Electronic Journal of Differential Equations, Vol. 2006(2006), No. 09, pp. 1-6.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

NONEXISTENCE OF SOLUTIONS TO KPP-TYPE EQUATIONS
OF DIMENSION GREATER THAN OR EQUAL TO ONE

JANOS ENGLANDER, PETER L. SIMON

ABSTRACT. In this article, we consider a semilinear elliptic equations of the
form Au + f(u) = 0, where f is a concave function. We prove for arbitrary
dimensions that there is no solution bounded in (0,1). The significance of this
result in probability theory is also discussed.

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

In this article, we study semilinear elliptic equations of the form Au+ f(u) = 0.
On the nonlinear term f : [0,1] — R we assume that
(i) f is continuous,
(ii) f is positive on (0,1),
(iii) the mapping z — f(z)/z is strictly decreasing.
Under these three conditions, we consider the Kolmogorov Petrovskii Piscunov-type
(KPP-type) equation

Au+ f(u) =0 (1.1)
0O<u<l1, inR%L (1.2)
Our main result is as follows.
Theorem 1.1. Problem — has no solution for dimension d > 1.

Semilinear elliptic equations of the form have been widely studied. We
mention here only two reviews [14] [I5], where the exact number of positive solu-
tions with different nonlinearities are studied. In [I4] the differential equation is
considered on a bounded domain, in [I5] the equation is studied in the whole space
R, however, it is subject to the boundary condition u — 0 as |x| — oo. The case of
concave f has also been studied by several authors. In [I] the assumption on f is
similar to ours, however, the problem is given on a bounded domain with Dirichlet
boundary condition. In that paper the existence and uniqueness of the positive
solution is proved. Castro et al. studied the case of concave nonlinearities in a
series of papers, see e.g. [2, [3]. In these works the problem is given on a bounded
domain with Dirichlet boundary condition. A generalized logistic equation, with
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fuw) = mu — quP is studied in [8] on a bounded domain with Dirichlet boundary
condition again.

Summarizing, we can say that our equation has been widely studied, how-
ever, in the papers where it is considered in the whole space R, it is always subject
to the boundary condition © — 0 as |#| — co. In these publications the aim is to
determine the exact number of the so-called fast and slow decay solutions. Hence,
according to the authors knowledge, there is no result available concerning problem

(1.1)-(L.2) under the assumptions given on f.

Remark 1.2 (Low dimensions). Our theorem can be proved very easily for d < 2.
To see this, recall that A is a so-called critical operator in R when d = 1,2.
Second order elliptic operators L with no zeroth order term are classified as being
subcritical or critical according to whether the operator possesses or does not possess
a minimal positive Green’s function. In probabilistic terms criticality /subcriticality
is captured by the recurrence/transience of the corresponding diffusion process (see
[12, Chapter 4]).

Another equivalent condition for L to be critical is that all positive functions h
that are superharmonic (i.e. Lh < 0) are in fact harmonic (i.e. Lh = 0). (See again
[12, Chapter 4])

Now, observe that (L.1)-(L.2) and the positivity of f on (0,1) implies

Au=—f(u) <0 inR% (1.3)

By the above criterion for critical operators, this is impossible in dimension one or
two.

The most important model case is the classical KPP equation, when
f(u) = Bu(l - u) (14)

with 8 > 0. (In fact this particular nonlinearity is intimately related to the dis-
tribution of a branching Brownian motion; see more on the subject in the next
paragraph.) We will present a proof for our result that works basically for concave
functions; in fact, (iii) of Assumption 1 is related to the concaveness of the function.

The connection between the KPP equation and branching Brownian motion has
already been discovered by H. P. McKean — it first appeared in the classic work
[10, 11].

Let Z = (Z(t))t>0 be the d-dimensional binary branching Brownian motion with
a spatially and temporally constant branching rate 8 > 0. The informal description
of this process is as follows. A single particle starts at the origin, performs a
Brownian motion on R?, after a mean—1 /B exponential time dies and produces two
offspring, the two offspring perform independent Brownian motions from their birth
location, die and produce two offspring after independent mean—1/4 exponential
times, etc. Think of Z(t) as the subset of R indicating the locations of the particles
2., zivt alive at time ¢ (where NV; denote the number of particles at t). Write P,
to denote the law of Z when the initial particle starts at z. The natural filtration
is denoted by {F;, t > 0}.

