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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR A
CLASS OF NONAUTONOMOUS DIFFERENCE EQUATIONS

ZHIJUN ZENG

Abstract. In this article, we investigate the existence of positive periodic
solutions for a class of non-autonomous difference equations. Using the Kras-

noselskii fixed point theorem, we establish sufficient criteria that are easily

verifiable and that generalize and improve related studies in the literature.
Numerical simulations are presented which support our theoretical results for

some concrete models.

1. Introduction

Let R denote the set of real numbers and R+ the set of nonnegative numbers.
Let Rn

+ = {(x1, . . . , xn)T : xi ≥ 0, 1 ≤ i ≤ n}. Let Z denote the set of integers and
Z+ the set of nonnegative integers.

In this paper, we apply a cone fixed point theorem due to Krasnoselskii to inves-
tigate the existence of positive periodic solutions for the non-autonomous difference
equations

∆x(k) = a(k)x(k)− f(k, u(k)), (1.1)
and

∆x(k) = −a(k)x(k) + f(k, u(k)), (1.2)
where ∆x(k) = x(k + 1)− x(k), and for k, s ∈ Z

u(k) =
(
x(g1(k)), x(g2(k)), . . . , x(gn−1(k)),

k∑
s=−∞

h(k − s)x(s)
)

. (1.3)

It is well-known that (1.1) includes many mathematical ecological difference models.
For example, (1.1) includes the generalized discrete single species model

∆x(k) = x(k)[a(k)−
n∑

i=1

bi(k)x(k − τi(k))− c(k)
k∑

s=−∞
h(k − s)x(k)] . (1.4)

Equation (1.1) includes also the single species discrete periodic population models
[5, 9, 10, 12, 13, 16, 19, 20, 24, 31]

∆x(k) = a(k)x(k)
[
1− x(k − τ(k))

H(k)
]

(1.5)
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and

∆x(k) = x(k)[a(k)−
n∑

i=1

bi(k)x(k − τi(k))] . (1.6)

Equation (1.1) includes also the multiplicative delay periodic Logistic difference
equation [5, 6, 12, 13, 20, 23, 24]

∆x(k) = a(k)x(k)
[
1−

n∏
i=1

x(k − τi(k))
H(k)

]
(1.7)

In addition, (1.1) includes the periodic Michaelis-Menton discrete model [12, 18, 20]

∆x(k) = a(k)x(k)
[
1−

n∑
i=1

ai(k)x(k − τi(k))
1 + ci(k)x(k − τi(k))

]
(1.8)

Similarly, model (1.2) includes many ecological equations. See for example the
discrete Hematopoiesis model [10, 11, 13, 26, 28]

∆x(k) = −a(k)x(k) + b(k) exp{−β(k)x(k − τ(k))} (1.9)

and the more general discrete models of blood cell production [6, 10, 11, 13, 20, 26]

∆x(k) = −a(k)x(k) +
b(k)

1 + x(k − τ(k))n
, n ∈ Z+ , (1.10)

∆x(k) = −a(k)x(k) +
b(k)x(k − τ(k))
1 + x(k − τ(k))n

, n ∈ Z+ (1.11)

Model (1.2) includes also the discrete Nicholson’s blowflies model [8, 11, 14, 26, 28]

∆x(k) = −a(k)x(k) + b(k)x(k − τ(k)) exp{−β(k)x(k − τ(k))} (1.12)

Studying the population dynamics, especial the existence of positive periodic
solutions, has attracted much attention from both mathematicians and mathemat-
ical biologists recently. Many authors have investigated the existence of positive
periodic solutions for several population models; see for example [1, 3, 9, 10, 11, 13,
15, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32] and the references therein. In [3, 12, 20],
the existence of one positive periodic solution was proved by using Mawhin’s con-
tinuation theorem. In [4, 10, 11, 13, 26, 27, 30], the existence of multiple positive
periodic solutions was studied by employing Krasnoselskii fixed point theorem in
cones. The author in [30] obtained sufficient criteria for the existence of multiple
positive periodic solutions to (1.1) and (1.2), in the continuous case by applying
Krasnoselskii fixed point theorem.

To the best of the author’s knowledge, there are very few works on the existence
of positive periodic solutions for (1.1) and (1.2). In [31] periodic solutions of a single
species discrete population model with periodic harvest/stock was discussed. The
authors in [9, 21, 27] studied the existence of positive periodic solutions of some
discrete equations, however, they are special cases of (1.1) and (1.2).

Motivated by the work above, in the present paper, we aim to study system-
atically the existence of positive periodic solution of (1.1) and (1.2) under general
conditions by employing the Krasnoselskii fixed point theorem. The conditions in
our main theorem can easily be checked in practice.
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For the sake of convenience and simplicity, we will apply the below notations
throughout this paper. Let

fM = max
k∈Iω

f(k), fm = min
k∈Iω

f(k),

|u| = max
1≤j≤n

{ui}, u ∈ Rn
+, Iω = {0, 1, . . . , ω − 1},

where f is an ω-periodic function from Z to R.
Assume the following limits exist and let

max f0 = lim
|u|↓0

max
k∈Iω

f(k, u)
|u|

, max f∞ = lim
|u|↑+∞

max
k∈Iω

f(k, u)
|u|

,

min f0 = lim
|u|↓0, uj≥σ|u|, 1≤j≤n

min
k∈Iω

f(k, u)
|u|

,

min f∞ = lim
|u|↑+∞, uj≥σ|u|, 1≤j≤n

min
k∈Iω

f(k, u)
|u|

.

