Electronic Journal of Differential Equations, Vol. 2006(2006), No. 07, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO A SELF-REFERRED AND HEREDITARY SYSTEM OF DIFFERENTIAL EQUATIONS

EDUARDO PASCALI

$$
\begin{aligned}
& \text { Abstract. We establish the existence and uniqueness of a local solution for } \\
& \text { the system of differential equations } \\
& \qquad \frac{\partial}{\partial t} u(x, t)=u\left(v\left(\int_{0}^{t} u(x, s) d s, t\right), t\right) \\
& \frac{\partial}{\partial t} v(x, t)=v\left(u\left(\int_{0}^{t} v(x, s) d s, t\right), t\right) . \\
& \text { with given initial conditions } u(x, 0)=u_{0}(x) \text { and } v(x, 0)=v_{0}(x) .
\end{aligned}
$$

1. Introduction

Equations representing self-reference phenomena have been written of the form

$$
\begin{equation*}
A u(x, t)=u(B u(x, t), t) \tag{1.1}
\end{equation*}
$$

where A, B are functionals on a real function space. The existence and uniqueness of solutions to this equation have been studied by several authors. The particular case when the variable x does not appear explicitly was studied in [1, 2, 3]. More general cases have been studien in [4, 5, 6]. In [4],

$$
A u(x, t)=\frac{\partial}{\partial t} u(x, t) \quad \text { and } \quad B u(x, t)=\int_{0}^{t} u(x, s) d s
$$

where B can be interpreted as a "memory" functional. In [6], we have considered the equation

$$
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=k_{1} u\left(\frac{\partial^{2}}{\partial t^{2}} u(x, t)+k_{2} u(x, t), t\right)
$$

where k_{i} are nonnegative real numbers, or bounded regular real functions. In this paper we establish the existence and uniqueness of local solutions for the system of functional differential equations

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & =u\left(v\left(\int_{0}^{t} u(x, s) d s, t\right), t\right) \\
\frac{\partial}{\partial t} v(x, t) & =v\left(u\left(\int_{0}^{t} v(x, s) d s, t\right), t\right)
\end{aligned}
$$

[^0]This system can be considered a model for the evolution of two reasonings, as follows: If x is an event, t is the time, and $u(x, t), v(x, t)$ are two reasonings about x at time t, then the term $v\left(\int_{0}^{t} u(x, s) d s, t\right)$ can be considered as a "criticism" of v over all previous reasonings of u on x, up to time t.

2. The main result

In this section we prove the following theorem.

Theorem 2.1. Let $u_{0}, v_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be bounded and Lipschitz continuous. Then, there exist $T_{0}>0$ and two real bounded and Lipschitz continuous functions u_{∞}, v_{∞} : $\mathbb{R} \times\left[0, T_{0}\right] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{\infty}(x, t) & =u_{\infty}\left(v_{\infty}\left(\int_{0}^{t} u_{\infty}(x, \tau) d \tau, t\right), t\right) \\
\frac{\partial}{\partial t} v_{\infty}(x, t) & =v_{\infty}\left(u_{\infty}\left(\int_{0}^{t} v_{\infty}(x, \tau) d \tau, t\right), t\right) \\
u_{\infty}(x, 0) & =u_{0}(x), \quad v_{\infty}(x, 0)=v_{0}(x)
\end{aligned}
$$

for all $x \in \mathbb{R}$ and all $t \in\left[0, T_{0}\right]$. Moreover the functions u_{∞}, v_{∞} are unique.
Proof. Let u_{0}, v_{0} be given, and let $L_{0}, M_{0}>0$ be such that

$$
\left|u_{0}(x)-u_{0}(y)\right| \leq L_{0}|x-y|, \quad\left|v_{0}(x)-v_{0}(y)\right| \leq M_{0}|x-y|
$$

for all $x, y \in \mathbb{R}$. Define the sequences of functions $\left(u_{n}\right)_{n},\left(v_{n}\right)_{n}$, for all $x \in R$ and $t>0$, as follows:

$$
\begin{gathered}
u_{1}(x, t)=u_{0}(x)+\int_{0}^{t} u_{0}\left(v_{0}\left(u_{0}(x) \tau\right)\right) d \tau \\
v_{1}(x, t)=v_{0}(x)+\int_{0}^{t} v_{0}\left(u_{0}\left(v_{0}(x) \tau\right)\right) d \tau \\
u_{n+1}(x, t)=u_{0}(x)+\int_{0}^{t} u_{n}\left(v_{n}\left(\int_{0}^{\tau} u_{n}(x, s) d s, \tau\right), \tau\right) d \tau \\
v_{n+1}(x, t)=v_{0}(x)+\int_{0}^{t} v_{n}\left(u_{n}\left(\int_{0}^{\tau} v_{n}(x, s) d s, \tau\right), \tau\right) d \tau
\end{gathered}
$$

Notice that

$$
\begin{align*}
& \left|u_{1}(x, t)-u_{0}(x)\right| \leq\left\|u_{0}\right\|_{\infty} t \equiv A_{1}(t) \tag{2.1}\\
& \left|v_{1}(x, t)-v_{0}(x)\right| \leq\left\|v_{0}\right\|_{\infty} t \equiv B_{1}(t) \tag{2.2}
\end{align*}
$$

for all $x \in \mathbb{R}, t>0$. Moreover, using (2.1), 2.2 we have

$$
\begin{aligned}
&\left|u_{2}(x, t)-u_{1}(x, t)\right| \\
& \leq\left|\int_{0}^{t} u_{1}\left(v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right) \tau\right) d \tau-\int_{0}^{t} u_{0}\left(v_{0}\left(u_{0}(x) \tau\right)\right) d \tau\right| \\
& \leq\left|\int_{0}^{t} u_{1}\left(v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right) \tau\right) d \tau-\int_{0}^{t} u_{0}\left(v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right)\right) d \tau\right| \\
&+\left|\int_{0}^{t} u_{0}\left(v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right)\right) d \tau-\int_{0}^{t} u_{0}\left(v_{0}\left(u_{0}(x) \tau\right)\right) d \tau\right| \\
& \leq \int_{0}^{t}\left\|u_{0}\right\|_{\infty} \tau d \tau+\int_{0}^{t} L_{0}\left|v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right)-v_{0}\left(u_{0}(x) \tau\right)\right| d \tau \\
& \leq \int_{0}^{t}\left\|u_{0}\right\|_{\infty} \tau d \tau+\int_{0}^{t} L_{0}\left[\left|v_{1}\left(\int_{0}^{\tau} u_{1}(x, s) d s, \tau\right)-v_{0}\left(\int_{0}^{\tau} u_{1}(x, s) d s\right)\right|\right. \\
&\left.+\left|v_{0}\left(\int_{0}^{\tau} u_{1}(x, s) d s\right)-v_{0}\left(u_{0}(x) \tau\right)\right|\right] d \tau \\
& \leq \int_{0}^{t}\left(\left\|u_{0}\right\|_{\infty} \tau+L_{0}\left[\left\|v_{0}\right\|_{\infty} \tau+M_{0} \int_{0}^{\tau}\left\|u_{0}\right\|_{\infty} s d s\right]\right) d \tau \\
&= \int_{0}^{t}\left(A_{1}(\tau)+L_{0}\left[B_{1}(\tau)+M_{0} \int_{0}^{\tau} A_{1}(s) d s\right]\right) d \tau
\end{aligned}
$$

for all $x \in \mathbb{R}$, and all $t>0$. In a similar way we prove

$$
\left|v_{2}(x, t)-v_{1}(x, t)\right| \leq \int_{0}^{t}\left(B_{1}(\tau)+M_{0}\left[A_{1}(\tau)+L_{0} \int_{0}^{\tau} B_{1}(s) d s\right]\right) d \tau
$$