Then, as is well known (see e.g. [4, Chapter 1]), the law of the process can
be described via its Laplace functional as follows. If f is a positive measurable
function, then

E, exp ( - Zféf(zf)) =1—u(z,t), (1.5)
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where u solves the initial value problem
1
U= §Au—|—f(u) in RY x R
u(-,0)=1—e 70 inR? (1.6)
0<u<1 inR?xRy,,

with f of the form 1}

Equation . 1.2) appears when one studies certain ‘natural’ martingales as-
sociated with branchlng Brownian motion (see e.g. [5]) To understand this, let
Fio= 0(Us>¢ Fs) and consider the tail o-algebra Foo =i>0 F,. Choosing appro-
priate (sequences of) f’s one can then express the probablhtles of various events
A; € fh for ¢ > 0, in terms of the function u in . Letting ¢ — oo then leads
to the conclusion that if A € f denotes a certain tall event (e.g. having strictly
positive limit for a certain nonnegative ‘natural’ martingale, or local/global extinc-
tion) then the function u(z) := P,(A) is either constant (= 0 or = 1), or it must
solve —. Hence, it immediately follows from our main theorem that the tail
o-algebra is trivial, that is, all those events A satisfy P.(A) =0 or P.(A) =

Note that if 8 > 0 is replaced by a smooth nonnegative function S(-) that
does not vanish everywhere, then this corresponds to having spatially dependent
branching rate for the branching Brownian motion. It would be desirable therefore
to investigate whether our main theorem can be generalized for such g’s.

2. PROOF OF THE THEOREM

The proof is based on two ideas: The application of the semilinear elliptic maxi-
mum principle, which is generalized here fore concave functions, and a comparison
between the semilinear and the linear problems. Using these two ideas we will show
that the minimal positive solution of iS Umin = 1, hence has no solution
satisfying (1.2]).

First we state and prove a semilinear maximum principle. The results in this
form is a generalization of [0, Proposition 7.1] for the particular case when the
elliptic operator is L = A.

Lemma 2.1 (Semilinear elliptic maximum principle). Let f : [0,00) — R be a
continuous function, for which the mapping z — f(z)/z is strictly decreasing. Let
D C R? be a bounded domain with smooth boundary. If v; € C*(D) N C(D) satisfy
v; >0in D, Av; + f(v;)) =0, in D fori=1,2, and v1 > vy on D, then vy > vo
i D.

Proof. Note that the function w := vy — vy satisfies

Aw + f(v1) — f(vg) =0. (2.1)

We show that w > 0 in D. Suppose to the contrary that there exists a point y € D
where w is negative. Let Qo := {z € D | w(z) < 0}. Let Q be the connected
component of g containing y. Since w > 0 on 9D, one has 2 CC D and

w<0 inQ, w=0 ond (2.2)

Let us multiply the equation Awv; + f(v1) = 0 by w and equation (2.1) by vy,
then subtract the second equation from the first, and integrate on ). Using that
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w = V1 — Uy one obtains

I+11:= /Q(wAvl —vnAw) + /Q(vlf(UQ) —vaf(v1)) = 0. (2.3)

Using Green’s second identity and that w = 0 on 012, along with the fact that

d,w > 0 on 052, we obtain
I = 7/ vlayw S O,
o0

where v denotes the unit outward normal to 9€2. Furthermore, since v; < vg in €,
using (iii) of Assumption 1, we have that also 17 < 0:

v1 f(v2) —v2f(v1) = v1v2 o

It follows that the left hand side of (2.3) is negative, while its right hand side is
zero. This contradiction proves that in fact w > 0 in D. (I

Remark 2.2 (Spatially dependent f’s). One can similarly prove the analogous
more general result for the case, when f : D x [0,00) — R is continuous in u and
bounded in z, and u — f(z,u)/u is strictly decreasing.

Let f : [0,1] — R be a continuous function which is positive in (0,1). Based
on ideas in [9] and using the comparison between the linear and the semilinear
equations, we prove the following lemma.