The general assumptions are stated as follows:
(P1) min f0 = ∞ (P2) min f∞ = ∞
(P3) max f∞ = 0 (P4) max f0 = 0
(P5) max f0 = α1 ∈ [0, 1

Bω ) (P6) min f∞ = β1 ∈ ( 1
Aσω ,∞)

(P7) min f0 = α2 ∈ ( 1
Aσω ,∞) (P8) max f∞ = β2 ∈ [0, 1

Bω ),
with A,B, σ to be defined below. In addition, the parameters in this paper are
assumed to be not identically equal to zero.

To conclude this section, we state a few concepts and results that will be needed
in this paper.

Definition. Let X be Banach space and E be a closed, nonempty subset. E is
said to be a cone if

(i) αu + βv ∈ E for all u, v ∈ E and all α, β > 0
(ii) u,−u ∈ E imply u = 0

Lemma 1.1 (Krasnoselskii fixed point theorem). Let X be a Banach space,and let
E be a cone in X. Suppose Ω1 and Ω2 are open subsets of X such that 0 ∈ Ω1 ⊂
Ω̄1 ⊂ Ω2. Suppose that

T : E ∩ (Ω̄2 \ Ω1) → E

is a completely continuous operator and satisfies either
(i) ‖Tx‖ ≥ ‖x‖ for any x ∈ E ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for any x ∈ E ∩ ∂Ω2; or
(ii) ‖Tx‖ ≤ ‖x‖ for any x ∈ E ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for any x ∈ E ∩ ∂Ω2.

Then T has a fixed point in E ∩ (Ω̄2 \ Ω1).

2. Positive periodic solutions of (1.1)

In this section, we establish sufficient criteria for the existence of positive periodic
solutions to (1.1). We assume the following hypotheses:

(H1) a : Z → (0,+∞) is continuous and ω-periodic , i.e., a(k) = a(k + ω), such
that a(k) 6≡ 0, where ω is a positive constant denoting the common period
of the system;

(H2) f : Z × Rn
+ → R+ is continuous and ω-periodic with respect to the first

variable, i.e.,f(k + ω, u1, . . . , un) = f(k, u1, . . . , un) such that f(k, u) 6≡ 0;
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(H3) h : Z+ → R+ is continuous and satisfies
∑∞

r=0 h(r) = 1, gi : Z → Z is
continuous ω-periodic function and satisfies gi(k) < k.

Let X = {x(k) : x(k + ω) = x(k)}, ‖x‖ = max{|x(k)| : x ∈ X}, and

σ = [
ω−1∏
r=0

(1 + a(r))]−1 .

Then X is a Banach space endowed with the norm ‖ · ‖.
To prove the existence of positive solutions to (1.1), we first give the following

lemmas.

Lemma 2.1. If x(k) is a positive ω-periodic solution of (1.1), then x(k) ≥ σ‖x‖.

Proof. It is clear that (1.1) is equivalent to

x(k + 1) = x(k)(a(k) + 1)− f(k, u(k)),

and that it can be written as

∆
(
x(k)

k−1∏
s=0

1
1 + a(s)

)
= −

k∏
s=0

1
1 + a(s)

f(k, u(k)),

By summing the above equation from k = n to k = n+ω−1, since x(k) = x(k+ω),
we obtain

x(k) =
ω−1∑
s=0

G(k, s)f(s, u(s)), k, s ∈ Z (2.1)

where

G(k, s) =
∏k+ω−1

r=s+1 (1 + a(r))∏ω−1
r=0 (1 + a(r))− 1

, k ≤ s ≤ k + ω − 1

Then, x(k) is an ω-periodic solution of (1.1) if and only if x(k) is an ω-periodic
solution of difference equation (2.1). A direct calculation shows that

A :=
1∏ω−1

s=0 (1 + a(s))− 1
≤ G(k, s) ≤

∏ω−1
s=0 (1 + a(s))∏ω−1

s=0 (1 + a(s))− 1
=: B (2.2)

Clearly

A =
σ

1− σ
, B =

1
1− σ

, σ =
A

B
< 1,

‖x‖ ≤ B
ω−1∑
k=0

f(s, u(s)), x(t) ≥ A
ω−1∑
k=0

f(s, u(s)).

Therefore,

x(k) ≥ A
ω−1∑
k=0

f(s, u(s)) ≥ A

B
‖x‖ = σ‖x‖.

�

Define a mapping T : X → X by

(Tx)(k) =
ω−1∑
s=0

G(k, s)f(s, u(s)), (2.3)
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for x ∈ X, k ∈ Z. Clearly, T is a continuous and completely continuous operator
on X. Notice that finding a periodic solution of (1.1) is equivalent to establishing
a fixed point of operator T .

