Electronic Journal of Differential Equations, Vol. 2006(2006), No. 05, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ASYMPTOTIC PROFILE OF A RADIALLY SYMMETRIC SOLUTION WITH TRANSITION LAYERS FOR AN UNBALANCED BISTABLE EQUATION

HIROSHI MATSUZAWA

AbStract. In this article, we consider the semilinear elliptic problem

$$
-\varepsilon^{2} \Delta u=h(|x|)^{2}(u-a(|x|))\left(1-u^{2}\right)
$$

$$
-\varepsilon^{2} \Delta u=h(|x|)^{2}(u-a(|x|))\left(1-u^{2}\right)
$$

in $B_{1}(0)$ with the Neumann boundary condition. The function a is a C^{1} function satisfying $|a(x)|<1$ for $x \in[0,1]$ and $a^{\prime}(0)=0$. In particular we consider the case $a(r)=0$ on some interval $I \subset[0,1]$. The function h is a positive C^{1} function satisfying $h^{\prime}(0)=0$. We investigate an asymptotic profile of the global minimizer corresponding to the energy functional as $\varepsilon \rightarrow 0$. We use the variational procedure used in 4 with a few modifications prompted by the presence of the function h.

1. Introduction and Statement of Main Results

In this article, we consider the boundary value problem

$$
\begin{gather*}
-\varepsilon^{2} \Delta u=h(|x|)^{2}(u-a(|x|))\left(1-u^{2}\right) \quad \text { in } B_{1}(0) \\
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial B_{1}(0) \tag{1.1}
\end{gather*}
$$

where ε is a small positive parameter, $B_{1}(0)$ is a unit ball in \mathbb{R}^{N} centered at the origin, and the function a is a C^{1} function on $[0,1]$ satisfying $-1<a(|x|)<1$ and $a^{\prime}(0)=0$. The function h is a positive C^{1} function on $[0,1]$ satisfying $h^{\prime}(0)=0$. We set $r=|x|$.

Problem 1.1 appears in various models such as population genetics, chemical reactor theory and phase transition phenomena. See [1] and the references therein. If the function h satisfies $h(r) \equiv 1$ and the function a satisfies $a(r) \not \equiv 0$, then this problem (1.1) has been studied in [1, [4] and [7. In this case, it is shown that there exist radially symmetric solutions with transition layers near the set $\left\{x \in B_{1}(0) \mid a(|x|)=0\right\}$. If the set $\{r \in \mathbb{R} \mid a(r)=0\}$ contains an interval I, then the problem to decide the configuration of transition layer on I is more delicate.

When $N=1$, if the function h satisfies $h(r) \not \equiv 1$ and the function a satisfies $a(r) \equiv 0$, then problem (1.1) has been studied in [8 and 9]. In this case, it is

[^0]shown that there exist stable solutions with transition layers near prescribed local minimum points of h.

In this paper, we consider the case where the function a satisfies $a(r) \not \equiv 0$ with $a(r)=0$ on some interval $I \subset(0,1)$. We show the minimum point of the function $r^{N-1} h(r)$ on I has very important role to decide the configuration of transition layer on I in this case.

We note that in 4], Dancer and Shusen Yan considered a problem similar to ours. They assume that $N \geq 2, h \equiv 1$ and the nonlinear term is $u(u-a|x|)(1-u)$ satisfying $a(r)=1 / 2$ on $I=\left[l_{1}, l_{2}\right]$ and $a(r)<1 / 2$ for $l_{1}-r>0$ small and $a(r)>1 / 2$ for $r-l_{2}>0$ small, then a global minimizer of the corresponding functional has a transition layer near the l_{1}, that is, the minimum point of r^{N-1} on I (see [4, Theorem 1.3]). In this sense, we can say that our results are natural extension of the results in [4]. We are going to follow throughout the variational procedure used in [4] with a few modifications prompted by the presence of the function h.

Here we state the energy functional, corresponding to 1.1),

$$
J_{\varepsilon}(u)=\int_{B_{1}(0)} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}-F(|x|, u) d x
$$

where $F(|x|, u)=\int_{-1}^{u} f(|x|, s) d s$ and $f(|x|, u)=h(|x|)^{2}(u-a(|x|))\left(1-u^{2}\right)$. It is easy to see that the following minimization problem has a minimizer

$$
\begin{equation*}
\inf \left\{J_{\varepsilon}(u) \mid u \in H^{1}\left(B_{1}(0)\right)\right\} \tag{1.2}
\end{equation*}
$$

Let $A_{-}=\left\{x \in B_{1}(0) \mid a(|x|)<0\right\}$ and $A_{+}=\left\{x \in B_{1}(0) \mid a(|x|)>0\right\}$.
In this paper, we will analyze the profile of the minimizer of 1.2 , and prove the following results.

Theorem 1.1. Let u_{ε} be a global minimizer of 1.2 . Then u_{ε} is radially symmetric and

$$
u_{\varepsilon} \rightarrow \begin{cases}1, & \text { uniformly on each compact subset of } A_{-} \\ -1, & \text { uniformly on each compact subset of } A_{+}\end{cases}
$$

as $\varepsilon \rightarrow 0$. In particular u_{ε} converges uniformly near the boundary of $B_{1}(0)$, that is, if $a(r)<0$ on $\left[r_{0}, 1\right]$ for some $r_{0}>0$, $u_{\varepsilon} \rightarrow 1$ uniformly on $\overline{B_{1}(0)} \backslash B_{r_{0}}(0)$ and if $a(r)>0$ on $\left[r_{0}, 1\right]$ for some $r_{0}>0, u_{\varepsilon} \rightarrow-1$ uniformly on $\overline{B_{1}(0)} \backslash B_{r_{0}}(0)$. Moreover, for any $0<r_{1} \leq r_{2}<1$ with $a\left(r_{i}\right)=0, i=1,2, a(r) \neq 0$ for $r_{1}-r>0$ small and for $r-r_{2}>0$ small, $a(r)=0$ if $r \in\left[r_{1}, r_{2}\right]$, we have:
(i) If $a(r)<0$ for $r_{1}-r>0$ small and $a(r)>0$ for $r-r_{2}>0$, then for any small $\eta>0$ and for any small $\theta>0$, there exists a positive number ε_{0} which has the following properties:
(a) For all $\varepsilon \in\left(0, \varepsilon_{0}\right]$, there exist $t_{\varepsilon, 1}<t_{\varepsilon, 2}$ such that

$$
\begin{gathered}
u_{\varepsilon}(r)>1-\eta \quad \text { for } r \in\left[r_{1}-\theta, t_{\varepsilon, 1}\right) \\
u_{\varepsilon}\left(t_{\varepsilon, 1}\right)=1-\eta \\
u_{\varepsilon}\left(t_{\varepsilon, 2}\right)=-1+\eta \\
u_{\varepsilon}(r)<-1+\eta, \quad \text { for } r \in\left(t_{\varepsilon, 2}, r_{2}+\theta\right]
\end{gathered}
$$

