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CONTINUOUS SELECTIONS OF SOLUTION SETS TO
VOLTERRA INTEGRAL INCLUSIONS IN BANACH SPACES

SERGIU AIZICOVICI, VASILE STAICU

Abstract. We consider a nonlinear Volterra integral equation governed by an

m-accretive operator and a multivalued perturbation in a separable Banach.
The existence of a continuous selection for the corresponding solution map

is proved. The case when the m-accretive operator in the integral inclusion
depends on time is also discussed.

1. Introduction

In this paper we establish the existence of a continuous selection of the solution
set to the nonlinear Volterra integral inclusion

u(t) +
∫ t

0

a(t− s)[Au(s) + F (s, u(s))]ds 3 ξ + g(t), t ∈ I := [0, T ] (1.1)

in a Banach space X. Here A denotes an m-accretive operator in X, F : I ×X →
2X\{∅} is a multivalued perturbation, a : I → R, ξ ∈ X, g : I → X, and the
integral is taken in the sense of Bochner. The case when A depends on time is also
considered.

Existence and continuous dependence results for Volterra equations of type (1.1)
in infinite dimensional spaces were earlier proved in [2, 3, 1]. Continuous selection
theorems for semilinear abstract integrodifferential inclusions have recently been ob-
tained in [4]. As compared to [2], [3], we do not impose any compactness restriction
on the semigroup generated by −A (respectively, on the corresponding evolution
operator, when A is time-dependent), and allow X to be a general (non-reflexive)
Banach space.

We note that in the special case when a = 1 and g = 0, equation (1.1) reduces
to

u′(t) +Au(t) + F (t, u(t)) 3 0, t ∈ I;u(0) = ξ. (1.2)

The existence of continuous selections for the multivalued solution map associated
with (1.2) was proved by Staicu [15] in a Hilbert space setting. The present work
may be viewed as a direct attempt to extend the theory of [15] to a broader class
of nonlinear inclusions in a general Banach space.
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The plan of the paper is as follows. Section 2 contains background material on
multifunctions, m-accretive operators and evolution equations. The main results
for equation (1.1) and its time dependent counterpart are stated in Section 3. The
proofs are carried out in Section 4. Finally, in Section 5 we present an example to
which our abstract theory applies.

2. Preliminaries

For further background and details pertaining to this section we refer the reader
to [5, 6, 10, 11, 13, 14, 16].

Throughout this paper, X stands for a real separable Banach space with norm
‖·‖ and dual (X∗, ‖·‖∗). If Ω is a subset of X, then the closure of Ω will be denoted
by Ω, or alternatively by cl(Ω).

Let I = [0, T ] and let L be the σ−algebra of all Lebesgue measurable subsets
of I. By C(I,X) (resp. L1(I,X)) we denote the Banach space of all continuous
(resp. Bochner integrable) functions u : I → X equipped with the standard norm
‖u‖∞ = supt∈I ‖u(t)‖ (resp. ‖u‖1 =

∫ T

0
‖u(t)‖dt). W 1,1(I,X) designates the space

of all absolutely continuous functions u : I → X which can be written as

u(t) = u(0) +
∫ t

0

v(s)ds, t ∈ I,

for some v ∈ L1(I,X). We will also use L1(I), AC(I) and BV (I) to indicate
the space of all Lebesgue integrable functions, absolutely continuous functions, and
respectively functions with bounded variation from I to R. A subset K ⊂ L1(I,X)
is called decomposable if for all u, v ∈ K and A ∈ L , one has that uχA+vχI\A ∈ K,
where χA stands for the characteristic function of A. The family of all nonempty,
closed and decomposable subsets of L1(I,X) is denoted by D.

The notation 2X (resp. P(X)) will designate the collection of all (resp. all
nonempty closed) subsets of X. The Hausdorff distance on P(X) is defined by

h(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
, ∀A,B ∈ P(X),

where d(a,B) = inf{‖a − b‖ : b ∈ B}. B(X) will denote the σ−algebra of Borel
subsets of X and L ⊗ B(X) will stand for the σ−algebra on I ×X generated by all
sets of the form A×B with A ∈ L and B ∈ B(X).