for all $x \in \mathbb{R}$, and all $t>0$. We have also

$$
\begin{aligned}
\left|u_{1}(x, t)-u_{1}(y, t)\right| & \leq L_{0}|x-y|+\int_{0}^{t} L_{0}^{2} M_{0}|x-y| \tau d \tau \\
& =\left(L_{0}+\int_{0}^{t} L_{0}^{2} M_{0} \tau d \tau\right)|x-y| \equiv L_{1}(t)|x-y| \\
\left|v_{1}(x, t)-v_{1}(y, t)\right| & \leq M_{0}|x-y|+\int_{0}^{t} L_{0} M_{0}^{2}|x-y| \tau d \tau \\
& =\left(M_{0}+\int_{0}^{t} L_{0} M_{0}^{2} \tau d \tau\right)|x-y| \equiv M_{1}(t)|x-y|
\end{aligned}
$$

It is easy to prove the inequality

$$
\left|u_{2}(x, t)-u_{2}(y, t)\right| \leq\left[L_{0}+\int_{0}^{t} M_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} L_{1}(s) d s\right)^{2} d \tau\right]|x-y|
$$

Set now

$$
L_{2}(t) \equiv L_{0}+\int_{0}^{t} M_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} L_{1}(s) d s\right)^{2} d \tau
$$

Moreover, we remark that

$$
\left|v_{2}(x, t)-v_{2}(y, t)\right| \leq\left[M_{0}+\int_{0}^{t} L_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} M_{1}(s) d s\right)^{2} d \tau\right]|x-y|
$$

and set

$$
M_{2}(t) \equiv M_{0}+\int_{0}^{t} L_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} M_{1}(s) d s\right)^{2} d \tau
$$

We define for all n and $t>0$:

$$
\begin{aligned}
A_{n+1}(t) & =\int_{0}^{t}\left(A_{n}(\tau)+L_{n-1}(\tau)\left[B_{n}(\tau)+M_{n-1}(\tau) \int_{0}^{\tau} A_{n}(s) d s\right]\right) d \tau \\
B_{n+1}(t) & =\int_{0}^{t}\left(B_{n}(\tau)+M_{n-1}(\tau)\left[A_{n}(\tau)+L_{n-1}(\tau) \int_{0}^{\tau} B_{n}(s) d s\right]\right) d \tau \\
L_{n+1}(t) & =L_{0}+\int_{0}^{t} M_{n}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} L_{n}(s) d s\right)^{2} d \tau \\
M_{n+1}(t) & =M_{0}+\int_{0}^{t} L_{n}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} M_{n}(s) d s\right)^{2} d \tau
\end{aligned}
$$

By induction, it is easily to prove that for all $x \in \mathbb{R}, t>0$,

$$
\begin{array}{r}
\left|u_{n+1}(x, t)-u_{n}(x, t)\right| \leq A_{n+1}(t) \\
\left|v_{n+1}(x, t)-v_{n}(x, t)\right| \leq B_{n+1}(t) \tag{2.4}
\end{array}
$$

and, for all $x, y \in \mathbb{R}, t>0$,

$$
\begin{align*}
& \left|u_{n+1}(x, t)-u_{n+1}(y, t)\right| \leq L_{n+1}(t)|x-y| \tag{2.5}\\
& \left|v_{n+1}(x, t)-v_{n+1}(y, t)\right| \leq M_{n+1}(t)|x-y| \tag{2.6}
\end{align*}
$$

In a very simple way we can prove also that for all $x \in \mathbb{R}, t>0$,

$$
\begin{align*}
\left|u_{n+1}(x, t)\right| & \leq e^{t}\left\|u_{0}\right\|_{\infty} \tag{2.7}\\
\left|v_{n+1}(x, t)\right| & \leq e^{t}\left\|v_{0}\right\|_{\infty} \tag{2.8}
\end{align*}
$$

Since

$$
\begin{gathered}
0 \leq L_{1}(t)=L_{0}+M_{0} L_{0}^{2} t^{2} / 2 \\
0 \leq M_{1}(t)=M_{0}+L_{0} M_{0}^{2} t^{2} / 2
\end{gathered}
$$

we can choose $T_{0}>0$ and $h>0$ such that $2 h<1$ and for all $t \in\left[0, T_{0}\right]$:

$$
\begin{gathered}
L_{0}^{2} \frac{t^{2}}{2} \leq 1 \\
M_{0}^{2} \frac{t^{2}}{2} \leq 1, \\
\left(M_{0}+L_{0}\right)^{3} \frac{t^{2}}{2} \leq M_{0} \wedge L_{0} \\
0 \leq\left(M_{0}+L_{0}+1\right) t+\left(M_{0}+L_{0}\right)^{2} \frac{t^{2}}{2} \leq h .
\end{gathered}
$$