(b) The function $u_{\varepsilon}(r)$ is decreasing on the interval $\left(t_{\varepsilon, 1}, t_{\varepsilon, 2}\right)$
(c) The inequality $0<R_{1} \leq \frac{t_{\varepsilon, 2}-t_{\varepsilon, 1}}{\varepsilon} \leq R_{2}$ holds, where R_{1} and R_{2} are two constants independent of $\varepsilon>0$.
(d) If $t_{\varepsilon_{j}, 1}, t_{\varepsilon_{j}, 2} \rightarrow \bar{t}$ for some positive sequence $\left\{\varepsilon_{j}\right\}$ converging to zero as $j \rightarrow \infty$, then \bar{t} satisfies $h(\bar{t}) \bar{t}^{N-1}=\min _{s \in\left[r_{1}, r_{2}\right]} h(s) s^{N-1}$.
(ii) If $a(r)>0$ for $r_{1}-r>0$ small and $a(r)<0$ for $r-r_{2}>0$, then for each small $\eta>0$ and for each small $\theta>0$, there exists a positive number ε_{0} which has the following properties: For each $\varepsilon \in\left(0, \varepsilon_{0}\right]$, there exist $t_{\varepsilon, 1}<t_{\varepsilon, 2}$ such that
(a)

$$
\begin{gathered}
u_{\varepsilon}(r)<-1+\eta \quad \text { for } r \in\left[r_{1}-\theta, t_{\varepsilon, 1}\right), \\
u_{\varepsilon}\left(t_{\varepsilon, 1}\right)=-1+\eta, \\
u_{\varepsilon}\left(t_{\varepsilon, 2}\right)=1-\eta, \\
u_{\varepsilon}(r)>1-\eta, \quad \text { for } r \in\left(t_{\varepsilon, 2}, r_{2}+\theta\right] .
\end{gathered}
$$

(b) The function $u_{\varepsilon}(r)$ is increasing in $\left(t_{\varepsilon, 1}, t_{\varepsilon, 2}\right)$.
(c) The inequality $0<R_{1} \leq \frac{t_{\varepsilon, 2}-t_{\varepsilon, 1}}{\varepsilon} \leq R_{2}$ holds, where R_{1} and R_{2} are two constants independent of $\varepsilon>0$.
(d) If $t_{\varepsilon_{j}, 1}, t_{\varepsilon_{j}, 2} \rightarrow \bar{t}$ for some positive sequence $\left\{\varepsilon_{j}\right\}$ converging to zero as $j \rightarrow \infty$, then \bar{t} satisfies $h(\bar{t}) \bar{t}^{N-1}=\min _{s \in\left[r_{1}, r_{2}\right]} h(s) s^{N-1}$.

Figure 1. Profile of the global minimizer u_{ε}

Remarks.

- Note that results from (a) to (c) both in cases (i) and (ii) are not related to the presence of the function h. The effect of presence of function h appears in the result (d) in (i) and (ii).
- If $\min _{s \in\left[r_{1}, r_{2}\right]} s^{N-1} h(s)$ is attained at a unique point \bar{t}, we can show $t_{\varepsilon, 1}$, $t_{\varepsilon, 2} \rightarrow \bar{t}$ as $\varepsilon \rightarrow 0$ without taking subsequences.
- If the function $r^{N-1} h(r)$ is constant on $\left[r_{1}, r_{2}\right]$, it is a very difficult problem to know the location of the point $\bar{t} \in\left[r_{1}, r_{2}\right]$.
This paper is organized as follows: In section 2, we present some preliminary results. In section 3, we prove the main theorem.

2. Preliminary Results

Let D is a bounded domain in \mathbb{R}^{N}. Let $\bar{f}(x, t)$ be a function defined on $\bar{D} \times \mathbb{R}$ which is bounded on $\bar{D} \times[-1,1]$. Suppose \bar{f} is continuous on $t \in \mathbb{R}$ for each $x \in \bar{D}$
and is measurable in D for each $t \in \mathbb{R}$. We also assume

$$
\begin{align*}
& \bar{f}(x, t)>0 \quad \text { for } x \in \bar{D}, t<-1 \\
& \bar{f}(x, t)<0 \quad \text { for } x \in \bar{D}, t>1 \tag{2.1}
\end{align*}
$$

Consider the minimization problem

$$
\begin{equation*}
\inf \left\{\bar{J}_{\varepsilon}(u, D):=\int_{D} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}-\bar{F}(x, u) d x: u-\eta \in H_{0}^{1}(D)\right\} \tag{2.2}
\end{equation*}
$$

where $\eta \in H^{1}(D)$ with $-1 \leq \eta \leq 1$ on D and

$$
\bar{F}(x, t)=\int_{-1}^{t} \bar{f}(x, s) d s
$$

We can prove next two lemmas by methods similar to 4. For the readers convenience, we prove these lemmas in this section.

Lemma 2.1. Suppose that $\bar{f}(x, t)$ satisfies (2.1). Let u_{ε} be a minimizer of (2.2). Then $-1 \leq u_{\varepsilon} \leq 1$ on D.

Proof. We prove $-1 \leq u_{\varepsilon}$ on D. Let $M=\left\{x: u_{\varepsilon}(x)<-1\right\}$. Define \tilde{u}_{ε} by

$$
\tilde{u}_{\varepsilon}(x)= \begin{cases}u_{\varepsilon}(x) & \text { if } x \in D \backslash M \\ -1 & \text { if } x \in M\end{cases}
$$

Since $u_{\varepsilon}(x)=\eta \geq-1$ on ∂D, we see that M is compactly contained in D. Thus $\tilde{u}-\eta \in H_{0}^{1}(D)$. If the measure $m(M)$ of M is positive, we have $\bar{J}_{\varepsilon}\left(\tilde{u}_{\varepsilon}, D\right)<$ $\bar{J}_{\varepsilon}\left(u_{\varepsilon}, D\right)$. Because u_{ε} is a minimizer, we see $m(M)=0$, where $m(A)$ denotes the Lebesgue measure of the set A. Thus $u_{\varepsilon} \geq-1$. Similarly we can prove that $u_{\varepsilon} \leq 1$.

Lemma 2.2. Suppose that $\bar{f}_{1}(x, t)$ and $\bar{f}_{2}(x, t)$ both satisfy (2.1) and the same regularity assumption on \bar{f}. Assume that $\eta_{i} \in H^{1}(D)$ satisfy $-1 \leq \eta_{i} \leq 1$ on D for $i=1,2$. Let $u_{\varepsilon, i}$ be a corresponding minimizer of (2.2), where $\bar{f}=\bar{f}_{i}$ and $\eta=\eta_{i}, i=1,2$. Suppose that $\bar{f}_{1}(x, t) \geq \bar{f}_{2}(x, t)$ for all $(x, t) \in \bar{D} \times[-1,1]$ and $1 \geq \eta_{1} \geq \eta_{2} \geq-1$. Then $u_{\varepsilon, 1} \geq u_{\varepsilon, 2}$.