Define
E = {x ∈ X : x(k) ≥ 0, x(k) ≥ σ‖x‖} .

One may readily verify that E is a cone.

Lemma 2.2. With the definitions above, TE ⊂ E.

Proof. In view of the arguments in the proof of Lemma 2.1, for each x ∈ E, we
have

‖Tx‖ ≤ B
ω−1∑
t=0

f(s, u(s)),

By (2.3), one can obtain

(Tx)(k) ≥ A

ω−1∑
k=0

f(s, u(s)) ≥ A

B
‖Tx‖ = σ‖Tx‖.

Therefore, Tx ∈ E. This completes the proof. �

Now, we are in the position to state the main results in this section.

Theorem 2.3. If (P1) and (P3) are satisfied,then (1.1) has at least one positive
ω-periodic solution.

Proof. By (P1), for any M1 > 1/(Aσω), one can find a r0 > 0 such that

f(k, u) ≥ M1|u|, for uj ≥ σ|u|, 1 ≤ j ≤ n, |u| ≤ r0. (2.4)

Let Ωr0 = {x ∈ X : ‖x‖ < r0}. Note, if x ∈ E ∩ ∂Ωr0 with ‖x‖ = r0, then
x(k) ≥ σ‖x‖ = σr0. So, from Lemma 2.1 and u(k) defined by (1.3), we obtain

uj(k) = x(gj(k)) ≥ σ‖x‖ ≥ σ|u|, j = 1, . . . , n− 1,

un(k) =
k∑

s=−∞
h(k − s)x(s) ≥ σ‖x‖

k∑
s=−∞

h(k − s) = σ‖x‖ ≥ σ|u| .

Then

|u| = max
1≤j≤n−1

{x(gj(k)),
k∑

s=−∞
h(k − s)x(s)} ≥ σ‖x‖ ≥ σ|u|.

Therefore, by (2.3) and (2.4), we have

(Tx)(k) ≥ A
∞∑

s=0

f(s, u(s)) ≥ AM1ω|u| ≥ AM1σωr0 ≥ r0 = ‖x‖.

This implies that ‖Tx‖ ≥ ‖x‖ for any x ∈ E ∩ ∂Ωr0 . Again, by (P3), for any
0 < ε ≤ 1/(2Bω), there exists an N1 > r0 such that

f(k, u) ≤ ε|u|, for |u| ≥ N1. (2.5)

Choose

r1 > N1 + 1 + 2Bω max{f(k, u) : k ∈ Iω, |u| ≤ N1, u ∈ Rn
+}.
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Let Ωr1 = {x ∈ X : ‖x‖ < r1}. If x ∈ E ∩ ∂Ωr1 , then

(Tx)(k) ≤ B
ω−1∑
s=0

f(s, u(s))

≤ B
ω−1∑

s=0, |u(s)|≤N1

f(s, u(s)) + B
ω−1∑

s=0, |u(s)|>N1

f(s, u(s))

≤ r1

2
+ Bωε‖x‖

≤ r1

2
+
‖x‖
2

= ‖x‖.

This implies that ‖Tx‖ ≤ ‖x‖ for any x ∈ ∂Ωr1 .
In conclusion, under the assumptions (P1) and (P3), T satisfies all the require-

ments in Lemma 1.1. Then T has a fixed point E ∩ (Ω̄r1 \ Ωr0). Clearly, we have
r0 ≤ ‖x‖ ≤ r1 and x(k) ≥ σ‖x‖ ≥ σr0 > 0, which shows that x(k) is a positive
ω-periodic solution of (2.1). By Lemma 2.1, x(k) is a positive ω-periodic solution
of (1.1). This completes the proof. �

Theorem 2.4. If (P2) and (P4) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Proof. By (P4), for any 0 < ε ≤ 1/(Bω), there exists r2 > 0, such that

f(k, u) ≤ ε|u|, for |u| ≤ r2. (2.6)

Define Ωr2 = {x ∈ X : ‖x‖ < r2}. If x ∈ E ∩ ∂Ωr2 , then by (2.2), (2.3) and (2.6),
we have

(Tx)(k) ≤ B

ω−1∑
s=0

f(s, u(s)) ≤ Bε|u|ω ≤ Bε‖x‖ω ≤ ‖x‖.

In particular, ‖Tx‖ ≤ ‖x‖, for all x ∈ E ∩ ∂Ωr2 . Next, by (P2), for any M2 ≥
1/(Aσω), there exists a r3 > r2

σ such that

f(k, u) ≥ M2|u| for uj ≥ σ|u|, 1 ≤ j ≤ n, |u| ≥ σr3. (2.7)

Define Ωr3 = {x ∈ X : ‖x‖ < r3}. If x ∈ E ∩ ∂Ωr3 , then

uj(k) = x(gj(k)) ≥ σ‖x‖ = σr3 ≥ σ|u| j = 1, . . . , n− 1,

un(k) =
k∑

s=−∞
h(k − s)x(s) ≥ σ‖x‖ = σr3 ≥ σ|u|,

|u(k)| = max
1≤j≤n−1

{x(gj(k)),
k∑

s=−∞
h(k − s)x(s)d} ≥ σr3,

Therefore, by (2.2), (2.3), and (2.7), we get

(Tx)(k) ≥ A
ω−1∑
s=0

f(s, u(s)) ≥ AM2σ‖x‖ω ≥ ‖x‖.