Then $0 \leq L_{1}(t), M_{1}(t) \leq M_{0}+L_{0} \equiv K_{0}$ for all $t \in\left[0, T_{0}\right]$.
From the previous definitions we deduce:

$$
\begin{aligned}
& 0 \leq L_{2}(t) \leq L_{0}+\int_{0}^{t} M_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} L_{1}(s) d s\right)^{2} d \tau \leq L_{0}+K_{0}^{3} \frac{t^{2}}{2} \\
& 0 \leq M_{2}(t) \leq M_{0}+\int_{0}^{t} L_{1}(\tau) \frac{1}{2} \frac{d}{d \tau}\left(\int_{0}^{\tau} M_{1}(s) d s\right)^{2} d \tau \leq M_{0}+K_{0}^{3} \frac{t^{2}}{2}
\end{aligned}
$$

Then we have

$$
0 \leq L_{2}(t), \quad M_{2}(t) \leq K_{0} \quad \forall t \in\left[0, T_{0}\right]
$$

and hence, by induction,

$$
\begin{equation*}
0 \leq L_{n}(t), \quad M_{n}(t) \leq M_{0}+L_{0} \equiv K_{0} \quad \forall t \in\left[0, T_{0}\right] \tag{2.9}
\end{equation*}
$$

From the definitions of A_{n} e B_{n}, we deduce

$$
\begin{aligned}
& 0 \leq A_{n+1}(t) \leq \int_{0}^{t}\left(A_{n}(\tau)+K_{0} B_{n}(\tau)+K_{0}^{2} \int_{0}^{\tau} A_{n}(s) d s\right) d \tau \\
& 0 \leq B_{n+1}(t) \leq \int_{0}^{t}\left(A_{n}(\tau)+K_{0} A_{n}(\tau)+K_{0}^{2} \int_{0}^{\tau} B_{n}(s) d s\right) d \tau
\end{aligned}
$$

For the continuity of A_{n} and B_{n} in $\left[0, T_{0}\right]$, we deduce:

$$
\begin{aligned}
& 0 \leq A_{n+1}(t) \leq\left\|A_{n}\right\|_{\infty}\left(t+K_{0}^{2} \frac{t^{2}}{2}\right)+K_{0} t\left\|B_{n}\right\|_{\infty} \\
& 0 \leq B_{n+1}(t) \leq\left\|B_{n}\right\|_{\infty}\left(t+K_{0}^{2} \frac{t^{2}}{2}\right)+K_{0} t\left\|A_{n}\right\|_{\infty}
\end{aligned}
$$

Now, for all $t \in\left[0, T_{0}\right]$,

$$
0 \leq A_{n+1}(t) ; \quad B_{n+1}(t) \leq h\left(\left\|A_{n}\right\|_{\infty}+\left\|B_{n}\right\|_{\infty}\right)
$$

Hence, taking the supremum over t and adding the inequalities, we deduce that the series

$$
\sum\left(\left\|A_{n}\right\|_{\infty}+\left\|B_{n}\right\|_{\infty}\right)
$$

is convergent; then the same holds for both the series $\sum\left\|A_{n}\right\|_{\infty}$ and $\sum\left\|B_{n}\right\|_{\infty}$.
We remember that $L^{\infty}\left(\mathbb{R} \times\left[0, T_{0}\right] ; \mathbb{R}\right)$ is a complete metric space with respect to lagrangian metric; then from the inequalities (2.3), 2.4, applying the BanachCaccioppoli theorem, we have that $\left(u_{n}\right)_{n}$ and $\left(v_{n}\right)_{n}$ are Cauchy sequences. Hence there exist two real functions u^{*} and v^{*}, defined in $\mathbb{R} \times\left[0, T_{0}\right]$ such that: $\left(u_{n}\right)_{n}$ is uniformly convergent to u^{*} and $\left(v_{n}\right)_{n}$ is uniformly convergent to v^{*} in $\mathbb{R} \times\left[0, T_{0}\right]$; moreover, from (2.7), 2.8) and (2.9), u^{*} and v^{*} are Lipschitz continuous in all the variables.