Let S be a separable metric space and let A denote a σ−algebra of subsets of S.
A multivalued map G : S → 2X\{∅} is said to be A-measurable if for each closed
subset C of X, the set {s ∈ S : G(s) ∩ C 6= ∅} belongs to A.

A function g : S → X satisfying g(s) ∈ G(s), for all s ∈ S, is called a selection
of G. The multivalued map G is said to be lower semicontinuous (l. s. c.) if for
every closed set C of X, the set {s ∈ S : G(s) ⊂ C} is closed in S.

The following two results of [8] will play a key role in the sequel.

Proposition 2.1. Assume that F ∗ : I × S → P(X) is L ⊗ B(S) measurable and
that F ∗(t, .) is l.s.c. for each t ∈ I. Then the map ξ → GF (ξ) given by

GF (ξ) = {v ∈ L1(I,X) : v(t) ∈ F ∗(t, ξ), a.e. on I} (2.1)

is l.s.c. from S into D if and only if there exists a continuous map β : S → L1(I),
such that for every ξ ∈ S

d(0, F ∗(t, ξ)) ≤ β(ξ)(t), a.e. on I. (2.2)
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Proposition 2.2. Let G : S → D be a l.s.c. multifunction, and let ϕ : S →
L1(I,X) and ψ : S → L1(I) be continuous maps. Assume that for each ξ ∈ S, the
set

H(ξ) = cl{v ∈ G(ξ) : ‖v(t)− ϕ(ξ)(t)‖ < ψ(ξ)(t), a.e. on I} (2.3)

is nonempty. Then the map ξ → H(ξ) (with H(ξ) given by (2.3), from S into D,
admits a continuous selection.

The remaining of this section is devoted to a brief discussion of accretive opera-
tors and related evolution equations.

Let A : X → 2X be a set-valued operator in X and let

D(A) := {x ∈ X : Ax 6= ∅}, R(A) :=
⋃

x∈D(A)

Ax

be the domain and range of A, respectively. We say that A is an accretive operator
if

‖x1 − x2‖ ≤ ‖x1 − x2 + λ(y1 − y2)‖, ∀λ > 0, ∀xi ∈ D(A), ∀yi ∈ Axi (i = 1, 2).

If in addition R(Id + λA) = X for all (equivalently, some) λ > 0, where Id is the
identity in X, then A is said to be m-accretive.

The accretivity of A is equivalent to the condition

〈y1 − y2, x1 − x2〉s ≥ 0, ∀xi ∈ D(A),∀yi ∈ Axi(i = 1, 2),

with 〈., .〉s given by 〈y, x〉s = sup{x∗(y) : x∗ ∈ J(x)}, where J : X → 2X∗
is the

duality map defined by

J(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2
∗}.

Consider now the initial value problem

u′(t) +Au(t) 3 f(t), t ∈ I;u(0) = ξ, (2.4)

where A is m-accretive in X, ξ ∈ D(A) and f ∈ L1(I,X), whose solutions are
meant in the sense of the following definition due to Bénilan [7].

Definition 2.3. A function u ∈ C(I,D(A)) is called an integral solution of the
problem (2.4) if u(0) = ξ and the inequality

‖u(t)− x‖2 ≤ ‖u(s)− x‖2 + 2
∫ t

s

〈f(τ)− y, u(τ)− x〉sdτ

holds for all x, y ∈ X, with y ∈ Ax, and all 0 ≤ s ≤ t ≤ T .

It is well-known that the problem (2.4) has a unique integral solution for each
f ∈ L1(I,X) and each ξ ∈ D(A). The following property of integral solutions will
be used in Section 4.