Proof. Let $M=\left\{x \in D: u_{\varepsilon, 2}>u_{\varepsilon, 1}\right\}$. Define $\varphi_{\varepsilon}=\left(u_{\varepsilon, 2}-u_{\varepsilon, 1}\right)^{+}$. Since $\eta_{1} \geq \eta_{2}$, we have $\varphi_{\varepsilon} \in H_{0}^{1}(D)$. Set $\bar{F}_{i}(x, u)=\int_{-1}^{u} \bar{f}_{i}(x, s) d s$. Since $u_{\varepsilon, i}$ is a minimizer of

$$
J_{\varepsilon, i}(u):=\int_{D} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}-\bar{F}_{i}(x, u) d x
$$

and $\varphi_{\varepsilon}=0$ for $x \in D \backslash M$, we have

$$
\begin{aligned}
0 & \leq J_{\varepsilon, 1}\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)-J_{\varepsilon, 1}\left(u_{\varepsilon, 1}\right) \\
& =\int_{M} \frac{\varepsilon^{2}}{2}\left(\left|\nabla\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)\right|^{2}-\left|\nabla u_{\varepsilon, 1}\right|^{2}\right) d x-\int_{M} \int_{u_{\varepsilon, 1}}^{u_{\varepsilon, 1}+\varphi_{\varepsilon}} \bar{f}_{1}(x, s) d s \\
& \leq \int_{M} \frac{\varepsilon^{2}}{2}\left(\left|\nabla\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)\right|^{2}-\left|\nabla u_{\varepsilon, 1}\right|^{2}\right) d x-\int_{M} \int_{u_{\varepsilon, 1}}^{u_{\varepsilon, 1}+\varphi_{\varepsilon}} \bar{f}_{2}(x, s) d s \\
& =J_{\varepsilon, 2}\left(u_{\varepsilon, 2}\right)-J_{\varepsilon, 2}\left(u_{\varepsilon, 2}-\varphi_{\varepsilon}\right) \leq 0 .
\end{aligned}
$$

This implies that $u_{\varepsilon, 1}+\varphi_{\varepsilon}$ is also a minimizer of $J_{\varepsilon, 1}(u)$. Let $L>0$ be large enough such that $\bar{f}_{1}(x, t)+L t$ is strictly increasing for $x \in \bar{D}, t \in[-1,1]$. From

$$
-\varepsilon^{2} \Delta\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)=\bar{f}_{1}\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)
$$

we obtain

$$
-\varepsilon^{2} \Delta \varphi_{\varepsilon}=\bar{f}_{1}\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)-\bar{f}_{1}\left(u_{\varepsilon, 1}\right)
$$

Thus

$$
-\varepsilon^{2} \Delta \varphi_{\varepsilon}+L \varphi_{\varepsilon}=\bar{f}_{1}\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)+L\left(u_{\varepsilon, 1}+\varphi_{\varepsilon}\right)-\left(\bar{f}_{1}\left(u_{\varepsilon, 1}\right)+L u_{\varepsilon, 1}\right)>0
$$

in D. Fix $z_{0} \in M$. Let $x_{0} \in \partial M$ such that $\left|x_{0}-z_{0}\right|=\operatorname{dist}\left(z_{0}, \partial M\right)$. Using the Strong maximum principle and Hopf's lemma in $B_{\operatorname{dist}\left(z_{0}, \partial M\right)}\left(z_{0}\right)$, we obtain that $\frac{\partial \varphi_{\varepsilon}}{\partial \nu}\left(x_{0}\right)<0$, where $\nu=\left(x_{0}-z_{0}\right) /\left|x_{0}-z_{0}\right|$. But $\varphi_{\varepsilon}(x)=0$ for $x \notin M$. Thus, $\frac{\partial \varphi_{\varepsilon}}{\partial \nu}\left(x_{0}\right)=0$. This is a contradiction. Thus we obtain $M=\emptyset$.

3. Proof of Main Theorem

To prove Theorem 1.1, the following proposition is used as the first step.
Propositon 3.1. Let u_{ε} be a global minimizer of the problem 1.2. Then u_{ε} satisfies

$$
u_{\varepsilon} \rightarrow \begin{cases}1 & \text { uniformly on each compact subset of } A_{-} \\ -1 & \text { uniformly on each compact subset of } A_{+}\end{cases}
$$

as $\varepsilon \rightarrow 0$.
Proof. Let $x_{0} \in A_{-}$. Choose $\delta>0$ small so that $B_{\delta}\left(x_{0}\right) \subset \subset A$. Take $b \in$ $\left(\max _{z \in \overline{B_{\delta}\left(x_{0}\right)}} a(z), 1 / 2\right)$. Define $f_{x_{0}, \delta, b}(t)=\left(\min _{z \in B_{\delta}\left(x_{0}\right)} h(|z|)^{2}\right)(t-b)\left(1-t^{2}\right)$. Then for $x \in \overline{B_{\delta}\left(x_{0}\right)}, t \in[-1,1]$, we have $f(|x|, t) \geq f_{x_{0}, \delta, b}(t)$. Let $u_{\varepsilon, x_{0}, \delta, b}$ be the minimizer of

$$
\inf \left\{\int_{B_{\delta}\left(x_{0}\right)} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}-F_{x_{0}, \delta, b}(u) d x: u+1 \in H_{0}^{1}\left(B_{\delta}\left(x_{0}\right)\right)\right\}
$$

where $F_{x_{0}, \delta, b}(t)=\int_{-1}^{t} f_{x_{0}, \delta, b}(s) d s$. It follows from Lemmas 2.1 and 2.2 that

$$
u_{\varepsilon, x_{0}, \delta, b}(x) \leq u_{\varepsilon}(x) \leq 1, \quad \text { for } x \in B_{\delta}\left(x_{0}\right)
$$

Since $\int_{-1}^{1} f_{x_{0}, \delta, b}(s) d s>0$, it follows from [2, 3] that $u_{\varepsilon, x_{0}, \delta, b}(x) \rightarrow 1$ as $\varepsilon \rightarrow 0$ uniformly in $B_{\delta / 2}\left(x_{0}\right)$, thus $u_{\varepsilon}(x) \rightarrow 1$ as $\varepsilon \rightarrow 0$ uniformly in $B_{\delta / 2}\left(x_{0}\right)$.

To prove the rest of Theorem 1.1, we need the following proposition and lemma.
Propositon 3.2. Let u be a local minimizer of the problem

$$
\inf \left\{\int_{B_{1}(0)} \frac{1}{2}|\nabla u|^{2}-G(|x|, u) d x: u \in H^{1}\left(B_{1}(0)\right)\right\} .
$$

Here $G(r, t)=\int_{-1}^{t} g(r, s) d s, g(r, t)$ is C^{1} in $t \in \mathbb{R}$ for each $r \geq 0, g(r, t)$ and $g_{t}(r, t)$ are measurable on $[0,+\infty)$ for each $t \in \mathbb{R}, g(r, t)<0$ if $t<-1$ or $t>1$ and $|g(r, t)|+\left|g_{t}(r, t)\right|$ is bounded on $[0, k] \times[-2,2]$ for any $k>0$. Then u is radial, i.e., $u(x)=u(|x|)$.

