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BOUNDEDNESS OF SOLUTIONS TO FOURTH ORDER
DIFFERENTIAL EQUATIONS WITH OSCILLATORY

RESTORING AND FORCING TERMS

BABATUNDE S. OGUNDARE

Abstract. This article concerns the fourth order differential equation

x(iv) + ax′′′ + bx′′ + g(x′) + h(x) = p(t).

Using the Cauchy formula for the particular solution of non-homogeneous lin-
ear differential equations with constant coefficients, we prove that the solution

and its derivatives up to order three are bounded.

1. Introduction

In this article, we study the boundedness of solutions to the fourth-order non-
linear differential equation

x(iv) + ax′′′ + bx′′ + g(x′) + h(x) = p(t) (1.1)

where a > 0 and b > 0 are positive constants with a2 > 4b, g, h, and p and their
first derivatives are continuous functions depending on the arguments shown. In
addition, h and p are oscillatory.

Several authors have investigated the boundedness of solutions of certain differ-
ential equations of the fourth order. We can mention in this direction, the works of
Afuwape and Adesina [1] where the frequency-domain approach was used. Other
articles in this connection include Tiryaki and Tunc [10], Tunc [11, 12, 13], Tunc
and Tiryaki [14] where the second Lyapunov method was used. All these results
generalize in one way or another some results on third order nonlinear differential
equations see for instance [2, 3, 4, 5, 6, 7, 8, 9].

The present work was motivated by a relatively recent paper of Andres [2], where
the existence of a bounded solution for a third order non-linear differential equation
with oscillatory restoring and forcing terms was proved. We shall use the Cauchy
formula for the particular solution of non homogeneous linear part of the equation
(1.1), to prove that the solution x(t) and its derivatives x′(t), x′′(t) and x′′′(t) are
bounded.
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2. Assumptions and Main Result

The basic assumptions on the functions which appear in (1.1) are the following:
(i) h and p are oscillatory in the following sense: For each argument there exist

such numbers β1 > α1 > u > β−1 > α−1 that for f(α1) < 0, f(β1) > 0,
f(α−1) < 0, f(β−1) > 0 where f is either h(x) or p(t), u is either x or t and
all the roots of the restoring term h(x) are isolated.

(ii) (a) |h(x)| ≤ H, (b) |h′(x)| ≤ H ′;
(iii) (a) |g(x′)| < cx′ ≤ G, (b) |g′(x′)| ≤ G′;
(iv) (a) |p(t)| ≤ P , (b) |p′(t)| ≤ P ′, (c) |

∫ t

0
P (τ)dτ | ≤ P0,

(d) lim supt→∞|P (t)| > 0.
The main result of this paper is as follows.

Theorem 2.1. Assume there exist positive constants H,H ′, G,G′, P, P ′, P0, R such
that for |x| > R and t > 0 the conditions (ii) and (iii) hold. If in addition,

min[d(xk, xk+1), d(xk, xk−1)] > 2
G + H + P

b

(2
a

+
a

b

)
+

P0

b
,

where xk are roots of h(x), h′(xk) > 0 and xk−1, xk+1 denote the couple adjacent
roots of xk(k = 0,±2,±4, . . . ); then all solutions x(t) of equation (1.1) are bounded
and for each of them there exists a root x of h(x) such that (x(t)− x) oscillates.

3. Preliminary Results

To prove our main result, we shall need the following result.

Lemma 3.1. If there exist positive constants, H,G,P such that for all x ∈ <1 and
t ≥ 0 the assumptions (ii)(a), (iii)(a) and (iv)(a) hold, then each solution x(t) of
(1.1) satisfies the inequalities

lim sup
t→∞

|x′(t)| ≤ G

c
:= D′, (3.1)

lim sup
t→∞

|x′′(t)| ≤ H + G + P

b
:= D′′, (3.2)

lim sup
t→∞

|x′′′(t)| ≤ 2(H + G + P )
a

:= D′′′. (3.3)

Proof. Let z = x′′ then the equation (1.1) reduces to

z′′ + az′ + bz = P (t)− g(x′(t))− h(x). (3.4)

Equation (3.4) can also be rewritten as

z′′ + az′ + bz = B, (3.5)

where B = P (t)− g(x′(t))− h(x). Thus the general solution of the equation (3.5)
satisfies

|x′′(t)| = |z(t)| = C1e
a1t + C2e

a2t +
∫ t

0

ea1τ − ea2τ

a1 − a2
(B)dτ,

where a1,2 =
(
− a ±

√
a2 − 4b

)
/2 and constants C1 and C2 are arbitrary. Hence

by the virtue of assumptions (i)-(iv) for t ≥ 0, we have not only∣∣ ∫ t

0

ea1τ − ea2τ

a1 − a2
[P (t)− g(x′(t))− h(x)]dτ

∣∣ ≤ H + G + P

b
(1 +

a2e
a1t − a1e

a2t

a1 − a2
),
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but also

lim sup
t→∞

|x′′(t)| ≤ H + G + P

b
=: D′′.