Proposition 2.4. Let u and v be integral solutions of (2.4) that correspond to
(ξ, f) and (η, g), respectively (where ξ, η ∈ D(A) and f , g ∈ L1(I,X)). Then

‖u(t)− v(t)‖ ≤ ‖ξ − η‖+
∫ t

0

‖f(τ)− g(τ)‖dτ (2.5)

for all t ∈ I.
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We note that Benilan’s original definition of an integral solution [7] required the
operator A to be merely accretive. The accretivity alone doesn’t generally guarantee
the well-posedness of the problem (2.4) and the validity of the inequality (2.5). If,
however, A is m-accretive, then problem (2.4) has a unique integral solution, and
(2.5) holds.

Now let {A(t) : t ∈ I} be a family of (possibly multivalued) operators on X, of
domains D(A(t)), with D(A(t)) = D (independent of t) which satisfy the assump-
tion

(H1) (i) R(Id+ λA(t)) = X, for all λ > 0 and t ∈ I,
(ii) There exists a continuous function m1 : I → X and a continuous

nondecreasing function m2 : R+ → R+ (R+ := [0,∞)) such that

〈y1 − y2, x1 − x2〉s
≥ −‖m1(t)−m1(s)‖‖x1 − x2‖m2(max{‖x1‖, ‖x‖2}),

for all x1 ∈ D(A(t)), y1 ∈ A(t)x1, x2 ∈ D(A(s)), y2 ∈ A(s)x2, 0 ≤ s ≤
t ≤ T .

We remark that (H1) implies that A(t) is m-accretive for each t ∈ I. We consider
the nonautonomous Cauchy problem

u′(t) +A(t)u(t) 3 f(t), t ∈ I;u(0) = ξ, (2.6)

where A(t) satisfy (H1), ξ ∈ D and f ∈ L1(I,X).

Definition 2.5. An integral solution of (2.6) is a function u ∈ C(I,D) such that
u(0) = ξ and the inequality

‖u(t)− x‖2 ≤ ‖u(s)− x‖2 + 2
∫ t

s

[〈f(τ)− y, u(τ)− x〉s

+ C‖u(τ)− x‖‖m1(τ)−m1(θ)‖]dτ

holds for all 0 ≤ s ≤ t ≤ T , θ ∈ I, x ∈ D(A(θ)), y ∈ A(θ)x, and C =
m2(max{‖x‖, ‖u‖∞}), with m1 and m2 as in (H1)(ii).

Recall (cf., e.g., [14]) that (2.6) has a unique integral solution for each ξ ∈ D
and f ∈ L1(I,X), provided that (H1) is satisfied. Moreover, the following analog
of Proposition 2.4 is true.

Proposition 2.6. Let (H1) be satisfied and let u and v be integral solutions of (2.6)
corresponding to (ξ, f) and (η, g), respectively (with ξ, η ∈ D and f , g ∈ L1(I,X)).
Then the inequality (2.5) holds for all t ∈ I.

3. Main results

We consider the Volterra integral inclusion (1.1) under the following conditions:
(H2) A is an m-accretive operator in X, with domain D(A), and there exists an

open subset U of X such that UA := U ∩D(A) is nonempty;
(H3) a ∈ AC(I) with a′ ∈ BV (I) and a(0) = 1;
(H4) (i) F : I ×X → P(X) is L ⊗ B(X) measurable,

(ii) There exists k ∈ L1(I, (0,∞)) such that

h(F (t, x), F (t, y)) ≤ k(t)‖x− y‖, ∀x, y ∈ X, a.e. on I ,
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(iii) There exists β ∈ L1(I,R+) such that

d(0, F (t, 0)) ≤ β(t), a.e. on I ;

(H5) g ∈W 1,1(I,X) and g(0) = 0.

Remark 3.1. The restriction a(0) = 1 in (H3) is only made for convenience. The
essential condition is a(0) > 0; see [9, p. 317].

