Electronic Journal of Differential Equations, Vol. 2006(2006), No. 102, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF POSITIVE SOLUTIONS FOR HIGHER ORDER SINGULAR SUBLINEAR ELLIPTIC EQUATIONS

IMED BACHAR

$$
\begin{aligned}
& \text { Abstract. We present existence result for the polyharmonic nonlinear prob- } \\
& \text { lem } \\
& \qquad(-\Delta)^{p m} u=\varphi(., u)+\psi(., u), \quad \text { in } B \\
& \qquad u>0, \quad \text { in } B \\
& \qquad \lim _{x \mid \rightarrow 1} \frac{(-\Delta)^{j m} u(x)}{(1-|x|)^{m-1}}=0, \quad 0 \leq j \leq p-1, \\
& \text { in the sense of distributions. Here } m, p \text { are positive integers, } B \text { is the unit ball } \\
& \text { in } \mathbb{R}^{n}(n \geq 2) \text { and the nonlinearity is a sum of a singular and sublinear terms } \\
& \text { satisfying some appropriate conditions related to a polyharmonic Kato class } \\
& \text { of functions } \mathcal{J}_{m, n}^{(p)}
\end{aligned}
$$

1. Introduction

In this paper, we investigate the existence and the asymptotic behavior of positive solutions for the following iterated polyharmonic problem involving a singular and sublinear terms:

$$
\begin{gather*}
(-\Delta)^{p m} u=\varphi(., u)+\psi(., u), \quad \text { in } B \\
u>0 \quad \text { in } B \\
\lim _{|x| \rightarrow 1} \frac{(-\Delta)^{j m} u(x)}{(1-|x|)^{m-1}}=0, \quad \text { for } 0 \leq j \leq p-1 \tag{1.1}
\end{gather*}
$$

in the sense of distributions. Here B is the unit ball of $\mathbb{R}^{n}(n \geq 2)$ and m, p are positive integers. This research is a follow up to the work done by Shi and Yao [14, who considered the problem

$$
\begin{gather*}
\Delta u+k(x) u^{-\gamma}+\lambda u^{\alpha}=0, \quad \text { in } D, \\
u>0, \quad \text { in } D \tag{1.2}
\end{gather*}
$$

where D is a bounded $C^{1,1}$ domain in $\mathbb{R}^{n}(n \geq 2), \gamma, \alpha$ are two constants in $(0,1), \lambda$ is a real parameter and k is a Hölder continuous function in $\bar{\Omega}$. They proved the existence of positive solutions. Choi, Lazer and Mckenna in [8] and 11] have studied a variety of singular boundary value problems of the type $\Delta u+p(x) u^{-\gamma}$, in a regular

[^0]domain $D, u=0$ on ∂D, where $\gamma>0$ and p is a nonnegative function. They proved the existence of positive solutions. This has been extended by Mâagli and Zribi [13] to the problem $\Delta u=-f(., u)$ in $D, u=0$ on ∂D, where $f(x,$.$) is nonnegative and$ nonincreasing on $(0, \infty)$.

On the other hand, problem (1.1) with a sublinear term $\psi(., u)$ and a singular term $\varphi(., u)=0$, has been studied by Mâagli, Toumi and Zribi in [12] for $p=1$ and by Bachar [2] for $p \geq 1$.

Thus a natural question to ask, is for more general singular and sublinear terms combined in the nonlinearity, whether or not the problem (1.1) has a solution, which we aim to study in this paper.

Our tools are based essentially on some inequalities satisfied by the Green function $\Gamma_{m, n}^{(p)}$ (see (2.1) below) of the polyharmonic operator $u \mapsto(-\Delta)^{p m} u$, on the unit ball B of $\mathbb{R}^{n}(n \geq 2)$ with boundary conditions $\left.\left(\frac{\partial}{\partial \nu}\right)^{j}(-\Delta)^{i m} u\right|_{\partial B}=0$, for $0 \leq i \leq p-1$ and $0 \leq j \leq m-1$, where $\frac{\partial}{\partial \nu}$ is the outward normal derivative. Also, we use some properties of functions belonging to the polyharmonic Kato class $\mathcal{J}_{m, n}^{(p)}$ which is defined as follows.