Furthermore on substituting w = z′ in (3.4), we have

w′ + aw = P (t)− bx′′(t)− g(x′(t))− h(x).

Following the same argument used in obtaining the general solution for the equation
(3.5), we have

|x′′′(t)| = |w(t)| = Ce−at +
∫ t

0

e−aτ [P (t)− bx′′(t)− g(x′(t))− h(x)]dτ,

and by assumptions (i)-(iii) for t ≥ Tx, we have not only

|
∫ t

0

e−aτ [P (t)− bx′′(t)− g(x′(t))− h(x)]dτ | ≤ 2
H + G + P

a

∫ t

0

e−aτdτ

≤ 2
H + G + P

a
(1− e−a(t−Tx)),

but also

lim sup
t→∞

|x′′′(t)| ≤ 2
H + G + P

a
=: D′′′.

To establish the inequality (3.1), we use the assumption (iii)(a); i.e., given that
|g(x′)| < cx′ ≤ G, we have

|cx′(t)| ≤ c|x′(t)| ≤ G;

i.e., |x′(t)| ≤ G/c. Hence

lim sup
t→∞

|x′(t)| ≤ G

c
:= D′.

This completes the proof of the lemma 3.1. �

Lemma 3.2. Under the assumptions of Lemma 3.1. If (ii)(b) and (v)(d) hold for
x ∈ <1, then every solution x(t) of (1.1) either satisfies the relation

lim
t→∞

x(t) = x, lim
t→∞

x′(t) = lim
t→∞

x′′(t) = lim
t→∞

x′′′(t) = 0 (h(x) = 0, ) (3.6)

or there exists a root x of h(x) such that (x(t)− x) oscillates.

Proof. Substituting a fixed bounded solution x(t) of (1.1) into itself and integrating
the result from Tx to t, we have∫ t

Tx

h(x(τ)dτ

= −{b[x′(t)− x′(Tx)] + a[x′′(t)− x′′(Tx)] +
∫ t

Tx

g(x′(τ))dτ}+
∫ t

Tx

P (τ)dτ.

(3.7)

By condition (iii)(a), we have that∫ t

Tx

h(x(τ)dτ

< −{b[x′(t)− x′(Tx)] + a[x′′(t)− x′′(Tx)] + c[x(t)− x(Tx)]}+
∫ t

Tx

P (τ)dτ.

(3.8)
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Define I(t) ≡
∫ t

Tx
P (τ))dτ . By the virtue of the above condition, the assertion of

the Lemma 3.1 and the boundedness of x(t), there exists a constant Mx such that
for t ≥ Tx,

|I(t)| ≤ Mx;

i.e., ∣∣ ∫ t

Tx

h(x(τ))dτ
∣∣ ≤ |I(t)| ≤ Mx. (3.9)

Now let us assume that x(t) does not converge to any root x of h(x); i.e.,

lim sup
t→∞

|x(t)− x| > 0 (3.10)

and simultaneously, for t ≥ Tx,

h(x(t)) ≥ 0 or h(t) ≤ 0. (3.11)

Then

H(t) :≡
∫ t

Tx

h(x(τ))dτ

for t ≥ Tx which is a composed monotone function with a finite or infinite limit for
t →∞. Since (3.9) implies that divergent case can be disregarded, it follows from
(3.10) that not only

lim
t→∞

∫ t

Tx

|h(x(τ))|dτ = lim
t→∞

|
∫ t

Tx

|h(x(τ))|dτ | ≤ Mx, (3.12)

but also
lim

t→∞
|x(t)− x| = 0 . (3.13)

Otherwise (i.e., if lim supt→∞|x(t)−x| > 0) the inequality (3.10) together with the
fact that the roots of h(x) are isolated yields

lim inf
t→∞

|h(x(t))| = lim inf
t→∞

|h(x(t))− h(x)| > 0

which is a contradiction to (3.12). Thus (3.9) and (3.11) imply

lim sup
t→∞

|h(x(t))| = lim sup
t→∞

|h(x(t))− h(x)| > 0 = lim inf
t→∞

|h(x(t))|.