In particular, ‖Tx‖ ≥ ‖x‖ for all x ∈ E ∩ ∂Ωr3 . By Lemma 1.1, there exists a
fixed point x ∈ E

⋂
(Ω̄r3 \Ωr2) satisfying r2 ≤ ‖x‖ ≤ r3. That is, x(k) is a positive

ω-periodic solution of (1.1). �

Now, we introduce two extra assumptions to be used in the next theorems.
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(P9) There exists d1 > 0 such that f(k, u) > d1/(Aω), for |u| ∈ [σd1, d1].
(P10) There exists d2 > 0 such that f(k, u) < d2/(Bω), for |u| ≤ d2.

Theorem 2.5. If (P3), (P4), (P9) are satisfied, then (1.1) has at least two positive
ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d1 < ‖x2‖.

Proof. By assumption (P4), for any 0 < ε ≤ 1/(Bω), there exists a r4 < d1 such
that

f(k, u) ≤ ε|u|, for |u| ≤ r4 (2.8)
Define Ωr4 = {x ∈ X : ‖x‖ < r4}. Then for any x ∈ E ∩ ∂Ωr4 , we have ‖x‖ = r4.
From (2.2), (2.3) and (2.8), we obtain

(Tx)(k) ≤ B
ω−1∑
s=0

f(s, u(s)) ≤ Bεr4ω ≤ r4 = ‖x‖,

which implies ‖Tx‖ ≤ ‖x‖ for all x ∈ E ∩ ∂Ωr4 . Likewise, from (P3), for any
0 < ε ≤ 1/(2Bω), there exists an N2 > d1 such that

f(k, u) ≤ ε|u|, for |u| ≥ N2. (2.9)

Choose

r5 > N2 + 1 + 2Bω max{f(k, u) : k ∈ Iω, |u| ≤ N2, u ∈ Rn
+} (2.10)

Let Ωr5 = {x ∈ X : ‖x‖ < r5}. If x ∈ E ∩ ∂Ωr5 , then by (2.3), (2.4), and (2.10),
we have

(Tx)(k) ≤ B

ω−1∑
s=0

f(s, (u(s))

= B
ω−1∑

s=0, |u(s)|≤N2

f(s, u(s)) + B
ω−1∑

s=0, |u(s)|>N2

f(s, u(s))

≤ r5

2
+
‖x‖
2

= ‖x‖.

Which shows that ‖Tx‖ ≤ ‖x‖ for all x ∈ E ∩ ∂Ωr5 .
Set Ωd1 = {x ∈ X : ‖x‖ < d1}. Then, for any x ∈ E ∩ ∂Ωd1 , we have x(k) ≥

σ‖x‖ = σd1. Consequently,

uj(k) = x(gj(k)) ≥ σ‖x‖ = σd1 j = 1, . . . , n− 1,

un(k) =
k∑

s=−∞
h(k − s)x(s) ≥ σ‖x‖ = σd1,

That is

|u(k)| = max
1≤j≤n−1

{x(gj(k)),
k∑

s=−∞
h(k − s)x(s)} ≥ σd1.

Thus, by (1.3), (2.3), (P9), we have

(Tx)(k) ≥ A
ω−1∑
s=o

f(s, u(s)) > A
d1

Aω
ω = d1 = ‖x‖.

This yields ‖Tx‖ > ‖x‖ for all x ∈ E ∩ ∂Ωd1 . By Lemma 1.1, there exist two
positive ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d1 < ‖x2‖. This
completes the proof. �
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From the arguments in the above proof, we have the following result immediately.

Corollary 2.6. If (P1), (P2), (P10) are satisfied, then (1.1) has at least two ω-
periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d2 < ‖x2‖.

To obtain better results in this section, we give a more general criterion in the
following, which plays an important role later.

Theorem 2.7. Suppose that (P9) and (P10) are satisfied, then (1.1) has at least
one positive ω-periodic solution x with ‖x‖ lying between d2 and d1, where d1 and
d2 are defined in (P9) and (P10), respectively.

Proof. Without loss of generality, we assume that d2 < d1. Set Ωd2 = {x ∈ X :
‖x‖ < d2}. If x ∈ E ∩ ∂Ωd2 , then from (2.2), (2.3) and (P10), we get

(Tx)(k) ≤ B
ω−1∑
s=0

f(s, u(s)) < B
d2

Bω
ω = d2 = ‖x‖,

In particular, ‖Tx‖ < ‖x‖ for all x ∈ E ∩ ∂Ωd2 .
Choose Ωd1 = {x ∈ X : ‖x‖ < d1}. For any x ∈ E ∩ ∂Ωd1 , we have x(k) ≥

σ‖x‖ = σd1. Thus,

σd1 = σ‖x‖ ≤ |u| = max
1≤j≤n−1

{x(gj(k)),
k∑

s=−∞
h(k − s)x(s)} ≤ ‖x‖ = d1,

uj ≥ σ‖x‖ ≥ σ|u| (j = 1, 2, . . . , n).