The proof of the above proposition can be found in [4, Proposition 2.6].

Lemma 3.3. Let $0<\eta<1$ be any fixed constant and w satisfies

$$
\begin{gathered}
-w_{z z}=w\left(1-w^{2}\right) \quad \text { on } \mathbb{R} \\
w(0)=-1+\eta \quad(\text { resp. } w(0)=1-\eta) \\
w(z) \leq-1+\eta \quad \text { (resp. } w(z) \geq 1-\eta) \quad \text { for } z \leq 0 \\
w \text { is bounded on } \mathbb{R} .
\end{gathered}
$$

Then w is a unique solution of

$$
\begin{gathered}
-w_{z z}=w\left(1-w^{2}\right) \quad \text { on } \mathbb{R} \\
w(0)=-1+\eta \quad(\text { resp. } w(0)=1-\eta) \\
w^{\prime}(z)>0 \quad\left(\text { resp. } w^{\prime}(z)<0\right) \quad z \in \mathbb{R} \\
w(z) \rightarrow \pm 1 \quad(\text { resp. } w(z) \rightarrow \mp 1) \quad \text { as } z \rightarrow \pm \infty
\end{gathered}
$$

The proof of the above lemma can be found in 6]. Now we prove the rest of Theorem 1.1 .

Proof of Theorem 1.1. For the sake of simplicity, we prove for the case where $a(r)<$ 0 on $\left[0, r_{1}\right), a(r)=0$ on $\left[r_{1}, r_{2}\right]$ and $a(r)>0$ on $\left(r_{2}, 1\right]$ for some $0<r_{1}<r_{2}<1$ (see Figure 1 in Section 1).

Part 1. First we show that u_{ε} converges uniformly near the boundary of $B_{1}(0)$, that is, $u_{\varepsilon} \rightarrow-1$ uniformly on $\overline{B_{1}(0)} \backslash B_{r_{2}+\tau}(0)$ for any small $\tau>0$. We note that we have $u_{\varepsilon} \rightarrow-1$ uniformly on $\overline{B_{1-\tau}(0)} \backslash B_{r_{2}+\tau}(0)$ as $\varepsilon \rightarrow 0$. Now we claim that $u_{\varepsilon}(r) \leq u_{\varepsilon}(1-\tau)=: T_{\varepsilon}$ for $r \in[1-\tau, 1]$. We define the function \tilde{u}_{ε} by

$$
\tilde{u}_{\varepsilon}(r)= \begin{cases}u_{\varepsilon}(r) & \text { if } r \in[0,1-\tau] \\ u_{\varepsilon}(r) & \text { if } u_{\varepsilon}(r)<T_{\varepsilon} \text { and } r \in[1-\tau, 1] \\ T_{\varepsilon} & \text { if } u_{\varepsilon}(r) \geq T_{\varepsilon} \text { and } r \in[1-\tau, 1]\end{cases}
$$

We note that $\tilde{u}_{\varepsilon} \in H^{1}\left(B_{1}(0)\right)$ and $-F\left(r, T_{\varepsilon}\right) \leq-F(r, t)$ for $\varepsilon>0$ and $|r-1|$ small and $t \geq T_{\varepsilon}$. Hence we obtain $J_{\varepsilon}\left(\tilde{u}_{\varepsilon}\right)<J_{\varepsilon}\left(u_{\varepsilon}\right)$ and we have a contradiction if we assume that the measure of the set $\left\{r \in[0,1] \mid u_{\varepsilon}(r)>T_{\varepsilon}\right.$ and $\left.r \in[1-\tau, 1]\right\}$ is positive. Hence $-1<u_{\varepsilon}(r) \leq T_{\varepsilon}$ and $u_{\varepsilon} \rightarrow-1$ uniformly on $\overline{B_{1}(0)} \backslash B_{r_{2}+\tau}(0)$.

Part 2. We remark that, by Proposition 3.1, u_{ε} is radially symmetric and we note that for any $t_{2}>t_{1}, u_{\varepsilon}$ is a minimizer of the following problem

$$
\inf \left\{J_{\varepsilon}\left(u, B_{t_{2}}(0) \overline{B_{t_{1}}(0)}\right): u-u_{\varepsilon} \in H_{0}^{1}\left(B_{t_{2}}(0) \overline{B_{t_{1}}(0)}\right)\right\}
$$

where

$$
J_{\varepsilon}(u, M)=\int_{M} \frac{\varepsilon^{2}}{2}|\nabla u|^{2}-F(|x|, u) d x
$$

for any open set M. Let $m_{\varepsilon, t_{1}, t_{2}}$ be the minimum value of this minimization problem.

In this part we show that u_{ε} has exactly one layer near the interval $\left[r_{1}, r_{2}\right]$.
Step 2.1. First we estimate the energy of transition layer. Let $\eta>0$ and $\theta>0$ be small numbers. Since $u_{\varepsilon} \rightarrow 1$ uniformly on [0, $r_{1}-\theta$] and $u_{\varepsilon} \rightarrow-1$ uniformly on $\left[r_{2}+\theta, 1-\theta\right]$, we can find $\bar{r}_{\varepsilon} \in\left(r_{1}-\theta, r_{2}+\theta\right)$ such that $u_{\varepsilon}(r) \geq 1-\eta$ if $r \in\left[0, \bar{r}_{\varepsilon}\right], u_{\varepsilon}(r)<1-\eta$ for $r-\bar{r}_{\varepsilon}>0$ small. Let $\tilde{r}_{\varepsilon}>\bar{r}_{\varepsilon}$ be such that $u_{\varepsilon}(r) \leq \eta$ if $r \in\left[\tilde{r}_{\varepsilon}, 1-\theta\right], u_{\varepsilon}(r)>\eta$ for $\tilde{r}_{\varepsilon}-r>0$ small. We may assume that $\bar{r}_{\varepsilon} \rightarrow \bar{r} \in\left[r_{1}, r_{2}\right]$ and $\tilde{r}_{\varepsilon} \rightarrow \tilde{r} \in\left[r_{1}, r_{2}\right]$

We employ the so-called blow-up argument. Let $v_{\varepsilon}(t)=u_{\varepsilon}\left(\varepsilon t+\bar{r}_{\varepsilon}\right)$. Then

$$
-v_{\varepsilon}^{\prime \prime}-\varepsilon \frac{N-1}{\varepsilon t+\bar{r}_{\varepsilon}} v_{\varepsilon}^{\prime}=f\left(\varepsilon t+\bar{r}_{\varepsilon}, v_{\varepsilon}\right)
$$