For each ξ ∈ UA, we reduce the study of (1.1) to that of the equivalent functional
differential inclusion (cf. [2, 9])

u′(t) +Au(t) + F (t, u(t)) 3 Γ(u)(t), t ∈ I; u(0) = ξ, (3.1)

where Γ : C
(
I,D(A)

)
→ L1(I,X) is defined by

Γ(u)(t) = g′(t) +
∫ t

0

r(t− s)g′(s)ds− r(0)u(t) + r(t)ξ −
∫ t

0

u(t− s)dr(s), (3.2)

r(t) +
∫ t

0

a′(t− s)r(s)ds = −a′(t). (3.3)

Note that by (H3), the function r (as defined in (3.3)) is a function with bounded
variation.

Definition 3.2. A function u ∈ C(I,D(A)) is said to be an integral solution of
the equation (1.1) (equivalently, (3.1)) if there exists f̂ ∈ L1(I,X) with f̂(t) ∈
F (t, u(t)), a. e. on I, such that u is an integral solution, in the sense of Definition
2.3, of the problem (2.4) with Γ(u)(t)− f̂(t) in place of f(t).

In the following, S(ξ) denotes the set of all integral solutions of the equation
(1.1), which is viewed as a subset of C(I,D(A)), for each ξ ∈ UA.

Theorem 3.3. Let assumptions (H2), (H3), (H4), (H5) be satisfied. Then there
exists u : I × UA → D(A) such that:

u(., ξ) ∈ S(ξ), ∀ξ ∈ UA, (3.4)

ξ → u(., ξ) is continuous from UA into C(I,D(A)). (3.5)

Remark 3.4. (i) In the case when a = 1, g = 0 and X is a Hilbert space we recover
[15, Theorem 2.4].
(ii) A similar result can be derived for the Volterra integral equation

u(t) +
∫ t

0

a(t− s)[Au(s) + F (s, u(s))]ds 3 g(ξ) +
∫ t

0

p(s)ds, t ∈ I,

where g : UA → X is continuous, p ∈ L1(I,X), and conditions (H2), (H3) and (H4)
are satisfied. For simplicity, we have restricted our attention to equations of the
form (1.1).

Next, we are concerned with the time-dependent analog of (1.1), namely

u(t) +
∫ t

0

a(t− s)[A(s)u(s) + F (s, u(s))]ds 3 ξ + g(t), t ∈ I, (3.6)

where {A(t) : t ∈ I} is a family of m-accretive operators in X that satisfy as-
sumption (H1), while a, F and g are subject to conditions (H3), (H4) and (H5),
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respectively, and ξ ∈ D. As in [1, 9] we can replace (3.6) by an equivalent func-
tional differential equation of the form (3.1) (with A(t) in place of A), where
Γ : C(I,D) → L1(I,X) is given by (3.2).

Definition 3.5. A function u ∈ C(I,D) is called an integral solution of equation
(3.6) if there exists f̂ ∈ L1(I,X) with f̂(t) ∈ F (t, u(t)), a. e. on I, such that u is
an integral solution, in the sense of Definition 2.5, of the problem (2.6) where f(t)
is replaced by Γ(u)(t)− f̂(t).

For each ξ ∈ D, let T (ξ) denote the set of all integral solutions of the equation
(3.6)), which is regarded as a subset of C(I,D). The following counterpart of
Theorem 3.3 is valid.

Theorem 3.6. Let conditions (H1), (H3), (H4), (H5) be satisfied. In addition
assume that there exists an open subset V of X such that VA := V ∩D is nonempty.
Then there exists u : I × VA → D such that

u(., ξ) ∈ T (ξ), ∀ξ ∈ VA, (3.7)

ξ → u(., ξ) is continuous from VA into C(I,D). (3.8)

4. Proofs

Proof of Theorem 3.3. We adapt the technique used in [8, 15] to handle (3.1), which
is the functional differential inclusion equivalent of the integral equation (1.1).

Fix ε > 0 and set εn := ε/2n+1, n ∈ N, where N denotes the set of all nonnegative
integers. For ξ ∈ UA, let u0(., ξ) : I → D(A) be the unique integral solution of

u′(t) +Au(t) 3 Γ(u)(t), t ∈ I; u(0) = ξ.