Definition $1.1([2])$. A Borel measurable function q in B belongs to the class $\mathcal{J}_{m, n}^{(p)}$ if q satisfies the condition

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left(\sup _{x \in B} \int_{B \cap B(x, \alpha)}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)|q(y)| d y\right)=0 \tag{1.3}
\end{equation*}
$$

where $\delta(x)=1-|x|$, denotes the Euclidean distance between x and ∂B.
Typical examples of elements in the class $\mathcal{J}_{m, n}^{(p)}$ are functions in $L^{s}(B)$, with

$$
s>\frac{n}{2 p m} \quad \text { if } n>2 p m
$$

or with

$$
s>\frac{n}{2(p-1) m}, \quad \text { if } 2(p-1) m<n<2 p m
$$

or with

$$
s \in(1, \infty] \quad \text { if } n \leq 2(p-1) m
$$

or with $n=2 p m$; see [2]. Furthermore, if $q(x)=(\delta(x))^{-\lambda}$, then $q \in \mathcal{J}_{m, n}^{(p)}$ if and only if

$$
\begin{gathered}
\lambda<2 m, \quad \text { if } p=1 \quad(\text { see [4]) or } \\
\lambda<2 m+1, \quad \text { if } p \geq 2 \quad(\text { see [2] }) .
\end{gathered}
$$

For the rest of this paper, we refer to the potential of a nonnegative measurable function f, defined in B by

$$
V_{p}(f)(x)=\int_{B} \Gamma_{m, n}^{(p)}(x, y) f(y) d y
$$

The plan for this paper is as follows. In section 2, we collect some estimates for the Green function $\Gamma_{m, n}^{(p)}$ and some properties of functions belonging to the class $\mathcal{J}_{m, n}^{(p)}$. In section 3, we will fix $r>n$ and we assume that the functions φ and ψ satisfy the following hypotheses:
(H1) φ is a nonnegative Borel measurable function on $B \times(0, \infty)$, continuous and nonincreasing with respect to the second variable.
(H2) For each $c>0$, the function $x \mapsto \varphi\left(x, c(\delta(x))^{m}\right) /(\delta(x))^{m}$ is in $\mathcal{J}_{m, n}^{(1)}$.
(H3) For each $c>0$, the function $x \mapsto \varphi\left(x, c(\delta(x))^{m}\right)$ is in $L^{r}(B)$.
(H4) ψ is a nonnegative Borel measurable function on $B \times[0, \infty)$, continuous with respect to the second variable such that there exist a nontrivial nonnegative function $h \in L_{\text {loc }}^{1}(B)$ and a nontrivial nonnegative function $k \in \mathcal{J}_{m, n}^{(1)}$ such that

$$
\begin{equation*}
h(x) f(t) \leq \psi(x, t) \leq(\delta(x))^{m} k(x) g(t), \quad \text { for }(x, t) \in B \times(0, \infty) \tag{1.4}
\end{equation*}
$$

where $f:[0, \infty) \rightarrow[0, \infty)$ is a measurable nondecreasing function satisfying

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{f(t)}{t}=+\infty \tag{1.5}
\end{equation*}
$$

and g is a nonnegative measurable function locally bounded on $[0, \infty)$ satisfying

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{g(t)}{t}<\left\|V_{p}\left((\delta(.))^{m} k\right)\right\|_{\infty} \tag{1.6}
\end{equation*}
$$

(H5) The function $x \mapsto(\delta(x))^{m} k(x)$ is in $L^{r}(B)$.
Using a fixed point argument, we shall prove the following existence result.
Theorem 1.2. Assume (H1)-(H5). Then 1.1) has at least one positive solution $u \in C^{2 p m-1}(B)$, such that
$a_{j}(\delta(x))^{m} \leq(-\Delta)^{j m} u(x) \leq V_{p-j}\left(\varphi\left(., a_{j}(\delta(.))^{m}\right)\right)(x)+b_{j} V_{p-j}\left((\delta(.))^{m} k\right)(x)$, for $j \in\{0, \ldots, p-1\}$. In particular,

$$
a_{j}(\delta(x))^{m} \leq(-\Delta)^{j m} u(x) \leq c_{j}(\delta(x))^{m}
$$

where a_{j}, b_{j}, c_{j} are positive constants.
Typical examples of nonlinearities satisfying (H1)-(H5) are:

$$
\varphi(x, t)=k(x)(\delta(x))^{m \gamma+m} t^{-\gamma}
$$

for $\gamma \geq 0$, and

$$
\psi(x, t)=k(x)(\delta(x))^{m} t^{\alpha} \log \left(1+t^{\beta}\right)
$$

for $\alpha, \beta \geq 0$ such that $\alpha+\beta<1$, where k is a nontrivial nonnegative functions in $L^{r}(B)$.