We remark that, for all $n \in N, x \in \mathbb{R}, t \in\left[0, T_{0}\right]$:

$$
\begin{aligned}
& \left|u_{n}\left(v_{n}\left(\int_{0}^{t} u_{n}(x, \tau) d \tau, t\right), t\right)-u^{*}\left(v^{*}\left(\int_{0}^{t} u^{*}(x, \tau) d \tau, t\right), t\right)\right| \\
& \leq\left\|u_{n}-u^{*}\right\|_{\infty}+K_{0}\left\|v_{n}-v^{*}\right\|_{\infty}+K_{0}^{2} t\left\|u_{n}-u^{*}\right\|_{\infty}
\end{aligned}
$$

Then u^{*} and v^{*} verify that for all $x \in \mathbb{R}$ and $t \in\left[0, T_{0}\right]$:

$$
\begin{aligned}
& u^{*}(x, t)=u_{0}(x)+\int_{0}^{t} u^{*}\left(v^{*}\left(\int_{0}^{\tau} u^{*}(x, s) d s, \tau\right), \tau\right) d \tau \\
& v^{*}(x, t)=v_{0}(x)+\int_{0}^{t} v^{*}\left(u^{*}\left(\int_{0}^{\tau} v^{*}(x, s) d s, \tau\right), \tau\right) d \tau
\end{aligned}
$$

respectively. Let us now prove the uniqueness. Let $\left(u_{*}, v_{*}\right)$ be another pair of solutions and remark that:

$$
\begin{aligned}
& \left|u^{*}\left(v^{*}\left(\int_{0}^{\tau} u^{*}(x, s) d s, \tau\right), \tau\right)-u_{*}\left(v_{*}\left(\int_{0}^{\tau} u_{*}(x, s) d s, \tau\right), \tau\right)\right| \\
& \leq \\
& \quad K_{0}\left|v^{*}\left(\int_{0}^{\tau} u^{*}(x, s) d s, \tau\right)-v_{*}\left(\int_{0}^{\tau} u_{*}(x, s) d s, \tau\right)\right| \\
& \quad+\left|u^{*}\left(v_{*}\left(\int_{0}^{\tau} u_{*}(x, s) d s, \tau\right), \tau\right)-u_{*}\left(v_{*}\left(\int_{0}^{\tau} u_{*}(x, s) d s, \tau\right), \tau\right)\right| \\
& \leq \\
& \quad K_{0}\left(K_{0}\left|\int_{0}^{\tau} u^{*}(x, s) d s-\int_{0}^{\tau} u_{*}(x, s) d s\right|\right. \\
& \left.\quad+\mid v^{*}\left(\int_{0}^{\tau} u^{*}(x, s) d s, \tau\right)-v_{*}\left(\int_{0}^{\tau} u^{*}(x, s) d s, \tau\right)\right) \mid+\left\|u^{*}-u_{*}\right\|_{\infty} \\
& \leq\left(1+K_{0}^{2} t\right)\left\|u^{*}-u_{*}\right\|_{\infty}+K_{0}\left\|v^{*}-v_{*}\right\|_{\infty} .
\end{aligned}
$$

Therefore,

$$
\left|u^{*}(x, \tau)-u_{*}(x, \tau)\right| \leq\left(t+K_{0}^{2} \frac{t^{2}}{2}\right)\left\|u^{*}-u_{*}\right\|_{\infty}+K_{0} t\left\|v^{*}-v_{*}\right\|_{\infty}
$$

