}(t) h h^{\prime}+2 \varepsilon_{02}(t) h h^{\prime \prime}+2 \varepsilon_{12} h^{\prime} h^{\prime \prime}, \tag{2.4}\\
\nu_{0}(t)=\left[\left(r \varphi^{\prime \prime \prime}\right)^{\prime} \varphi\right]^{\prime} \varphi^{-2}-\frac{1}{2} r \varphi^{\prime \prime \prime} \varphi^{-3}\left(\varphi^{2}\right)^{\prime \prime}-3\left(\varphi^{\prime} \varphi^{-1}\right)^{3}\left(\frac{r \varphi^{\prime \prime}}{\varphi^{\prime}}\right)^{\prime}-2 r \varphi^{\prime 3} \varphi^{-2}\left(\varphi^{\prime} \varphi^{-2}\right)^{\prime}, \tag{2.5}\\
\nu_{1}(t)=-6\left(r \varphi^{\prime \prime} \varphi^{-1}\right)^{\prime}-2 r\left(\varphi^{\prime \prime} \varphi^{-1}\right)^{\prime}+4 r\left(\varphi^{\prime} \varphi^{-1}\right)^{3}, \tag{2.6}\\
\nu_{2}(t)=r \varphi^{\prime} \varphi^{-1}, \tag{2.7}\\
\varepsilon_{01}(t)=-\left(r \varphi^{\prime \prime \prime} \varphi\right)^{\prime} \varphi^{-2}+3\left(r \varphi^{\prime \prime} \varphi^{-2}\right)^{\prime} \varphi^{\prime}+r\left[\left(\varphi^{\prime \prime} \varphi^{-1}\right)^{2}-4\left(\varphi^{\prime} \varphi^{-1}\right)^{4}\right], \tag{2.8}\\
\varepsilon_{02}(t)=r\left[\left(\varphi^{\prime} \varphi^{-1}\right)^{\prime \prime}+\varphi^{\prime} \varphi^{\prime \prime} \varphi^{-2}\right], \tag{2.9}\\
\varepsilon_{12}(t)=r \varphi\left(\varphi^{\prime} \varphi^{-2}\right)^{\prime} . \tag{2.10}
\end{gather*}
$$

These assumptions apply that $\nu_{0} \in A C(I), \nu_{1}, \varepsilon_{01} \in A C^{1}(I)$ and $\nu_{2}, \varepsilon_{02}, \varepsilon_{12} \in$ $A C^{2}(I)$.

The following theorem is the main result of this paper.
Theorem 2.1. Let

$$
\begin{gather*}
\omega_{0}(t)=\left[\left(r \varphi^{\prime \prime \prime}+\left(r \varphi^{\prime \prime}\right)^{\prime} \varphi^{-1}\right] \varphi^{2}+r \varphi^{\prime \prime 2} \geq 0\right. \tag{2.11}\\
\omega_{1}(t)=2 r \varphi^{\prime 2}-2 r \varphi^{\prime \prime} \varphi-\left(r \varphi^{\prime}\right)^{\prime} \varphi \geq 0 \tag{2.12}
\end{gather*}
$$

almost everywhere on the interval I. Then for every function $h \in H$ the inequality (1.4) holds.

If $\omega_{0} \neq 0, \omega_{1} \neq 0$ and $h \neq 0$ then (1.4) becomes an equality if and only if $h=c \varphi$ with c a non-zero constant, $\varphi \in H$, and and

$$
\begin{equation*}
\lim _{t \rightarrow \alpha} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=\lim _{t \rightarrow \beta} S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \tag{2.13}
\end{equation*}
$$

Proof. For this proof, we use a standard method for obtaining various types of integral inequalities involving a function and its third derivative. See, for example, [1, 2] and the references cited there in.