Recently Ben Othman [5] considered (1.1) when $p=1$ and the functions φ, ψ satisfy hypotheses similar to the ones stated above. Then she proved that 1.1 has a positive continuous solutions u satisfying

$$
a_{0}(\delta(x))^{m} \leq u(x) \leq V_{1}\left(\varphi\left(., a_{0}(\delta(.))^{m}\right)\right)(x)+b_{0} V_{1}\left((\delta(.))^{m-1} k\right)(x)
$$

Here we prove an existence result for the more general problem (1.1) and obtain estimates both on the solution u and their derivatives $(-\Delta)^{j m} u$, for all $j \in$ $\{1, \ldots, p-1\}$.

To simplify our statements, we define some convenient notations:
(i) Let $B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ and let $\bar{B}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$, for $n \geq 2$.
(ii) $\mathcal{B}(B)$ denotes the set of Borel measurable functions in B, and $\mathcal{B}^{+}(B)$ the set of nonnegative ones.
(iii) $C(\bar{B})$ is the set of continuous functions in \bar{B}.
(iv) $C^{j}(B)$ is the set of functions having derivatives of order $\leq j$, continuous in $B(j \in \mathbb{N})$.
(v) For $x, y \in B,[x, y]^{2}=|x-y|^{2}+\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)$.
(vi) Let f and g be two positive functions on a set S. We call $f \preceq g$, if there is $c>0$ such that $f(x) \leq c g(x)$, for all $x \in S$.
We call $f \sim g$, if there is $c>0$ such that $\frac{1}{c} g(x) \leq f(x) \leq c g(x)$, for all $x \in S$.
(vii) For any $q \in \mathcal{B}(B)$, we put

$$
\|q\|_{m, n, p}:=\sup _{x \in B} \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)|q(y)| d y .
$$

2. Properties of the iterated Green function and the Kato class

Let $m \geq 1, p \geq 1$ be a positive integer and $\Gamma_{m, n}^{(p)}$ be the iterated Green function of the polyharmonic operator $u \mapsto(-\Delta)^{p m} u$, on the unit ball B of $\mathbb{R}^{n}(n \geq 2)$ with boundary conditions $\left.\left(\frac{\partial}{\partial \nu}\right)^{j}(-\Delta)^{i m} u\right|_{\partial B}=0$, for $0 \leq i \leq p-1$ and $0 \leq j \leq m-1$, where $\frac{\partial}{\partial \nu}$ is the outward normal derivative.

Then for $p \geq 2$ and $x, y \in B$,

$$
\begin{equation*}
\Gamma_{m, n}^{(p)}(x, y)=\int_{B} \ldots \int_{B} G_{m, n}\left(x, z_{1}\right) G_{m, n}\left(z_{1}, z_{2}\right) \ldots G_{m, n}\left(z_{p-1}, y\right) d z_{1} \ldots d z_{p-1} \tag{2.1}
\end{equation*}
$$

where $G_{m, n}$ is the Green function of the polyharmonic operator $u \mapsto(-\Delta)^{m} u$, on B with Dirichlet boundary conditions $\left(\frac{\partial}{\partial \nu}\right)^{j} u=0,0 \leq j \leq m-1$.

Recall that Boggio in [6] gave an explicit expression for $G_{m, n}$: For each x, y in B,

$$
G_{m, n}(x, y)=k_{m, n}|x-y|^{2 m-n} \int_{1}^{\frac{[x, y]}{[x-y]}} \frac{\left(v^{2}-1\right)^{m-1}}{v^{n-1}} d v
$$

where $k_{m, n}$ is a positive constant.
In this section we state some properties of $\Gamma_{m, n}^{(p)}$ and of functions belonging to the Kato class $\mathcal{J}_{m, n}^{(p)}$. These properties are useful for the statements of our existence result, and their proofs can be found in [2].