The existence and uniqueness of u0(., ξ) follows from [9, Prop. 1 and Theorem 1],
on account of (H2), (H4) and (H5). Set

α(ξ)(t) := β(t) + k(t)‖u0(t, ξ)‖, m(t) :=
∫ t

0

k(s)ds, t ∈ I, (4.1)

where k(.) and β(.) are as in (H4) (ii) and (iii), respectively. Also define

γ(t) := |r(0)|+ var{r : [0, t]}, t ∈ I; M := e
R t
0 γ(s)ds, (4.2)

where the function r(.) satisfies (3.3) and var{r : [0, t]} indicates the total variation
of r over [0, t]. Let f−1(ξ)(t) ≡ 0.

We will construct two sequences of functions (un(., ξ))n∈N ⊂ C(I,D(A)) and
(fn(ξ))n∈N ⊂ L1(I,X) satisfying the following conditions:

(C1) un(., ξ) : I → D(A) is the unique integral solution of the problem

u′(t) +Au(t) 3 Γ(u)(t)− fn−1(ξ)(t), u(0) = ξ; (4.3)

(C2) ξ → fn(ξ) is continuous from UA into L1(I,X);
(C3) fn(ξ)(t) ∈ F (t, un(t, ξ)), for all ξ ∈ UA, a.e. on I;
(C4) ‖fn(ξ)(t)− fn−1(ξ)(t)‖ ≤ k(t)βn(ξ)(t), for all ξ ∈ UA, a.e. on I,

where
β0(ξ)(t) := (α(ξ)(t) + ε0)(k(t))−1,
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and, for n ≥ 1,

βn(ξ)(t) = Mn

∫ t

0

α(ξ)(s)
[m(t)−m(s)]n−1

(n− 1)!
ds+MnT

[m(t)]n−1

(n− 1)!

n∑
i=0

εi, (4.4)

with α(ξ)(.), m(.) and M defined in (4.1) and (4.2).
We remark that u0(., ξ) is the integral solution of (4.3) with n = 0. We claim

that the map ξ → u0(., ξ) is continuous from UA into C(I,D(A)). Indeed, for
ξ1, ξ2 ∈ UA, we can invoke (2.5) to deduce, for t ∈ I,

‖u0(t, ξ1)− u0(t, ξ2)‖ ≤ ‖ξ1 − ξ2‖+
∫ t

0

‖Γ(u0(., ξ1))(s)− Γ(u0(., ξ2))(s)‖ds. (4.5)

It is easily seen that the definition of Γ (cf. (3.2)) implies∫ t

0

‖Γ(u0(., ξ1))(s)− Γ(u0(., ξ2))(s)‖ds

≤ r(t)‖ξ1 − ξ2‖+
∫ t

0

γ(s)‖u0(., ξ1)− u0(., ξ2)‖∞(s)ds,
(4.6)

where ‖u‖∞(s) := supτ∈[0,s] ‖u(τ)‖ is the norm in C([0, s], X) and γ(.) is given by
(4.2). Since r(.) ∈ BV (I), one has that ‖r‖∞ := supt∈I |r(t)| < ∞. Using (4.6) in
(4.5) and applying Gronwall’s lemma, we conclude that

‖u0(., ξ1)− u0(., ξ2)‖∞ ≤M(1 + ‖r‖∞)‖ξ1 − ξ2‖.

This yields the continuity of ξ → u0(., ξ) from UA into C(I,D(A)), as claimed.
Next, by (H4) (ii), (iii) and (4.1), we have

d(0, F (t, u0(t, ξ))) ≤ α(ξ)(t), a.e. on I, (4.7)

where it is to be noted that α(.) is continuous as a function from UA into L1(I).
Define the multifunctions G0, H0 : UA → 2L1(I,X) by

G0(ξ) := {v ∈ L1(I,X) : v(t) ∈ F (t, u0(t, ξ)), a.e. on I}, (4.8)

H0(ξ) := cl{v ∈ G0(ξ) : ‖v(t)‖ < α(ξ)(t) + ε0, a.e. on I}. (4.9)