Let $h \in A C^{2}(I)$. From 2.4-2.10 and the assumptions, we have $\varphi^{-1} h \in$ $A C^{2}(I)$ and $S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \in \overline{A C(I)}$. If we substitute $h=\varphi f$, where $f \in A C^{2}(I)$,
in the expression $r h^{\prime \prime \prime 2}$, then, after simple calculations, we obtain

$$
\begin{aligned}
& r h^{\prime \prime \prime} 2 \\
&= r\left(\varphi^{\prime \prime \prime} f+3 \varphi^{\prime \prime} f^{\prime}+3 \varphi^{\prime} f^{\prime \prime}+\varphi f^{\prime \prime \prime}\right)^{2} \\
&= r h^{\prime \prime \prime}\left[\varphi^{\prime \prime \prime} f^{2}+3 \varphi^{\prime \prime}\left(f^{2}\right)^{\prime}+3 \varphi^{\prime}\left(f^{2}\right)^{\prime \prime}+\varphi\left(f^{2}\right)^{\prime \prime \prime}\right]+r\left(3 \varphi^{\prime \prime} f^{\prime}+3 \varphi^{\prime} f^{\prime \prime}+\varphi f^{\prime \prime \prime}\right)^{2} \\
&-6 r \varphi^{\prime \prime \prime}\left(\varphi^{\prime} f^{\prime 2}+\varphi f^{\prime} f^{\prime \prime}\right) \\
&= r \varphi^{\prime \prime \prime}\left(\varphi f^{2}\right)^{\prime \prime \prime}-3\left(r \varphi^{\prime \prime \prime} \varphi f^{\prime 2}\right)^{\prime}+3\left[\left(r \varphi^{\prime \prime \prime}\right)^{\prime} \varphi-r \varphi^{\prime \prime \prime} \varphi^{\prime}\right] f^{2} \\
&+r\left(3 \varphi^{\prime \prime} f^{\prime}+3 \varphi^{\prime} f^{\prime \prime}+\varphi f^{\prime \prime \prime}\right)^{2} .
\end{aligned}
$$

Then, using the obvious identity

$$
r \varphi^{\prime \prime \prime}\left(\varphi f^{2}\right)^{\prime \prime \prime}+\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime \prime} \varphi f^{2}=\left[r \varphi^{\prime \prime \prime}\left(\varphi f^{2}\right)^{\prime \prime}-\left(r \varphi^{\prime \prime \prime}\right)^{\prime}\left(\varphi f^{2}\right)^{\prime}+\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime} \varphi f^{2}\right]^{\prime}
$$

and

$$
\begin{aligned}
& r\left(3 \varphi^{\prime \prime} f^{\prime}+3 \varphi^{\prime} f^{\prime \prime}+\varphi f^{\prime \prime \prime}\right)^{2} \\
& =3\left[r \varphi^{\prime \prime 2}+\left(r \varphi^{\prime \prime}\right)^{\prime \prime} \varphi-\left(r \varphi^{\prime \prime}\right)^{\prime} \varphi^{\prime}\right] f^{\prime 2}+3\left[2 r \varphi^{2}-2 r \varphi^{\prime \prime} \varphi-\left(r \varphi^{\prime}\right)^{\prime} \varphi\right] f^{\prime \prime 2}+r \varphi^{2} f^{\prime \prime \prime 2} \\
& \quad+3\left[2 r \varphi^{\prime \prime} \varphi^{\prime}{f^{\prime 2}}^{2}+r \varphi^{\prime} \varphi f^{\prime \prime 2}+2 r \varphi^{\prime \prime} \varphi f^{\prime} f^{\prime \prime}-\left(r \varphi^{\prime \prime}\right)^{\prime} \varphi f^{\prime 2}\right]^{\prime}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
r h^{\prime \prime \prime 2}= & s h^{2}+3 \omega_{0} f^{\prime 2}+3 \omega_{1} f^{\prime \prime 2}+r \varphi^{2} f^{\prime \prime \prime} 2^{2} \\
& +\left\{\left[r \varphi^{\prime \prime \prime}\left(\varphi f^{2}\right)^{\prime \prime}-\left(r \varphi^{\prime \prime \prime}\right)^{\prime} \cdot\left(\varphi f^{2}\right)^{\prime}+\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime} \varphi f^{2}\right]\right. \\
& \left.+3\left[2 r \varphi^{\prime \prime} \varphi^{\prime}-\left(r \varphi^{\prime \prime}\right)^{\prime} \varphi-r \varphi^{\prime \prime \prime} \varphi\right] f^{2}+6 r \varphi^{\prime \prime} \varphi f^{\prime} f^{\prime \prime}+3 r \varphi^{\prime} \varphi f^{\prime \prime 2}\right\}^{\prime}
\end{aligned}
$$