$-1 \leq v_{\varepsilon} \leq 1$ and $v_{\varepsilon}(0)=1-\eta$. Since $\bar{r}_{\varepsilon} \rightarrow \bar{r} \in\left[r_{1}, r_{2}\right]$, it is easy to see that $v_{\varepsilon} \rightarrow v$ in $C_{\mathrm{loc}}^{1}(\mathbb{R})$ and

$$
-v^{\prime \prime}=h(\bar{r})^{2}\left(v-v^{3}\right), \quad t \in \mathbb{R}
$$

and $v(t) \geq 1-\eta$ for $t \leq 0$. If we set $v(t)=V(h(\bar{r}) t)$, the function $V(t)$ satisfies

$$
\begin{gather*}
-V^{\prime \prime}=V-V^{3} \quad \text { on } \mathbb{R} \\
V(0)=1-\eta \tag{3.1}\\
V^{\prime}(t) \geq 1-\eta \quad t \leq 0
\end{gather*}
$$

Hence by Lemma 3.3 the function V is a unique solution for

$$
\begin{gather*}
-V^{\prime \prime}=V-V^{3} \quad \text { on } \mathbb{R} \\
V(0)=1-\eta \\
V^{\prime}(t)<0 \quad t \leq 0 \tag{3.2}\\
V(t) \rightarrow \pm 1 \quad \text { as } t \rightarrow \mp \infty
\end{gather*}
$$

Thus, we can find an $R>0$ large, such that $v(R)=\eta$. Since $v_{\varepsilon} \rightarrow v$ in $C_{\text {loc }}^{1}(\mathbb{R})$, we can find an $R_{\varepsilon} \in(R-1, R+1)$, such that $v_{\varepsilon}^{\prime}(r)<0$ if $r \in\left[0, R_{\varepsilon}\right]$ and $v_{\varepsilon}\left(R_{\varepsilon}\right)=-1+\eta$. Hence $u_{\varepsilon}^{\prime}(r)<0$ if $r \in\left[\bar{r}_{\varepsilon}, \bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}\right]$ and $u_{\varepsilon}\left(\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}\right)=-1+\eta$. Then we have

$$
\begin{align*}
& J_{\varepsilon}\left(u_{\varepsilon}, B_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right) \\
& =\omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1}+o_{\varepsilon}(1)\right) \int_{\bar{r}_{\varepsilon}}^{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}\left(\frac{\varepsilon^{2}}{2}\left|u_{\varepsilon}^{\prime}\right|^{2}-F\left(t, u_{\varepsilon}\right)\right) d t \tag{3.3}\\
& =\omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1}+o_{\varepsilon}(1)\right) \varepsilon \int_{0}^{R_{\varepsilon}}\left(\frac{1}{2}\left|v_{\varepsilon}^{\prime}\right|^{2}-F\left(\varepsilon t+\bar{r}_{\varepsilon}, v_{\varepsilon}\right)\right) d t \\
& =\omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1}+o_{\varepsilon}(1)\right)\left(\beta_{h(\bar{r})}+O(\eta)+o_{\varepsilon}(1)\right) \varepsilon
\end{align*}
$$

where ω_{N-1} is the area of the unit sphere in $\mathbb{R}^{N}, o_{\varepsilon}(1) \rightarrow 0$ as $\varepsilon \rightarrow 0, \beta_{h(s)}$ is the positive value defined by

$$
\begin{aligned}
\beta_{h(s)} & =\int_{-\infty}^{+\infty}\left(\frac{1}{2}\left|w_{h(s)}^{\prime}(t)\right|^{2}+h(s)^{2} \frac{\left(w_{h(s)}^{2}-1\right)^{2}}{4}\right) d t \\
& =h(s) \int_{-\infty}^{+\infty} \frac{1}{2}\left|V^{\prime}(t)\right|^{2}+\frac{\left(V(t)^{2}-1\right)^{2}}{4} d t \\
& =h(s) \beta_{1}
\end{aligned}
$$

and $w_{h(s)}(t)=V(h(s) t)$ for $s \in[0,1]$. We note that although the function V depends on η, the value

$$
\beta_{1}=\int_{-\infty}^{+\infty} \frac{1}{2}\left|V^{\prime}(t)\right|^{2}+\frac{\left(V(t)^{2}-1\right)^{2}}{4} d t
$$

is independent of η.
Step 2.2. We claim u_{ε} has exactly one layer near the interval $\left[r_{1}, r_{2}\right]$. To show u_{ε} has exactly one layer near the interval $\left[r_{1}, r_{2}\right]$, it sufficient to prove the following claim
Claim. $\tilde{r}_{\varepsilon}=\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}$.

Suppose that the claim is not true. Then we can find a $t_{\varepsilon}>\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon$ such that $u_{\varepsilon}(r)<-1+\eta$ if $r \in\left(\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon, t_{\varepsilon}\right), u_{\varepsilon}\left(t_{\varepsilon}\right)=-1+\eta$. Thus we can use the blow-up argument again at t_{ε} to deduce that there is a $\tilde{t}_{\varepsilon}=t_{\tilde{\varepsilon}}+\varepsilon \tilde{R}_{\varepsilon}$ with $u_{\varepsilon}^{\prime}(r)>0$ if $r \in\left(t_{\varepsilon}, \tilde{t}_{\varepsilon}\right), u_{\varepsilon}\left(\tilde{t}_{\varepsilon}\right)=1-\eta$. We may assume that $t_{\varepsilon}, \tilde{t}_{\varepsilon} \rightarrow \bar{t}$ as $\varepsilon \rightarrow 0$ for some $\bar{t} \in\left[r_{2}, r_{3}\right]$. Moreover

$$
\begin{equation*}
J_{\varepsilon}\left(u_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \backslash \overline{B_{t_{\varepsilon}}(0)}\right)=\omega_{N-1}\left(t_{\varepsilon}^{N-1}+o_{\varepsilon}(1)\right)\left(\beta_{h(\bar{t})}+O(\eta)\right) \varepsilon+o_{\varepsilon}(1) \tag{3.4}
\end{equation*}
$$

Now we claim $\tilde{t}_{\varepsilon} \geq r_{1}$. Suppose $\tilde{t}_{\varepsilon}<r_{1}$. Let $F_{a}(t)=\int_{-1}^{t}(v-a)\left(1-v^{2}\right) d v$. Then for any $t>0$ small and $s \in[-1+t, 1-t]$,

$$
\begin{align*}
& F_{a}(1-t)-F_{a}(s) \\
& =F_{0}(1-t)-F_{0}(s)+F_{a}(1-t)-F_{0}(1-t)-F_{a}(s)+F_{0}(s) \tag{3.5}\\
& =\left[\frac{\left(v^{2}-1\right)^{2}}{4}\right]_{s}^{1-t}-a \int_{s}^{1-t}\left(1-v^{2}\right) d v
\end{align*}
$$