From (2.3) and (P9), one has

(Tx)(k) ≥ A
ω−1∑
s=0

f(s, u(s)) > A
d1

Aω
ω = d1 = ‖x‖.

This implies ‖Tx‖ > ‖x‖ for all x ∈ E ∩ ∂Ωd1 . Therefore, by Lemma 1.1, we can
obtain the conclusion and this completes the proof. �

Theorem 2.8. If (P5) and (P6) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Proof. By assumption (P5), for any ε = 1
Bω − α1 > 0, there exists a sufficiently

small d2 > 0 such that

max
k∈Iω

f(k, u)
|u|

< α1 + ε =
1

Bω
, for |u| ≤ d2;

that is,

f(k, u) <
1

Bω
|u| ≤ d2

Bω
for |u| ≤ d2, k ∈ Iω

So, (P10) is satisfied. By the assumption (P6), for ε = β1 − 1
Aσω > 0, there exists

a sufficiently large d1 > 0 such that

min
k∈Iω

f(k, u)
|u|

> β1 − ε =
1

Aσω
, for |u| ≥ σd1, uj ≥ σ|u|,

Which leads to

f(k, u) >
1

Aσω
σd1 =

d1

Aω
, for |u| ∈ [σd1, d1], uj ≥ σ|u|

That is, (P9) holds. By Theorem 2.7 we complete the proof. �
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Theorem 2.9. If (P7) and (P8) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Proof. By assumption (P7), for any ε = α2 − 1
Aσω > 0, there exists a sufficiently

small d1 > 0 such that

min
k∈Iω

f(k, u)
|u|

> α2 − ε =
1

Aσω
for 0 ≤ |u| ≤ d1, uj ≥ σ|u|

Therefore,

f(k, u) >
1

Aσω
σd1 =

d1

Aω
for |u| ∈ [σd1, d1], uj ≥ σ|u|

for j = 1, 2, . . . , n and k ∈ Iω; that is, (P9) holds. By assumption (P8), for
ε = 1

Bω − β2 > 0, there exists a sufficiently large d such that

max
k∈Iω

f(k, u)
|u|

< β2 + ε =
1

Bω
for |u| > d. (2.11)

In the following, we consider two cases to prove (P10): maxk∈Iω f(k, u) bounded
and unbounded. The bounded case is clear. If maxk∈Iω f(k, u) is unbounded, then
there exists u∗ ∈ Rn

+, |u∗| = d2 > d and k0 ∈ Iω such that

f(k, u) ≤ f(k0, u
∗) for 0 < |u| ≤ |u∗| = d2. (2.12)

Since |u∗| = d2 > d, by (2.11) and (2.12), we have

f(k, u) ≤ f(k0, u
∗) <

1
Bω

|u∗| = d2

Bω
for 0 < |u| ≤ d2, k ∈ Iω

Which implies condition (P10) holds. Therefore, using Theorem 2.7 we complete
the proof. �

Theorem 2.10. Suppose that (P6), (P7), (P10) are satisfied, then (1.1) has at
least two positive ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d2 < ‖x2‖,
where d2 is defined in (P10).

Proof. From (P6) and the proof of Theorem 2.8, we know that there exists a suf-
ficiently large d1 > d2, such that f(k, u) > d1/(Aω) for |u| ∈ [σd1, d1], uj ≥ σ|u|
(j = 1, 2, . . . , n). From (P7) and the proof of Theorem 2.9, we can find a suffi-
ciently small d∗1 ∈ (0, d2) such that f(k, u) > d∗1/(Aω) for |u| ∈ [σd∗1, d

∗
1], uj ≥ σ|u|

(j = 1, 2, . . . , n). Therefore, from the proof of Theorem 2.7, there exists two positive
solutions x1 and x2 satisfying d∗1 < ‖x1‖ < d2 < ‖x2‖ < d1. �

From the arguments in the above proof, we have the following statement.

Corollary 2.11. Suppose that (P5), (P8) and (P9) are satisfied, then (1.1) has at
least two positive ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d2 < ‖x2‖,
where d1 is defined in (P9).

Theorem 2.12. If (P1) and (P8) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Proof. Let Ωr0 = {x ∈ X : ‖x‖ < r0}. From assumption (P1) and the proof of
Theorem 2.5, we know that ‖Tx‖ ≥ ‖x‖ for all x ∈ E ∩ ∂Ωr0 . Choose Ωr1 =
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{x ∈ X : ‖x‖ < r1}. From (P8) and Theorem 2.9, as |u| ≤ r1, we know that
f(k, u) < r1

Bω and

(Tx)(k) ≤ B
ω−1∑
s=0

f(s, u(s)) < B
r1

Bω
ω = r1 = ‖x‖.

Which implies ‖Tx‖ < ‖x‖ for all x ∈ E ∩ ∂Ωr1 . This completes the proof. �

Similar to Theorem 2.12, one immediately has the following statements.