Now substituting $f=\varphi^{-1} h$ on the right hand side of the above identity, and using

$$
\begin{gathered}
\varphi f^{2}=\varphi^{-1} h^{2} \\
\left(\varphi f^{2}\right)^{\prime}=\left(\varphi^{-1}\right)^{\prime} h^{2}+2 \varphi^{-1} h h^{\prime} \\
\left(\varphi f^{2}\right)^{\prime \prime}=\left(\varphi^{-1}\right)^{\prime \prime} h^{2}+4\left(\varphi^{-1}\right)^{\prime} h h^{\prime}+2 \varphi^{-1} h^{\prime 2}+2 \varphi^{-1} h h^{\prime \prime} \\
f^{\prime}=\left(\varphi^{-1}\right)^{\prime} h+\varphi^{-1} h^{\prime} \\
f^{\prime \prime}=\left(\varphi^{-1}\right)^{\prime \prime} h+2\left(\varphi^{-1}\right)^{\prime} h^{\prime}+\varphi^{-1} h^{\prime \prime}
\end{gathered}
$$

we obtain the identity

$$
\begin{equation*}
r h^{\prime \prime \prime 2}-s h^{2}=\left[S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right]^{\prime}+3 \omega_{0}\left(\varphi^{-1} h\right)^{\prime 2}+3 \omega_{1}\left(\varphi^{-1} h\right)^{\prime \prime 2}+r \varphi^{2}\left(\varphi^{-1} h\right)^{\prime \prime \prime \prime} \tag{2.14}
\end{equation*}
$$

Now let $h \in H$. Condition (1.3) implies that the function $r h^{\prime \prime \prime}{ }^{2}$ is summable on I since $r h^{\prime \prime \prime}{ }^{2} \geq 0$ on I. It follows from assumptions that the function $s h^{2}$ and $\left[S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right]^{\prime}$ are summable on each compact interval $[a, b] \subset I$. Thus by (2.14) we get the summability of the function

$$
\begin{equation*}
3 \omega_{0}\left(\varphi^{-1} h\right)^{\prime 2}+3 \omega_{1}\left(\varphi^{-1} h\right)^{\prime \prime 2}+r \varphi^{2}\left(\varphi^{-1} h\right)^{\prime \prime \prime 2} \tag{2.15}
\end{equation*}
$$

on each compact interval $[a, b] \subset I$ and we obtain the equality

$$
\begin{equation*}
\int_{a}^{b} r h^{\prime \prime \prime} 2 d t=\int_{a}^{b} s h^{2} d t+\left.S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right|_{a} ^{b}+\int_{a}^{b} g(t) d t \tag{2.16}
\end{equation*}
$$

for arbitrary $\alpha<a_{n}<b_{n}<\beta, a_{n} \rightarrow \alpha, b_{n} \rightarrow \beta$ and

$$
\left.\lim _{n \rightarrow \infty} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right|_{a_{n}}<\infty,\left.\lim _{n \rightarrow \infty} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right|_{b_{n}}>-\infty
$$

Thus, there is a constant C such that

$$
-\left.S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right|_{a_{n}} ^{b_{n}} \leq C<\infty
$$