In a similar way we can prove the estimates:

$$
\begin{aligned}
& \left|u^{*}(x, \tau)-u_{*}(x, \tau)\right| \leq\left(t+K_{0}^{2} \frac{t^{2}}{2}\right)\left\|u^{*}-u_{*}\right\|_{\infty}+K_{0} t\left\|v^{*}-v_{*}\right\|_{\infty} \\
& \left|v^{*}(x, \tau)-v_{*}(x, \tau)\right| \leq\left(t+K_{0}^{2} \frac{t^{2}}{2}\right)\left\|v^{*}-v_{*}\right\|_{\infty}+K_{0} t\left\|u^{*}-u_{*}\right\|_{\infty}
\end{aligned}
$$

Then

$$
\left|u^{*}(x, \tau)-u_{*}(x, \tau)\right| \leq\left(t+K_{0}^{2} \frac{t^{2}}{2}+K_{0} t\right) \max \left(\left\|u^{*}-u_{*}\right\|_{\infty} ;\left\|v^{*}-v_{*}\right\|_{\infty}\right)
$$

and

$$
\left|v^{*}(x, \tau)-v_{*}(x, \tau)\right| \leq\left(t+K_{0}^{2} \frac{t^{2}}{2}+K_{0} t\right) \max \left(\left\|v^{*}-v_{*}\right\|_{\infty} ;\left\|u^{*}-u_{*}\right\|_{\infty}\right)
$$

From $\left(t+K_{0}^{2} \frac{t^{2}}{2}+K_{0} t\right) \leq h<1$, we have

$$
\max \left(\left\|u^{*}-u_{*}\right\|_{\infty} ;\left\|v^{*}-v_{*}\right\|_{\infty}\right)<h \max \left(\left\|u^{*}-u_{*}\right\|_{\infty} ;\left\|v^{*}-v_{*}\right\|_{\infty}\right)
$$

Then the uniqueness follows and the proof is complete.

3. Some Open Problems

The previous results and the proposed type of systems can be investigated and generalized in many different directions. In what follows, we give some of the problems whose investigation seems to be interesting.
(A) The first problem is to investigate the existence of global solutions, also for Lipschitzian and bounded initial data.
(B) It could be more difficult to establish existence and uniqueness for data u_{0}, v_{0} bounded and uniformly continuous (or simply continuous). Moreover, when the global existence is guaranteed, an interesting problem can be to give particular condition on data u_{0}, v_{0} such that there exists $T^{*}>0$ for which $u(x, t)=v(x, t)$ for all $x \in \mathbb{R}$ and $t \geq T^{*}$.

References

[1] E. Eder: The functional-differential equation $x^{\prime}(t)=x(x(t))$, J. Diff. Equat. 54 (1984), no. 3, 399-400.
[2] Jan-Guo Si and Sui Sun Cheng: Analytic solutions of a functional differential equation with state dependent argument, Taiwanese J. Math., 1 (1997), no. 4, 471-480.
[3] Jan-Guo Si, Xin-Ping Wang and Sui Sun Cheng: Analytic solutions of a functionaldifferential equation with a stese derivative dependent delay, Aequ. Mathem., 57 (1999) no. 1, 75-86.
[4] M. Miranda (Jr), E. Pascali: On a type of evolution of self-referred and hereditary phenomena, Aequ. Mathem. (in press).
[5] M. Miranda (Jr), E. Pascali: Other classes of self-referred equations, (submitted).
[6] M. Miranda (Jr), E. Pascali: On a class of differential equations with self-reference, Rend. Mat., serie VII, vol.25, Roma(2005), 155-164.
[7] V. Volterra: Opere Matematiche: Memorie e note, Vol. V, 1926-1940, Accademia Nazionale dei Lincei, Rome 1962.

Eduardo Pascali
Department of Mathematics "Ennio De Giorgi", University of Lecce, C. P. 193, 73100, Lecce, Italy

E-mail address: eduardo.pascali@unile.it

[^0]: 2000 Mathematics Subject Classification. 47J35, 45G10.
 Key words and phrases. Non-linear evolution systems; Hereditary systems.
 © 2006 Texas State University - San Marcos.
 Submitted June 13, 2005. Published January 16, 2006.