Theorem 2.13. If (P2) and (P5) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Theorem 2.14. If (P3) and (P7) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Theorem 2.15. If (P4) and (P6) are satisfied, then (1.1) has at least one positive
ω-periodic solution.

Theorem 2.16. If (P1), (P6) and (P10) are satisfied, then (1.1) has at least two
positive ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d2 < ‖x2‖, where d2

is defined in (P10).

Proof. Let Ωr∗ = {x ∈ X : ‖x‖ < r∗}, where r∗ < d2. By assumption (P1)
and the proof of Theorem 2.3, we know ‖Tx‖ ≥ ‖x‖ for all x ∈ E ∩ ∂Ωr∗ . Let
Ωd1 = {x ∈ X : ‖x‖ < d1}. By the assumption (P6) and the proof of Theorem 2.7,
we see that f(k, u) > d1

Aω for |u| ∈ [σd1, d1]. From (P10) and the proof of Theorem
2.7, we know that there exist two positive ω-periodic solutions x1 and x2 satisfying
0 < ‖x1‖ < d2 < ‖x2‖. �

Theorem 2.17. If (P2), (P7), (P10) are satisfied, then (1.1) has at least two
positive ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d2 < ‖x2‖, where d2

is defined in (P10).

Theorem 2.18. If (P3), (P5), (P9) are satisfied, then (1.1) has at least two positive
ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d1 < ‖x2‖, where d1 is defined
in (P9).

Theorem 2.19. If (P4), (P8), (P9) are satisfied, then (1.1) has at least two positive
ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ < d1 < ‖x2‖, where d1 is defined
in (P9).

3. Existence of periodic solution to (1.2)

In this section, we prove the existence of positive periodic solution to (1.2). By
carrying out similar arguments as in Section 2, one can easily obtain sufficient
criteria for the existence of positive periodic solutions of (1.2). We assume that
(H2) and (H3) hold. Moreover we will use the assumption

(H1’) a : Z → (0, 1) is continuous and ω-periodic function, i.e., a(k) = a(k + ω),
such that a(k) 6≡ 0, where ω is a positive constant denoting the common
period of the system.
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Define

σ =
ω−1∏
s=0

(1− a(s)), (3.1)

H(k, s) =
∏k+ω−1

r=s+1 (1− a(r))

1−
∏ω−1

r=0 (1− a(r))
, k, s ∈ Z, (3.2)

From the definition of H(k, s), for any s ∈ [k, k + ω − 1], we have

A :=
∏ω−1

s=0 (1− a(s))

1−
∏ω−1

s=0 (1− a(s))
≤ H(k, s) ≤ 1

1−
∏ω−1

s=0 (1− a(s))
:= B (3.3)

Clearly,

A =
σ

1− σ
, B =

1
1− σ

, σ =
A

B
< 1.

Lemma 3.1. x(k) is an ω-periodic solution of (1.2) if and only if it is an ω-periodic
solution of the difference equation

x(k) =
k+ω−1∑

s=k

H(k, s)f(s, u(s)). (3.4)

Similarly, we can establish sufficient criteria for the existence of periodic solutions
of (1.2). Now we list the corresponding criteria without proof.

Theorem 3.2. Suppose that one of the following pairs of conditions holds: (P1)
and (P3), or (P1) and (P8), or (P2) and (P4), or (P2) and (P5), or (P3) and (P7),
or (P4) and (P6), or (P5) and (P6), or (P7) and (P8), or (P9) and (P10). Then
(1.2) has at least one positive ω-periodic solution.

Theorem 3.3. Suppose that (P9)holds and one of the following pairs of conditions
is satisfied: (P3) and (P4), or (P3) and (P5), or (P4) and (P8), or (P5) and (P8).
Then (1.2) has at least two ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ <
d1 < ‖x2‖, where d1 is defined in (P9).

Theorem 3.4. Suppose that (P10) and one of the following pairs of conditions is
satisfied: (P1) and (P2), or (P1) and (P6), or (P2) and (P7), or (P6) and (P7).
Then (1.2) has at least two ω-periodic solutions x1 and x2 satisfying 0 < ‖x1‖ <
d2 < ‖x2‖, where d2 is defined in (P10)

Remark 3.5. In this section, the values of A,B, σ in (P1)–(P8) should be replaced
by corresponding values defined in (3.1) and (3.3).

4. Examples and numerical simulations

In this section, we apply our main results to investigate some classical biological
models and test our theoretical results.

Theorem 4.1. Assume that a(k), c(k), bi(k) ∈ C(Z, (0,+∞)), τi(k) ∈ C(Z,Z)
(i = 1, . . . , n) are all ω-periodic, then (1.4) has at least one positive ω-periodic
solution.