By condition (2.15, $g \geq 0$ a.e. on I. From (2.16), we infer that

$$
\int_{a_{n}}^{b_{n}} s h^{2} d t \leq \int_{a_{n}}^{b_{n}} r h^{\prime \prime \prime 2} t+C \leq \int_{I_{n}} r h^{\prime \prime \prime 2} d t+C
$$

and from this, letting $n \rightarrow \infty$, we obtain

$$
\int_{I} \operatorname{sh}^{2} d t \leq \int_{I} r h^{\prime \prime \prime 2} d t+C<\infty
$$

From this estimate and by the second condition of $\sqrt{2.1}$, we conclude that $s h^{2}$ is summable on I. Next, in a similar way, using 2.16) and the sum ability of the function $s h^{2}$ on I, we prove that the function g is sum able on I. Thus all the integrals in (2.16) have finite limits as $a \rightarrow \alpha$ or $b \rightarrow \beta$, and hence both of the limits in 2.2 are proper and finite. Therefore the conditions 2.2 and 2.3 may be written in the equivalent form

$$
-\infty<\lim _{t \rightarrow \alpha} S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \leq \lim _{t \rightarrow \beta} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)<\infty
$$

Now by 2.16 as $a \rightarrow \alpha$ and $b \rightarrow \beta$, we obtain the equality

$$
\begin{equation*}
\int_{I} r h^{\prime \prime \prime 2} d t-\int_{I} s h^{2} d t=\lim _{t \rightarrow \beta} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)-\lim _{t \rightarrow \alpha} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)+\int_{I} g d t \tag{2.17}
\end{equation*}
$$

hence, in view of 2.15, the inequality (1.4) follows, since $g \geq 0$ a.e. on I.
If (1.4) becomes an equality for a non-vanishing function $h \in H$, then by 2.15 and 2.17), we have

$$
\begin{equation*}
\int_{I} g d t=0, \quad \lim _{t \rightarrow \alpha} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=\lim _{t \rightarrow \beta} S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \tag{2.18}
\end{equation*}
$$

Since $g \geq 0$ a.e. on I, we obtain $g=0$ a.e. on I. In view of g it follows from assumptions that it $g=0$ a.e. on I, then $\left(\varphi^{-1} h\right)^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in I$, and we get that $\left(\varphi^{-1} h\right)^{\prime}=0$ on I, since $\left(\varphi^{-1} h\right)^{\prime} \in A C^{2}(I)$.

This implies that $h=C \varphi$, where $C=$ const $\neq 0$, since $\varphi^{-1} h \in A C^{2}(I)$. Thus $\varphi \in H$, so that we obtain from the condition 2.18 we get the condition (17).

Now let 2.17 be satisfied and let $h=C \varphi$, where $C=$ const $\neq 0$. This implies $g=0$ a.e. on I, so that $\int_{I} g d t=0$. In view of $2.15-2.18,1.4$ becomes equality. The theorem is proved.

3. Example

Let $I=(-1,1), r=\left(1-t^{2}\right)^{a}$ and $\varphi=\left(1-t^{2}\right)^{3-a}$ on I, where a is an arbitrary constant such that the case $a \in(-\infty ; 1]$ is considered. Then by (1.3), 2.11) and (2.12), we have

$$
\begin{gathered}
s=-\left(r \varphi^{\prime \prime \prime}\right)^{\prime \prime \prime} \varphi^{-1}=24(3-a)(2-a)(5-2 a)\left(1-t^{2}\right)^{a-3}>0 \\
\omega_{0}=4-(3-a)\left(1-t^{2}\right)^{2-a}\left[(15-6 a)+(12 a-30) t^{2}+(15-29 a) t^{4}\right]>0 \\
\omega_{1}=2(3-a)\left(1-t^{2}\right)^{5-a}>0 \text { on } I
\end{gathered}
$$

From Theorem 2.1 we obtain that the inequality (1.4) holds for every function $h \in H$, where H is the class of function $h \in A C^{2}((-1,1))$ satisfying the integral condition