Lemma 2.3 (Radially symmetric solutions). Assume in addition that f satisfies
liminf, o @ > 0 (this is automatically satisfied under assumption that the map-
ping z — f(2)/z is strictly decreasing). Then for any y € R? and p € (0,1) there
exists a ball ) := Br(y) (with some R > 0) and a radially symmetric C? function
v:Q — R such that

Av+ f(v) =0
v>0 inQ
v=0 ondd vy =p.

Proof. We show the existence of a radially symmetric solution of the form v(z) =

V(|z —y|). Let V € C?([0,00)) be the solution of the initial value problem
(V) V() =0 o
V(0) =p, V'(0) = 0. '

Writing A in polar coordinates, one sees that it is sufficient to prove that there
exists an R > 0 such that V(R) = 0 and V(r) > 0 for all » € [0, R). To this end,
consider the linear initial value problem

(=W (1)) 4+ rimW (r) = 0

(2.5)
W(0) =p, W'(0)=0,

where m > 0 is chosen so that f(u) > mu holds for all u € (0,p). (Our assumptions
on f guarantee the existence of such an m.) It is known that W has a first root,
which we denote by p. Note that in this case —m is the first eigenvalue of the
Laplacian on the ball B,. We now show that V" has a root in (0, p]. In order to do
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so let us multiply (2.5) by V and (2.4) by W, then subtract one equation from the
other, and finally, integrate on [0, p]. We obtain

I+11:= / p[(rdflw'(r))'V(r) — (W ()Y W (r)] dr
o (2.6)
+ / P mW )V (r) = W(r) f(V ()] dr = 0.

Suppose now that V' has no root in (0,p]. Then, integrating by parts, I =
P W (p)V(p) < 0.

Next, observe that by integrating , one gets V/(r) < 0 (i.e. V is decreasing).
Hence V(r) < p, yielding mV (r) — f(V(r)) < 0. Therefore II, and thus the whole
left hand side of are negative; contradiction. This contradiction proves that
V in fact has a root in (0, p]. O

Remark 2.4 (Spatially dependent f’s). When f depends also on x, our method
breaks down as it is no longer possible to use ordinary differential equations to show
the existence of a solution attaining a value close to one at a given point.

There is one easy case though: it is immediately seen that if there exists a g(u),
with f(z,u) > g(u) and g(u) satisfies the conditions of Theorem [L.1] then Theorem
remains valid for f(z,u) as well.

Indeed, we know that ., > 1, where s, is the minimal positive solution for
the semilinear equation with g. Recall (see e.g. [6] [7]) that one way of constructing
the minimal positive solution is as follows. One takes large balls Br(0), and positive
solutions with zero boundary condition on these balls (in our case we know from
[9) that there exist such positive solutions for arbitrarily large R’s), and finally,
lets R — oo; using the monotonicity in R that follows from the semilinear elliptic
maximum principle (Lemma , the limiting function exists and positive. It is
standard to prove that it solves the equation on the whole space, and by Lemma
again it must be the minimal such solution.

Now suppose that 0 < v solves the semilinear equation with f(x,u). Then v is
a supersolution: 0 > Av + g(v); hence by the above construction of u,,;, and by
an obvious modification of the proof of Lemma V> Upin, > 1.

The general case is harder. For example, when f(x,u) := B(x)(u — u?) and 3
is a smooth nonnegative bounded function, the mere existence of positive solutions
on large balls is no problem as long as the generalized principal eigenvalue of A + (3
on R? is positive. (The method in [I3], pp. 26-27 goes through for f(z,u) :=
B(z)(u — u?) even though f3 is constant in [13].) The problematic part is to show
that the solution is large at the center of the ball.

Proof of Theorem[I_1. Suppose that problem (L.I)-(1.2) has a solution. Choose
an arbitrary point y € RY and an arbitrary number p € (0,1). Note that by

Assumption 1, f satisfies the conditions of Lemma and consider the ball Br(y)
and the radially symmetric function v on it, which are guaranteed by Lemma [2.3
We can apply Lemma with D = Bg(y), v1 = v and v2 = v and obtain that
u > v. In particular then, u(y) > v(y) = p. Since y and p were arbitrary, we

obtain that w > 1, in contradiction with (1.2]). Consequently, (1.1)-(1.2) has no
solution. g
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