Thus it follows from (3.5) that if $a<0$, then

$$
\begin{equation*}
F_{a}(1-t)-F_{a}(s)>0 \tag{3.6}
\end{equation*}
$$

for $s \in[-1+t, 1-t]$. Define

$$
\bar{u}_{\varepsilon}(r):= \begin{cases}1-\eta & r \in\left[\bar{r}_{\varepsilon}, \bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon\right] \cup\left[t_{\varepsilon}, \tilde{t}_{\varepsilon}\right] \\ -u_{\varepsilon}(r) & r \in\left[\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon, t_{\varepsilon}\right]\end{cases}
$$

By the assumption that $\tilde{t}_{\varepsilon}<r_{1}$ and using (3.6), we see $F\left(r, u_{\varepsilon}\right)<F\left(r, \bar{u}_{\varepsilon}\right)$ if $r \in\left[\bar{r}_{\varepsilon}, \tilde{t}_{\varepsilon}\right]$. Hence, we obtain

$$
J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right)<J_{\varepsilon}\left(u_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right)
$$

Thus we obtain a contradiction. Therefore we have that $\tilde{t}_{\varepsilon} \geq r_{1}$.
Since $a(r) \geq 0$ for $r \in\left[r_{1}, 1\right]$, we see $F(r, t) \leq F(r,-1)=0$ if $r \in\left[r_{1}, 1\right]$. Since $u_{\varepsilon}(r) \in(-1,-1+\eta)$ for $r \in\left[\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon, t_{\varepsilon}\right]$, we have

$$
\begin{align*}
m_{\varepsilon, \bar{r}_{\varepsilon}, \tilde{r}_{\varepsilon}}= & J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right)+J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \backslash \overline{B_{t_{\varepsilon}}(0)}\right) \\
& +J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{t_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0)}\right)+J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{r}_{\varepsilon}}(0) \backslash \overline{B_{\tilde{t}_{\varepsilon}}(0)}\right) \\
\geq & \omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1} \beta_{h(\bar{r})} \varepsilon+t_{\varepsilon}^{N-1} \beta_{h(\bar{t})} \varepsilon\right)+O(\eta \varepsilon)+o(\varepsilon) \\
& +\inf \left\{-\int_{B_{t_{\varepsilon}}(0) \backslash B_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0)} F(r, w):-1 \leq w \leq 1+\eta\right\} \tag{3.7}\\
& +\inf \left\{-\int_{B_{\tilde{r}_{\varepsilon}}(0) \backslash B_{\tilde{t}_{\varepsilon}}(0)} F(r, w):-1 \leq w \leq 1\right\} \\
\geq & \omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1} \beta_{h(\bar{r})} \varepsilon+t_{\varepsilon}^{N-1} \beta_{h(\bar{t})} \varepsilon\right)+O(\eta \varepsilon)+o(\varepsilon)
\end{align*}
$$

Now we give an upper bound for $m_{\varepsilon, \bar{r}_{\varepsilon}, \tilde{r}_{\varepsilon}}$. Let $R>0$ be such that $V(h(\bar{r}) R)=\eta$, where V is a unique solution to (3.2). Define \bar{u}_{ε} by

$$
\bar{u}_{\varepsilon}(r):= \begin{cases}V\left(h(\bar{r}) \frac{r-\bar{r}_{\varepsilon}}{\varepsilon}\right) & r \in\left[\bar{r}_{\varepsilon}, \bar{r}_{\varepsilon}+\varepsilon R\right] \tag{3.8}\\ -1+\eta-\frac{\eta}{\varepsilon}\left(r-\bar{r}_{\varepsilon}-\varepsilon R\right) & r \in\left[\bar{r}_{\varepsilon}+\varepsilon R, \bar{r}_{\varepsilon}+\varepsilon R+\varepsilon\right] \\ -1 & r \in\left[\bar{r}_{\varepsilon}+\varepsilon R+\varepsilon, \tilde{r}_{\varepsilon}-\varepsilon\right] \\ -1+\frac{\eta}{\varepsilon}\left(r-\tilde{r}_{\varepsilon}+\varepsilon\right) & r \in\left[\tilde{r}_{\varepsilon}-\varepsilon, \tilde{r}_{\varepsilon}\right]\end{cases}
$$

Now we note that $|F(r, t)|=O(\eta)$ for $r \in\left[\bar{r}_{\varepsilon}, \tilde{r}_{\varepsilon}\right]$ and $-1 \leq t \leq-1+\eta$. Then we have

$$
\begin{align*}
m_{\varepsilon, \bar{r}_{\varepsilon}, \tilde{r}_{\varepsilon}} \leq & J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{r}_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right) \\
\leq & J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\bar{r}_{\varepsilon}+R \varepsilon}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right)+J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{r}_{\varepsilon}}(0) \backslash \overline{B_{\tilde{r}_{\varepsilon}-\varepsilon}(0)}\right) \\
& +J_{\varepsilon}\left(\bar{u}_{\varepsilon}, B_{\tilde{r}_{\varepsilon}-\varepsilon}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}+\varepsilon R}(0)}\right) \tag{3.9}\\
\leq & \omega_{N-1} \bar{r}_{\varepsilon}^{N-1}\left(\beta_{h(\bar{r})}+O(\eta)\right) \varepsilon+o(\varepsilon)+O(\varepsilon \eta)+o(\varepsilon) \\
= & \omega_{N-1} \bar{r}_{\varepsilon}^{N-1} \beta_{h(\bar{r})}+O(\eta \varepsilon)+o(\varepsilon)
\end{align*}
$$

By 3.7 and 3.9, we have

$$
\omega_{N-1}\left(\bar{r}_{\varepsilon}^{N-1} \beta_{h(\bar{r})}+t_{\varepsilon}^{N-1} \beta_{h(\bar{t})}\right) \varepsilon \leq \omega_{N-1} \bar{r}_{\varepsilon}^{N-1} \beta_{h(\bar{r})} \varepsilon+O(\varepsilon \eta)+o(\varepsilon)
$$

This is a contradiction. So we can conclude $\tilde{r}_{\varepsilon}=\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}$.

Part 3. It remains to prove that if $\bar{r}_{\varepsilon_{j}} \rightarrow \bar{r}$ for some positive sequence $\left\{\varepsilon_{j}\right\}$ converging to zero as $j \rightarrow \infty$ then \bar{r} satisfies

$$
\bar{r}^{N-1} h(\bar{r})=\min _{s \in\left[r_{1}, r_{2}\right]} s^{N-1} h(s)
$$

Step 3.1. First we note that from Part 1, the function u_{ε} satisfies $-1 \leq u_{\varepsilon} \leq-1+\eta$ for $r \in\left[\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}, 1\right]$ in this case.
Step 3.2. Set $H(s)=s^{N-1} h(s)$. Assume that the result is not true. Then there exists a subsequence of $\left\{\bar{r}_{\varepsilon}\right\}$ (denoted by \bar{r}_{ε}) such that $\bar{r}_{\varepsilon} \rightarrow r^{\prime} \in\left[r_{1}, r_{2}\right]$ and $H\left(r^{\prime}\right)>\min _{s \in\left[r_{1}, r_{2}\right]} H(s)$. Then we can find a point $\bar{t} \in\left(r_{1}, r_{2}\right)$ such that $H\left(r^{\prime}\right)>H(\bar{t})$.