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{a} h^{\prime \prime \prime 2} d t<\infty \tag{3.1}
\end{equation*}
$$

and the limit condition

$$
\begin{equation*}
-\infty<\lim _{t \rightarrow-1} S\left(t, h, h^{\prime}, h^{\prime \prime}\right) \leq \lim _{t \rightarrow 1} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)<\infty \tag{3.2}
\end{equation*}
$$

where by $2.3-2.10$

$$
\begin{gather*}
S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=\nu_{0}(t)\left(1-t^{2}\right)^{a-5} h^{2}+\nu_{1}(t)\left(1-t^{2}\right)^{a-3} h^{\prime 2} \\
+\nu_{2}(t)\left(1-t^{2}\right)^{a-1} h^{\prime \prime 2}+2 \varepsilon_{01}(t)\left(1-t^{2}\right)^{a-4} h h^{\prime} \tag{3.3}\\
+2 \varepsilon_{02}(t)\left(1-t^{2}\right)^{a-3} h h^{\prime \prime}+2 \varepsilon_{12}(t)\left(1-t^{2}\right)^{a-2} h h^{\prime \prime}, \\
\nu_{0}(t)=8(3-a) t\left[-3\left(a^{2}-3 a+1\right)+\left(12 a^{3}-90 a^{2}+238 a-222\right)\right] t^{2} \\
\left.+\left(-4 a^{4}+60 a^{3}-319 a^{2}+811 a-528\right) t^{4}\right] \\
\nu_{1}(t)=-8(3-a) t\left[6-a+2(7-2 a) t^{2}\right] \\
\nu_{2}(t)=-2(3-a) t \\
\varepsilon_{01}(t)=4(3-a)\left[2 a-3+\left(-10 a^{2}+52 a-66\right) t^{2}+\left(28 a^{3}-238 a^{2}+728 a-803\right) t^{4}\right] \\
\varepsilon_{02}(t)=-4(3-a)\left[a+\left(2 a^{2}-11 a+16\right) t^{2}\right] \\
\varepsilon_{12}(t)=-4(3-a)\left[1+(7-2 a) t^{2}\right] .
\end{gather*}
$$

Since the second condition of 2.1 is satisfied trivially. Now we show that a function $h \in A C^{2}((-1,1))$ that satisfies the integral condition (3.1) and limit conditions $h(\pm 1)=h^{\prime}(\pm 1)=h^{\prime \prime}(\pm 1)=0$ belongs to the class H.

At first we show that, if $h(1)=h^{\prime}(1)=h^{\prime \prime}(1)=0$ and (3.1) hold, then

$$
\lim _{t \rightarrow 1} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=0
$$

Let us consider the right-hand neighborhood U of the point 1 . In [1], it has been shown that

$$
\begin{equation*}
\left|h^{\prime}(t)\right| \leq k(t)(1-t)^{\frac{1-a}{2}} \tag{3.4}
\end{equation*}
$$

for $t \in U$, where

$$
k(t)=\left\{\frac{A}{1-a} \int_{t}^{1}\left(1-\tau^{2}\right)^{a} h^{\prime \prime 2}(\tau) d \tau\right\}^{1 / 2}>0, \quad t \in U
$$

This function is a continuous function on $I, \lim _{t \rightarrow 1} k(t) \equiv k(1)=0$, and

$$
\begin{equation*}
|h(t)| \leq \frac{k(\theta)}{\sqrt{2-a}}(1-t)^{\frac{3-a}{2}} \tag{3.5}
\end{equation*}
$$

for $t \in U$, where $t<\theta<1$ and $\lim _{t \rightarrow 1} k(t) \equiv k(1)=0$.
It is easy to see that if we write $h^{\prime \prime \prime}$ instead of $h^{\prime \prime}, h^{\prime \prime}$ instead of h^{\prime}, and h^{\prime} instead of h in (3.4 and 3.5 then we obtain

$$
\begin{equation*}
\left|h^{\prime \prime}(t)\right| \leq k(t)(1-t)^{\frac{1-a}{2}} \tag{3.6}
\end{equation*}
$$

for $t \in U$, with k as above and

$$
\begin{equation*}
\left|h^{\prime}(t)\right| \leq \frac{k(\theta)}{\sqrt{2-a}}(1-t)^{\frac{3-a}{2}} \tag{3.7}
\end{equation*}
$$

for $t \in U$, where $t<\theta<1$ and $\lim _{t \rightarrow 1} k(t) \equiv k(1)=0$. From (3.5) we have

$$
\begin{equation*}
|h(t)| \leq \frac{2 k(\theta)}{(5-a) \sqrt{2-a}}(1-t)^{\frac{5-a}{2}} . \tag{3.8}
\end{equation*}
$$