In what follows, d(x, y) denotes the distance between x and y. Consequently, there
exists such a sequence ti ≥ Tx and a constant H̃ > 0, such that

lim inf
t→∞⇒ti→∞

d(ti, ti−1) > 0, |h(x(ti)| ≥ H̃,

and such that

Mx ≥ lim
t→∞

∫ ti

ti−1

|h(x(τ))|dτ =
∞∑

i=2

∫ ti

ti−1

|h(x(τ))|dτ

implies

lim
t→∞⇒ti→∞

∫ ti

ti−1

|h(x(τ))|dτ = 0,

or

H ′ lim sup
t→∞

|x′(t)| ≥ lim
t→∞

|dh(x(t))
dx(t)

x′(t)| = lim sup
t→∞

|dh(t)
dt

| = ∞.
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According to the assertion of the Lemma 3.1, this is impossible and that is why
(x(t)− x) necessarily oscillates. The remaining part of the lemma follows from the
assertion

x(t) ∈ Cn[0,∞), lim
t→∞

|xn(t)| < ∞, (3.14)

limt→∞|x(t)| < ∞ implies limt→∞ xk(t) = 0, where n ≥ 2 is a natural numbers and
k = 1, . . . (n− 1). This completes the proof. �

Lemma 3.3. Under the assumptions of the Lemma 3.2, suppose that (iv)(b) holds
for all t ≥ 0, and lim supt→∞|p(t)| > 0 hold, where P ′ is a suitable constant, then
for every bounded solution x(t) of (1.1) there exists a root x of h(x) such that
(x(t)− x) oscillates.

Proof. If Lemma 3.3 does not hold, then according to Lemma 3.2, equations (3.6)
hold and the fifth derivative of x(t) satisfies

xv(t) = p′(t)− ax
iv

(t)− bx′′′(t)− g′(x′(t))x′′(t)− h′(x(t))x′(t).

But by the ultimate boundedness of x′(t), x′′(t), x′′′(t) and xiv(t), there exists a
constant D5 such that

lim sup
t→∞

|xv(t)| ≤ D5

which according to (3.14) gives the relations

lim
t→∞

x(t) = x ⇒ lim
t→∞

h(x(t)) = h(x) = 0, lim
t→∞

xj(t) = 0,

j = 1, 2, 3, or

lim sup
t→∞

|p(t)| =
∣∣xiv(t) + ax′′′(t) + bx′′(t) + g(x′(t)) + h(x(t))

∣∣ = 0,

which is a contradiction to lim supt→∞ |p(t)| > 0. �

Proof of Theorem 2.1. Let us assume on the contrary, that x(t) is an unbounded
solution of (1.1); i.e., lim supt→∞ x(t) = ∞. It will follow from Lemma 3.1 that
there exists a number T0 ≥ 0 large enough such that for t ≥ T0,

|x′(t)| ≤ D′ + ε1,

|x′′(t)| ≤ D′′ + ε2

|x′′′(t)| ≤ D′′′ + ε3

with εi > 0, (i = 1, 2, 3) small enough constants. Let T1 ≥ T0 be the last point with
x(T1) = xk, (k even) and T2 > T1 be the first point with x(T2) = xk+1. Integrating
(1.1) from T1 to t, T1 ≤ t ≤ T2, we have

[x′′′(t)− x′′′(T1)] + a[x′′(t)− x′′(T1)] + b[x′(t)− x′(T1)]

+
∫ t

T1

g(x′(τ))dτ +
∫ t

T1

h(τ)dτ

=
∫ t

T1

P (τ)dτ.

(3.15)

However, on replacing
∫ t

T1
g(x′(τ))dτ with c[x(t)− x(T1)], for T1 ≤ t ≤ T2, we have

h(x(t))sgnx(t) ≥ 0. Multiplying (3.15) by sgn x, we obtain

|x(t)| ≤ |x(T1)|+
1
c
[D′′′ + aD′′ + bD′ + P0] + ε,
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where c > 0 and ε > 0 is arbitrary small constant, a contradiction to x(T2) = xk+1

with respect to condition (ii) of Theorem 2.1. The remaining part of the proof
follows from the Lemma 3.3. �
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