Setting F ∗(t, ξ) := F (t, u0(t, ξ)) and invoking assumptions (H4) (i), (ii), [11,
Proposition 2.66, p.61], the continuity of α(.) on UA and (4.7), we conclude by ap-
plying Proposition 2.1 that G0(.) is lower semicontinuous from UA into D and
the set H0(ξ) is nonempty. Therefore, by Proposition 2.2, there exists h0 ∈
C(UA, L

1(I,X)) such that h0(ξ) ∈ H0(ξ), ∀ξ ∈ UA. Set

f0(ξ)(t) := h0(ξ)(t), ∀ξ ∈ UA, t ∈ I, (4.10)

and remark that, by virtue of (4.8), (4.9), (4.10) and the fact that F is closed
valued, f0(.) is continuous from UA into L1(I,X), f0(ξ)(t) ∈ F (t, u0(t, ξ)) and
‖f0(ξ)(t)‖ ≤ k(t)β0(ξ)(t), a.e. on I. Recalling that u0(., ξ) is the integral solution
of (4.3) with n = 0, we conclude that conditions (C1)− (C4) hold for n = 0.

We now proceed inductively. Assume that the functions {u0, u1, . . . , un} and
{f0, f1, . . . , fn} have been constructed such that conditions (C1)− (C4) are sat-
isfied. For ξ ∈ UA, let un+1(., ξ) : I → D(A) be the unique integral solution of
(4.3) with n+ 1 in place of n. (Taking into account that fn(ξ) ∈ L1(I,X), we can
again invoke [9, Prop. 1 and Theorem 1] to establish the existence and uniqueness
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of un+1(., ξ)). Inasmuch as un(., ξ) and un+1(., ξ) satisfy (4.3), and (4.3) with n+1
instead of n, respectively, we can apply Proposition 2.4 to obtain, for t ∈ I,

‖un+1(t, ξ)− un(t, ξ)‖ ≤
∫ t

0

‖Γ(un+1(., ξ))(s)− Γ(un(., ξ))(s)‖ds

+
∫ t

0

‖fn(ξ)(s)− fn−1(ξ)(s)‖ds.
(4.11)

From (3.2) it follows that∫ t

0

‖Γ(un+1(., ξ))(s)− Γ(un(., ξ))(s)‖ds

≤
∫ t

0

γ(s)‖un+1(., ξ)− un(., ξ)(s)‖∞(s)ds.
(4.12)

Combining (4.11) with (4.12) and using Gronwall’s lemma, we arrive at

‖un+1(t, ξ)− un(t, ξ)‖ ≤M

∫ t

0

‖fn(ξ)(s)− fn−1(ξ)(s)‖ds, t ∈ I. (4.13)

Employing property (C4) in (4.13), we have

‖un+1(t, ξ)− un(t, ξ)‖ ≤M

∫ t

0

k(s)βn(ξ)(s)ds, t ∈ I. (4.14)

If n = 0, this implies, by virtue of (4.4),

‖u1(t, ξ)− u0(t, ξ)‖ ≤M

∫ t

0

α(ξ)(s)ds < β1(ξ)(t), a.e. on I. (4.15)

If n > 0, then (4.14) and (4.4) lead to

‖un+1(t, ξ)− un(t, ξ)‖ ≤Mn+1

∫ t

0

k(s)
∫ s

0

α(ξ)(τ)
[m(s)−m(τ)]n−1

(n− 1)!
dτds

+Mn+1T [
n∑

i=0

εi]
∫ t

0

k(s)
[m(s)]n−1

(n− 1)!
ds,

(4.16)

for t ∈ I. Recalling the definition of m (cf. (4.1)), and interchanging the order of
integration in the first term on the right-hand side of (4.16), we get

‖un+1(t, ξ)− un(t, ξ)‖

≤Mn+1

∫ t

0

α(ξ)(τ)
[m(t)−m(τ)]n

n!
dτ +Mn+1T [

n∑
i=0

εi]
[m(t)]n

n!

< βn+1(ξ)(t), a.e. on I.