Proof. Note that

f(k, u) = u0(
n∑

i=1

bi(k)ui + c(k)un+1), u = (u0, . . . , un+1) ∈ Rn+2
+ .
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Clearly, conditions (H1)–(H3) are satisfied. Moreover, when |u| → 0, we have

max
k∈Iω

|f(k, u)|
|u|

≤ (
n∑

i=1

bM
i + cM )|u| → 0,

Hence, max f0 = 0. In addition, if u ∈ Rn+2
+ and ui > σ|u|, then

min
k∈Iω

|f(k, u)|
|u|

≥ σ2(
n∑

i=1

bm
i + cm)|u| → +∞, as |u| → +∞ ;

that is, min f∞ = ∞. Therefore (P2) and (P4) are satisfied. The claim follows
from Theorem 2.4. �

Corollary 4.2. Assume that a(k), b(k),H(k) ∈ C(Z, (0,+∞)), τi(k) ∈ C(Z,Z)
(i = 1, . . . , n) are all ω-periodic, then (1.5) has at least one positive ω-periodic
solution.

Corollary 4.3. Assume that a(k), b(k),H(k) ∈ C(Z, (0,+∞)), τi(k) ∈ C(Z,Z)
(i = 1, . . . , n) are all ω-periodic, then (1.6) has at least one positive ω-periodic
solution.

Corollary 4.4. Assume that a(k),H(k) ∈ C(Z, (0,+∞)), τi(k) ∈ C(Z,Z) (i =
1, . . . , n) are all ω-periodic, then (1.7) has at least one positive ω-periodic solution.

Theorem 4.5. Assume that a(k), ai(k), ci(k) ∈ C(Z, (0,+∞)), τi(k) ∈ C(Z,Z)
(i = 1, . . . , n) are all ω-periodic. Also assume that

am
n∑

i=1

am
i

cM
i

>
1− σ

σ2ω
,

where σ =
∏ω−1

k=0 (1 + a(k))−1. Then (1.8) has at least one positive ω-periodic
solution.

Proof. Note that

f(k, u) = a(k)u0

n∑
i=1

ai(k)ui

1 + ci(k)ui
,

It is clear that (H1)–(H3) are satisfied. Moreover,

max
k∈Iω

|f(k, u)|
|u|

≤ aM
n∑

i=1

aM
i |u|

1 + cm
i |u|

→ 0, as |u| → 0 .

Thus max f0 = 0. In addition, when |u| → +∞, we have

min
k∈Iω

|f(k, u)|
|u|

≥ am
n∑

i=1

am
i |u|

1 + cM
i |u|

→ am
n∑

i=1

am
i

cM
i

,

By the assumption, one has min f∞ > 1
Aσω . Therefore, by Theorem 2.15,the proof

is completed. �

In [[31], the authors studied the periodic solution of a single species discrete
population model with periodic harvest. Their model is

x(k + 1) = µx(k)
[
1− x(k)

T

]
+ b(k), k ∈ Z,
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Figure 1. Existence of periodic solutions of (4.1)

where µ > 0, T > 0, b(t) ∈ C(Z,R), a(k) = a(k + ω). Now we consider

∆x(k) = x(k)
[
a(k)− b(k)x(k)

1 + cx(k)
]
,

whose growth law obeys Michaelis-Menton type growth equation. Moreover, we
assume that the population subjects to harvesting. Under the catch-per-unit-effort
hypothesis, the harvest population’s growth equation can be written as

∆x(k) = x(k)
[
a(k)− b(k)x(k)

1 + cx(k)
]
− qEx(k), (4.1)

where a(k), b(k) ∈ C(Z, (0,+∞)) are ω-periodic, c is positive constant, q and E
are positive constants denoting the catch-ability-coefficient and the harvesting ef-
fort,respectively.

Theorem 4.6. If

0 < qE <
1− σ

ω
,

bm

c
+ qE >

1− σ

σ2ω
,

Then (4.1) has at least one positive ω-periodic solution, where

σ =
ω−1∏
k=0

(1 + a(k))−1.

Proof. Note that

f(k, u) =
b(k)u2

1 + cu
+ qEu, u ≥ 0.

It is not difficult to show that

max f0 = qE, min f∞ =
bm

c
+ qE.

The conditions in Theorem 4.6 guarantee that (P5) and (P6) hold. Then by The-
orem 3.2, the proof is complete. �
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Figure 2. Existence of periodic solutions of (1.9)

Theorem 4.7. Assume that a(k) ∈ C(Z, (0, 1)), b(k), β(k) ∈ C(Z, (0,∞)), τ ∈
C(Z,Z) are all ω-periodic, then (1.9) has at least one positive ω-periodic solution.

Proof. It is clear that (H1’)–(H3) are satisfied. Note that

f(k, u) = b(k) exp{−β(k)u}, u ∈ R+

Then

min
k∈Iω ]

|f(k, u)|
|u|

= min
k∈Iω

b(k)
u exp{β(k)u}

≥ bm

u exp{βMu}
→ +∞, u → 0,

max
k∈Iω

|f(k, u)|
|u|

≤ bM

u exp{βmu}
→ 0, u → +∞.

Thus, min f0 = ∞ and max f∞ = 0. Thus (P1) and (P3) are satisfied. Theorem
2.3 proves the claim. �

Example 4.8. Consider the system (4.1) with a(k) = 1 + sin(kπ), b(k) = 2 +
cos(kπ), qE = 0.2, c = 1. Then a sketch of the existence of periodic solutions is
shown in figure 1.