Now we give a lower estimate for $J_{\varepsilon}\left(u_{\varepsilon}\right)$. We have

$$
\begin{equation*}
J_{\varepsilon}\left(u_{\varepsilon}\right)=J_{\varepsilon}\left(u_{\varepsilon}, B_{\bar{r}_{\varepsilon}}(0)\right)+J_{\varepsilon}\left(u_{\varepsilon}, B_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right)+J_{\varepsilon}\left(u_{\varepsilon}, B_{1}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon}(0)}\right) . \tag{3.10}
\end{equation*}
$$

First we note that $1-\eta \leq u_{\varepsilon}(r) \leq 1$ for $r \leq \bar{r}_{\varepsilon}$ and for sufficiently small $\eta>0$, $-F(r, u) \geq-F(r, 1)(u \in[1-\eta, 1])$. We also remark that since $a(r)<0$ for $r<r_{1}$ and $a(r)=0$ for $r_{1} \leq r \leq r_{2}$ and $a(r)>0$ for $r>r_{2}$, we have $-F(r, 1)<0$ for $r<r_{1}$ and $-F(r, 1)=0$ for $r_{1} \leq r \leq r_{2}$ and $-F(r, 1)>0$ for $r>r_{2}$. Hence we have $-\int_{r_{1}}^{\bar{r}_{\varepsilon}} r^{N-1} F(r, 1) d r \geq 0$ and we obtain the estimate

$$
\begin{align*}
J_{\varepsilon}\left(u_{\varepsilon}, B_{\bar{r}_{\varepsilon}}(0)\right) & \geq-\int_{0}^{\bar{r}_{\varepsilon}} r^{N-1} F\left(r, u_{\varepsilon}\right) d r \\
& \geq-\int_{0}^{\bar{r}_{\varepsilon}} r^{N-1} F(r, 1) d r \tag{3.11}\\
& =-\int_{0}^{r_{1}} r^{N-1} F(r, 1) d r-\int_{r_{1}}^{\bar{r}_{\varepsilon}} r^{N-1} F(r, 1) d r \\
& \geq-\int_{0}^{r_{1}} r^{N-1} F(r, 1) d r=: A .
\end{align*}
$$

Using methods similar to those in the proof of (3.3), we obtain

$$
\begin{equation*}
J_{\varepsilon}\left(u_{\varepsilon}, B_{\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon}(0) \backslash \overline{B_{\bar{r}_{\varepsilon}}(0)}\right) \geq \omega_{N-1} H\left(r^{\prime}\right) \beta_{1} \varepsilon+O(\eta \varepsilon)+o(\varepsilon) . \tag{3.12}
\end{equation*}
$$

Since $-1 \leq u_{\varepsilon}(r) \leq-1+\eta$ for $r \geq \bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}$ and for sufficiently small $\eta>0$, $-F(r, u) \geq-F(r,-1)=0(u \in[-1,-1+\eta])$, we obtain the estimate

$$
\begin{align*}
J_{\varepsilon}\left(u_{\varepsilon}, B_{1}(0) \backslash B_{\bar{r}_{\varepsilon}+R_{\varepsilon} \varepsilon}(0)\right) & \geq-\int_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}^{1} r^{N-1} F\left(r, u_{\varepsilon}\right) d r \\
& \geq-\int_{\bar{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}^{1} r^{N-1} F(r,-1) d r=0 \tag{3.13}
\end{align*}
$$

Thus we obtain

$$
\begin{equation*}
J\left(u_{\varepsilon}\right) \geq A+\omega_{N-1} H\left(r^{\prime}\right) \beta_{1} \varepsilon+O(\eta \varepsilon)+o(\varepsilon) \tag{3.14}
\end{equation*}
$$

Next we give an upper bound for $J_{\varepsilon}\left(u_{\varepsilon}\right)$. Consider the function

$$
\bar{w}_{\varepsilon}(r):= \begin{cases}1 & r \in[0, \bar{t}-\varepsilon] \\ 1-\frac{\eta}{\varepsilon}(r-\bar{t}+\varepsilon) & r \in[\bar{t}-\varepsilon, \bar{t}] \\ V\left(h(\bar{t}) \frac{r-\bar{t}}{\varepsilon}\right) & r \in\left[\bar{t}, \bar{t}+\varepsilon R^{\prime}\right] \\ -1-\frac{\eta}{\varepsilon}\left(r-\bar{t}-\varepsilon R^{\prime}-\varepsilon\right) & r \in\left[\bar{t}+\varepsilon R^{\prime}, \bar{t}+\varepsilon R^{\prime}+\varepsilon\right] \\ -1 & r \in\left[\bar{t}+\varepsilon R^{\prime}+\varepsilon, 1\right]\end{cases}
$$

where $R^{\prime}>0$ is the number satisfying $V\left(h(\bar{t}) R^{\prime}\right)=-1+\eta$. Then

$$
\begin{equation*}
J_{\varepsilon}\left(u_{\varepsilon}\right) \leq J_{\varepsilon}\left(\bar{w}_{\varepsilon}\right) \leq A+\omega_{N-1} H(\bar{t}) \beta_{1} \varepsilon+O(\eta \varepsilon)+o(\varepsilon) \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15) we have a contradiction. The proof of Theorem 1.1 is complete. The more complicate case, can be shown by a similar method (see Remark below).

Remark. We briefly show the more complicate case, that is, when a is the function as in Figure 2. More precisely we set $I_{1}:=\left[r_{1}, r_{2}\right]$ and $I_{2}:=\left[r_{3}, r_{4}\right]$ and we assume $a>0$ on $\left[0, r_{1}\right) \cup\left(r_{4}, 1\right]$ and $a<0$ on $\left(r_{3}, r_{4}\right)$.