(4.17)

By (4.15), (4.17), (C3) and (H4) (ii), it follows that

d(fn(ξ)(t), F (t, un+1(t, ξ))) < k(t)βn+1(ξ)(t), a.e. on I, (4.18)

and subsequently

d(0, F (t, un+1(t, ξ))) ≤ ‖fn(ξ)(t)‖+ k(t)βn+1(ξ)(t), a.e. on I, (4.19)

where the expression on the right-hand side of (4.19) is continuous from UA into
L1(I) (cf. (C2), (4.1) and (4.4)).

For ξ ∈ UA, we define

Gn+1(ξ) = {v ∈ L1(I,X) : v(t) ∈ F (t, un+1(t, ξ)), a.e. on I},
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Hn+1(ξ) = cl{v ∈ Gn+1(ξ) : ‖v(t)−fn(ξ)(t)‖ < k(t)βn+1(ξ)(t), a.e. on I}. (4.20)

Clearly, Gn+1(.) is lower semicontinuous from UA into D and Hn+1(ξ) is nonempty,
because of (4.18) and (4.19). Therefore, one can apply Proposition 2.2 to derive the
existence of hn+1 ∈ C(UA, L

1(I,X)) such that hn+1(ξ) ∈ Hn+1(ξ), for all ξ ∈ UA.
Setting fn+1(ξ)(t) = hn+1(ξ)(t), for all ξ ∈ UA and almost all t ∈ I, we conclude

that fn+1(.) is continuous from UA into L1(I,X) and fn+1(ξ)(t) ∈ F (t, un+1(t, ξ)),
a.e. on I; hence fn+1(ξ) and un+1(., ξ) satisfy conditions (C1) − (C3). Condition
(C4) is also satisfied on account of (4.20), and the induction argument has been
completed.

By (C4), (4.1) and (4.4) we now successively obtain

‖fn(ξ)− fn−1(ξ)‖1 ≤
∫ T

0

k(s)βn(ξ)(s)ds

= Mn

∫ T

0

α(ξ)(s)
[m(T )−m(s)]n

n!
ds+MnT [

n∑
i=0

εi]
[m(T )]n

n!

≤ Mn(‖k‖1)n

n!
(‖α(ξ)‖1 + Tε).

(4.21)
From the above inequality, it follows that (fn(ξ))n∈N is a Cauchy sequence in
L1(I,X), hence it converges in L1(I,X) to some function f(ξ) ∈ L1(I,X). Then,
for a subsequence (again denoted by (fn(ξ))n∈N ), we have

fn(ξ)(t) → f(ξ)(t), as n→∞, a.e. on I. (4.22)

Next, from (4.13) and (4.21) it follows that

‖un+1(., ξ)− un(., ξ)‖∞ ≤ Mn+1(‖k‖1)n

n!
(‖α(ξ)‖1 + Tε)

and, since the map ξ → ‖α(ξ)‖1 is continuous, this implies that (un(., ξ))n∈N is
a Cauchy sequence in C(I,X), locally uniformly in ξ. Therefore, if we denote by
u(., ξ) its limit, then ξ → u(., ξ) is continuous from UA into C(I,X).

Since the multifunction F is closed valued and since, by (C3) and (H4) (ii),

d(fn(ξ)(t), F (t, u(t, ξ))) ≤ k(t)‖un(t, ξ)− u(t, ξ)‖,

passing to the limit as n→∞, we have by (4.22) that

f(ξ)(t) ∈ F (t, u(t, ξ)), a.e on I.

Finally, let u∗(., ξ) be the unique integral solution of

u′(t) +Au(t) 3 Γ(u)(t)− f(ξ)(t), t ∈ I;u(0) = ξ.