Example 4.9. Consider again the system (1.9) with a(k) = 1
8 + 1

16 sin kπ
2 , b(k) =

1
16 + 1

32 cos kπ
2 , β(k) ≡ 1, τ(k) ≡ 1. Periodic solutions of (1.9) is shown in figure 2.

Theorem 4.10. Assume that a(k) ∈ C(Z, (0, 1)), b(k) ∈ C(Z, (0,+∞)) are all
ω-periodic. Moreover, bm > 1−σ

σ2ω , then (1.11) has at least one positive ω-periodic
solution. where σ =

∏ω−1
k=0 (1 + a(k))−1.

Proof. Note that f(t, u) = b(k)u/(1 + un). Then

max
k∈Iω

|f(k, u)|
|u|

=
bM

1 + un
, min

k∈Iω

|f(k, u)|
|u|

= bm, u ≥ 0.
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In view of bm > 1−σ
σ2ω , then max f∞ = 0, min f0 = bm > 1

Aσω . Therefore, by
Theorem 3.2, we conclude that (1.11) has at least one positive ω-periodic solution.

�

Corollary 4.11. Assume that a(k) ∈ C(Z, (0, 1)), b(k) ∈ C(Z, (0,+∞)) are all
ω-periodic, then (1.10) has at least one positive ω-periodic solution.

Theorem 4.12. Assume that a(k) ∈ C(Z, (0, 1)), b(k), β(k) ∈ C(Z, (0,∞)), τ(k) ∈
C(Z,Z) are all ω-periodic. If bm > 1−σ

σ2ω , then (1.12) has at least one positive ω-
periodic solution.

The proof is exactly the same as that of Theorem 4.10; so we omit it here.
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3

3.2

3.4

3.6

3.8

4

4.2

→ x(0)=2.5

time : k

x(
k)

→ x(0)=2.8

n=2

0 10 20 30
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

→ x(0)=1.5

time : k

x(
k)

→ x(0)=1.8

n=3

Figure 3. Periodic solutions of (1.11)

Example 4.13. Consider the difference equation

∆x(k) = −7
8

sin
kπ

2
x(k) +

( 1
16

+
1
32

cos
kπ

2
)
(xα(k) + xβ(k)), (4.2)

where 0 < α < 1 and β > 1 are constants. It is cleat that

f(k, u) =
( 1
16

+
1
32

cos(
kπ

2
)
)
(uα + uβ), u ≥ 0

min
k∈[0,3]

|f(k, u)|
|u|

=
1
32

(uα−1 + uβ−1).

Then,it follows that min f0 = min f∞ = ∞. That is (P1) and (P2) are valid. Let
r2 = 1, then for any 0 ≤ u ≤ r2, we have

f(k, u) ≤ 3
16

<
r2

Bω
=

49
256

,



16 Z. ZENG EJDE-2006/03

Hence, (P10) is satisfied. By Theorem 3.4, there exist two positive periodic solutions
x∗1(t) and x∗2(t) satisfying 0 < ‖x∗1‖ < 1 < ‖x∗2‖.
Example 4.14. Consider the system (1.11) with a(k) = 1

8 + 1
16 sin kπ

2 , b(k) =
2 + 1

2 cos kπ
2 , τ(k) = 1, when n = 2, 3. The sketches of positive periodic solutions

are shown in figure 3.

Example 4.15. Consider the difference equation (4.2) with α = 1/4, β = 2. The
solution curves satisfying x(0) = 0.01, x(0) = 0.03 and x(0) = 0.05 are illustrated
in extended phase space and the periodic solutions is shown in Figure 4.

0 2 4 6 8 10 12 14 16 18 20
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

→ x(0)=0.01

time : k

x(
k)

→ x(0)=0.03

→ x(0)=0.05

Figure 4. Periodic solutions of (4.2)

Concluding remarks. In this paper, we employed Krasnoselskii fixed point theo-
rem to investigate systematically the existence and multiplicity of positive periodic
solutions of difference equations (1.1) and (1.2). From our arguments, the famous
theorem is effective in dealing with the difference equations. However, all of the con-
sidered difference equations are those equations with no delays or retarded types.
It still remains open to test it with forward or neutral or mixed types.

Though we discuss the existence and multiplicity of positive periodic solutions
of difference equations (1.1) and (1.2) in detail based on four key numbers, i.e.,
max f0, min f0, max f∞, min f∞, there are some cases not covered; for example,
the cases of min f∞ = 0, max f∞ = ∞, min f0 = 0, max f0 = ∞. In fact, solving
these cases is beyond our ability by using Krasonselskii fixed point theorem. In
[27], the author established the non-existence criteria of periodic solutions, then
whether or not can we establish corresponding non-existence criteria of periodic
solutions for the rest cases by employing the same method applied in [27].

Our numerical simulations strongly support the analytical achievements. From
the above figures, we find that the positive periodic solutions are stable, although
we concern about the existence of periodic solutions only. Therefore, we leave an
open question, whether or not our concise criteria guarantee the stability of positive
periodic solutions.
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