Based on the estimates (3.6), (3.7) and (3.8), from (3.3), we obtain

$$
\begin{aligned}
\left|S\left(t, h, h^{\prime}, h^{\prime \prime}\right)\right| \leq & \frac{4 k^{2}(\theta)}{(2-a)(5-a)^{2}}\left|\nu_{0}(t)\right|+\frac{k^{2}(\theta)}{2-a}\left|\nu_{1}(t)\right| \\
& +k^{2}(\theta)\left|\nu_{2}(t)\right|+\frac{2 k^{2}(\theta)}{(2-a)(5-a)}\left|\varepsilon_{01}(t)\right| \\
& +\frac{2 k^{2}(\theta)}{(5-a) \sqrt{2-a}}\left|\varepsilon_{02}(t)\right|+\frac{k^{2}(\theta)}{\sqrt{2-a}}\left|\varepsilon_{12}(t)\right|=m(t)
\end{aligned}
$$

Whence it follows that $\lim _{t \rightarrow 1} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=0$. In an analogous way we show that if $h(-1)=h^{\prime}(-1)=h^{\prime \prime}(-1)=0$ and (3.1) hold then $\lim _{t \rightarrow-1} S\left(t, h, h^{\prime}, h^{\prime \prime}\right)=0$. Therefore we get the following result.

Theorem 3.1. If $a<1$ and the function $h \in A C^{2}((-1,1))$ satisfies the integral condition

$$
\int_{-1}^{1}\left(1-t^{2}\right)^{a} h^{\prime \prime \prime 2} d t<\infty
$$

and the limit condition $h(\pm 1)=h^{\prime}(\pm 1)=h^{\prime \prime}(\pm 1)=0$, then

$$
\int_{-1}^{1}\left(1-t^{2}\right)^{a} h^{\prime \prime \prime} 2 d t \geq 24(3-a)(2-a)(5-2 a) \int_{-1}^{1} \frac{h^{2} d t}{\left(1-t^{2}\right)^{3-a}}
$$

holds. The inequality (3.4) becomes on equality if and only if $h=C\left(1-t^{2}\right)^{3-a}$, where C is a constant.

In the particular case for $a=0$ we obtain

$$
\int_{-1}^{1} h^{\prime \prime \prime 2} d t \geq 720 \int_{-1}^{1} \frac{h^{2} d t}{\left(1-t^{2}\right)^{3}}
$$

as deduced in 3 .
Acknowledgments. The author wishes to express his gratitude to the anonymous referee for his/her valuable remarks and comments on the original version of this paper.

References

[1] B. Florkiewicz and K. Wojteczek; On some further Wirtinger-Beesack integral inequalities, Demonstratio. Math. 32(1999), 495-502.
[2] B. Florkiewicz and K. Wojteczek; Some second order integral inequalities of generalized Hardytype, Proc. Royal Soc. Edinburgh. 129 A. Part 5(1999), 947-958.
[3] W. J. Kim; Disconjugacy and Nonoscillation Criteria for Linear Differential Equations. J. of Diff. Equation 8 (1970), 163-172.

Gulomjon M. Muminov
Andijon State University, Faculty of Mathematics, 129, Universitetskaya str., Andijon, Uzbekistan

E-mail address: muminov_G@rambler.ru

[^0]: 2000 Mathematics Subject Classification. 26D10.
 Key words and phrases. Integral inequality; absolutely continuous function.
 (C) 2005 Texas State University - San Marcos.

 Submitted April 22, 2005. Published September 19, 2005.