Since un+1(., ξ) satisfies (4.3) with n + 1 instead of n, we obtain, with the help of
Proposition 2.4 (compare to (4.13)),

‖un+1(., ξ)− u∗(., ξ)‖∞ ≤M‖fn(ξ)− f(ξ)‖1, ξ ∈ UA. (4.23)

Hence, letting n → ∞ in (4.23) we obtain that u(t, ξ) = u∗(t, ξ) for each t ∈ I.
Then, we conclude that (3.4) holds and since ξ → u(., ξ) is continuous from UA into
C(I,X), it follows that (3.5) is satisfied, as well, and the proof is complete. �
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Proof of Theorem 3.6. As specified in Section 3, we consider the functional differ-
ential equivalent of (3.6), namely

u′(t) +A(t)u(t) + F (t, u(t)) 3 Γ(u)(t), t ∈ I;u(0) = ξ. (4.24)

The theory of [9, p. 323-24], can be adapted to justify the equivalence between
(3.6) and (4.24) under assumption (H1); see also [1]. The proof then follows that
of Theorem 3.3, with the mention that D, VA and Proposition 2.6 are now used
in place of D(A), UA and Proposition 2.4, respectively. The details are left to the
reader. �

5. An example

Let Ω be a bounded domain in Rn (n ≥ 1) with a smooth boundary Γ, and let
ρ : R → R satisfy

(H6) ρ ∈ C(R), ρ(0) = 0, ρ is nondecreasing.
Let X = L1(Ω), and define the operator A : D(A) ⊂ X → X by

Au = −∆ρ(u), D(A) = {u ∈ L1(Ω) : ρ(u) ∈W 1,1
0 (Ω),∆ρ(u) ∈ L1(Ω)}. (5.1)

It is well-known (see, e.g., [16, Example 1.5.5]) that A is m-accretive in X, with
D(A) = X.

Next, let fi : I × Ω × R → R (I = [0, T ], i = 1, 2) be given functions satisfying
f1 ≤ f2 on I × Ω× R and the following conditions

(H7) (i) (t, x) → fi(t, x, r) is measurable for all r ∈ R,
(ii) There exists k : I × Ω→(0,∞), k ∈ L1(I, L∞(Ω)) such that

|fi(t, x, r)− fi(t, x, r)| ≤ k(t, x)|r − r| a.e. on I × Ω, for all r, r in R,

(iii) fi(., ., 0) ∈ L1(I × Ω).

Introduce the multifunction f̂ : I × Ω× R →2R by

f̂(t, x, r) = [f1(t, x, r), f2(t, x, r)] (5.2)

and define F : I ×X → 2X by

F (t, u)(x) = {v ∈ X : v(x) ∈ f̂(t, x, u(x)), a.e. on Ω}. (5.3)

By (H7) (i)-(iii), (5.2) and (5.3), it is an easy exercise to show that F satisfies
(H4). (One uses the definition of the Hausdorff distance, [11, Theorem 7.26, p. 237]
and measurability arguments similar to those in [12, p. 97]).

Finally, let ξ : Ω → R and g : I × Ω → R satisfy
(H8) ξ ∈ L1(Ω),
(H9) g ∈W 1,1(I, L1(Ω)); g(0, x) = 0, a.e. on Ω

and set
g(t)(x) = g(t, x) for all t ∈ I and a.a. x ∈ Ω. (5.4)

Obviously, by (H9), condition (H5) is verified.
Consider the problem

u(t, x) +
∫ t

0

a(t− s)[−∆ρ(u(s, x)) + f̂(s, x, u(s, x))]ds

3 ξ(x) + g(t, x) on I × Ω ,

u(t, x) = 0, on I × Γ ,

(5.5)
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where a satisfies (H3). In view of the above discussion, it is clear that (5.5) can be
rewritten in the abstract form (1.1) in the Banach space X = L1(Ω), with A, F
and g defined by (5.1), (5.3) and (5.4), respectively. Consequently, an application
of Theorem 3.3 (with UA = X) yields following result.

Theorem 5.1. Under assumptions (H3), (H6)–(H9), Problem (5.5) has an integral
solution u(., ξ) ∈ C(I, L1(Ω)) such that ξ → u(., ξ) is continuous from L1(Ω) into
C(I, L1(Ω)).
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