Figure 2. Special case of coefficient $a(t)$
Let $\eta>0$ and $\theta>0$ be small numbers. As in Part 1, we can find pairs of numbers $\left(\bar{r}_{1, \varepsilon}, \bar{r}_{2, \varepsilon}\right)$ and $\left(R_{1, \varepsilon}, R_{\varepsilon, 2}\right)$ satisfying $\bar{r}_{1, \varepsilon} \in\left(r_{1}-\theta, r_{2}+\theta\right), \bar{r}_{2, \varepsilon} \in\left(r_{3}-\theta, r_{4}+\theta\right)$,
$\sup _{\varepsilon}\left|R_{1, \varepsilon}\right|<\infty, \sup _{\varepsilon}\left|R_{2, \varepsilon}\right|<\infty$ and

$$
\begin{gathered}
u_{\varepsilon}(r)<-1+\eta \text { for } 0<r<\bar{r}_{1, \varepsilon} \\
u_{\varepsilon}\left(\bar{r}_{1, \varepsilon}\right)=-1+\eta \\
u_{\varepsilon}\left(\bar{r}_{1, \varepsilon}+\varepsilon R_{1, \varepsilon}\right)=1-\eta \\
u_{\varepsilon}(r)>1-\eta \text { for } \bar{r}_{1, \varepsilon}+\varepsilon R_{1, \varepsilon}<r<\bar{r}_{2, \varepsilon} \\
u_{\varepsilon}\left(\bar{r}_{2, \varepsilon}\right)=1-\eta \\
u_{\varepsilon}\left(\bar{r}_{2, \varepsilon}+\varepsilon R_{2, \varepsilon}\right)=-1+\eta \\
u_{\varepsilon}(r)<-1+\eta \text { for } \bar{r}_{2, \varepsilon}+\varepsilon R_{2, \varepsilon}<r<1
\end{gathered}
$$

We assume that $\bar{r}_{1, \varepsilon_{j}} \rightarrow \bar{r}_{1} \in I_{1}$ and that $\bar{r}_{2, \varepsilon_{j}} \rightarrow \bar{r}_{2} \in I_{2}$ for some sequence $\left\{\varepsilon_{j}\right\}$ which converges to 0 as $j \rightarrow \infty$. In this case it is easy to show that the energy of global minimizer $J\left(u_{\varepsilon}\right)$ is estimated as follows

$$
\begin{equation*}
J_{\varepsilon_{j}}\left(u_{\varepsilon_{j}}\right) \geq J_{\varepsilon_{j}}\left(u_{\varepsilon_{j}}, B_{r_{2}-\varepsilon}(0)\right)+\varepsilon_{j} \omega_{N-1} H\left(\bar{r}_{2}\right) \beta_{1}+B+O\left(\varepsilon_{j} \eta\right)+o\left(\varepsilon_{j}\right) \tag{3.16}
\end{equation*}
$$

where $B=-\int_{r_{2}}^{r_{3}} r^{N-1} F(r, 1) d r$.
Let us assume the result does not hold. Then $H\left(\bar{r}_{1}\right)>\min _{s \in I_{1}} H(s)$ or $H\left(\bar{r}_{2}\right)>$ $\min _{s \in I_{2}}$ hold. We assume $H\left(\bar{r}_{1}\right)=\min _{s \in I_{1}}$ and $H\left(\bar{r}_{2}\right)>\min _{s \in I_{2}} H(s)$. We also assume $r_{1}=\bar{r}_{1}$. We note that if $H\left(\bar{r}_{1}\right)>\min _{s \in I_{1}} H(s)$ or $\bar{r}_{1} \in \operatorname{int} I_{1}$, the proof is more easy.

Let we take $\tilde{r}_{2} \in \operatorname{int} I_{2}$ such that $H\left(\bar{r}_{2}\right)>H\left(\tilde{r}_{2}\right)>\min _{s \in I_{2}} H(s)$ and consider the function

$$
\tilde{u}_{\varepsilon}(r):=\left\{\begin{array}{l}
u_{\varepsilon}(r) \quad \text { on }\left[0, r_{2}-\varepsilon\right) \\
1+\frac{\eta}{\varepsilon}\left(r-r_{2}\right) \quad \text { on }\left[r_{2}-\varepsilon, r_{2}\right] \\
1 \quad \text { on }\left[r_{2}, \tilde{r}_{2}-\varepsilon\right] \\
1-\frac{\eta}{\varepsilon}\left(r-\tilde{r}_{2}+\varepsilon\right) \quad \text { on }\left[\tilde{r}_{2}-\varepsilon, \tilde{r}_{2}\right] \\
V\left(h\left(\tilde{r}_{2}\right) \frac{r-\tilde{r}_{2}}{\varepsilon}\right) \quad \text { on }\left[\tilde{r}_{2}, \tilde{r}_{2}+\varepsilon R^{\prime \prime}\right] \\
-1-\frac{\eta}{\varepsilon}\left(r-\tilde{r}_{2}-\varepsilon R^{\prime \prime}-\varepsilon\right) \quad \text { on }\left[\tilde{r}_{2}+\varepsilon R^{\prime \prime}, \tilde{r}_{2}+\varepsilon R^{\prime \prime}+\varepsilon\right] \\
-1 \quad \text { on }\left[\tilde{r}_{2}+\varepsilon R^{\prime \prime}+\varepsilon, 1\right],
\end{array}\right.
$$

where V is the unique solution of 3.2 and $R^{\prime \prime}$ is the unique value such that $V\left(h\left(r_{1}\right) R^{\prime \prime}\right)=-1+\eta$.

Since u_{ε} is global minimizer, we can estimate the energy of $J_{\varepsilon}\left(\tilde{u}_{\varepsilon}\right)$ as follows

$$
\begin{equation*}
J_{\varepsilon}\left(u_{\varepsilon}\right) \leq J_{\varepsilon}\left(\tilde{u}_{\varepsilon}\right) \leq J_{\varepsilon}\left(u_{\varepsilon}, B_{r_{2}-\varepsilon}(0)\right)+\varepsilon \omega_{N-1} H\left(\tilde{r}_{2}\right) \beta_{1}+B+O(\varepsilon \eta)+o(\varepsilon) \tag{3.17}
\end{equation*}
$$

Then we have a contradiction from (3.16) and (3.17) by taking $\varepsilon=\varepsilon_{j}$ and sufficiently large j.

Acknowledgments. The author would like to thank Professor Kazuhiro Kurata for his valuable advice and help, also to the anonymous referee for the numerous and useful comments.

References

[1] S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations, 67 (1987), 212-242.
[2] Ph. Clément and L. A. Peletier, On a nonlinear eigenvalue problem occurring in population genetics, Proc. Royal Soc. Edinburg, 100A(1985), 85-101.
[3] Ph. Clément abd G. Sweers, Existence of multiplicity results for a semilinear eigenvalue problem, Ann. Scuola Norm. Sup. Pisa, 14(1987), 97-121
[4] E. N. Dancer, S. Yan, Construction of various type of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations 20(2004), 93-118.
[5] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, second edition 1983.
[6] H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis 58 (2004), 45-67.
[7] A. S. do. Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N-dimensional domains, J. Differential Equations, 190 (2003), 16-38.
[8] K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, 191 (2003), 234-276.
[9] K. Nakashima, K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 107-143.

Hiroshi Matsuzawa
Numazu National College of Technology, Ooka 3600, Numazu-city, Shizuoka 410-8501, Japan

E-mail address: hmatsu@numazu-ct.ac.jp

[^0]: 2000 Mathematics Subject Classification. 35B40, 35J25, 35J55, 35J50, 35K57.
 Key words and phrases. Transition layer; Allen-Cahn equation; bistable equation; unbalanced. (C) 2006 Texas State University - San Marcos.

 Submitted August 31, 2005. Published January 11, 2006.