Proposition 2.1. On B^{2}, the following estimates hold

$$
\Gamma_{m, n}^{(p)}(x, y) \sim \begin{cases}\frac{(\delta(x) \delta(y))^{m}}{|x-y|^{n-2 p m}[x, y]^{2 m}}, & \text { for } n>2 p m \tag{2.2}\\ \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{2 m}} \log \left(1+\frac{[x, y]^{2}}{|x-y|^{2}}\right), & \text { for } n=2 p m \\ \frac{(\delta(x) \delta(y))^{m}}{[x, y]^{n-2(p-1) m}}, & \text { for } 2(p-1) m<n<2 p m\end{cases}
$$

Proposition 2.2. With the above notation,

$$
\begin{gathered}
\quad(\delta(x) \delta(y))^{m} \preceq \Gamma_{m, n}^{(p)}(x, y) \\
\Gamma_{m, n}^{(p)}(x, y) \preceq \Gamma_{m, n}^{(p-1)}(x, y), \quad \text { for } p \geq 2 \\
\Gamma_{m, n}^{(p)}(x, y) \preceq \delta(x) \delta(y) \Gamma_{m-1, n}^{(p)}(x, y), \quad \text { for } m \geq 2
\end{gathered}
$$

In particular,

$$
\begin{equation*}
\mathcal{J}_{m, n}^{(1)} \subset \mathcal{J}_{m, n}^{(2)} \cdots \subset \mathcal{J}_{m, n}^{(p)}, \mathcal{J}_{1, n}^{(p)} \subset \mathcal{J}_{2, n}^{(p)} \subset \cdots \subset \mathcal{J}_{m, n}^{(p)} \tag{2.3}
\end{equation*}
$$

Proposition 2.3. Let q be a function in $\mathcal{J}_{m, n}^{(p)}$. Then
The function $x \mapsto(\delta(x))^{2 m} q(x)$ is in $L^{1}(B)$.

$$
\begin{equation*}
\|q\|_{m, n, p}<\infty \tag{2.4}
\end{equation*}
$$

3. Existence result

We are concerned with the existence of positive solutions for the iterated polyharmonic nonlinear problems $\sqrt{1.1}$). For the proof, we need the next Lemma. For a given nonnegative function q in $\mathcal{J}_{m, n}^{(p)}$, we define

$$
\mathcal{M}_{q}=\{\theta \in \mathcal{B}(B),|\theta| \leq q\}
$$

Lemma 3.1. For any nonnegative function $q \in \mathcal{J}_{m, n}^{(p)}$, the family of functions

$$
\begin{equation*}
\left\{\int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)|\theta(y)| d y: \theta \in \mathcal{M}_{q}\right\} \tag{3.1}
\end{equation*}
$$

is uniformly bounded and equicontinuous in \bar{B} and consequently it is relatively compact in $C(\bar{B})$.

Proof. Let q be a nonnegative function $q \in \mathcal{J}_{m, n}^{(p)}$ and L be the operator defined on \mathcal{M}_{q} by

$$
L \theta(x)=\int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)|\theta(y)| d y
$$

By (2.5), for each $\theta \in \mathcal{M}_{q}$, we have

$$
\sup _{x \in B} \int_{B}\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)|\theta(y)| d y \leq\|q\|_{m, n, p}<\infty .
$$

Then the family $L\left(\mathcal{M}_{q}\right)$ is uniformly bounded. Next, we prove the equicontinuity of functions in $L\left(\mathcal{M}_{q}\right)$ on \bar{B}. Indeed, let $x_{0} \in \bar{B}$ and $\varepsilon>0$. By 1.3), there exists $\alpha>0$ such that for each $x, x^{\prime} \in B\left(x_{0}, \alpha\right) \cap B$, we have

$$
\begin{aligned}
&\left|L \theta(x)-L \theta\left(x^{\prime}\right)\right| \\
& \leq \int_{B}\left|\frac{\Gamma_{m, n}^{(p)}(x, y)}{(\delta(x))^{m}}-\frac{\Gamma_{m, n}^{(p)}\left(x^{\prime}, y\right)}{\left(\delta\left(x^{\prime}\right)\right)^{m}}\right|(\delta(y))^{m}|q(y)| d y \\
& \leq \varepsilon+\int_{B \cap B\left(x_{0}, 2 \alpha\right) \cap B^{c}(x, 2 \alpha)}\left|\frac{\Gamma_{m, n}^{(p)}(x, y)}{(\delta(x))^{m}}-\frac{\Gamma_{m, n}^{(p)}\left(x^{\prime}, y\right)}{\left(\delta\left(x^{\prime}\right)\right)^{m}}\right|(\delta(y))^{m}|q(y)| d y \\
&+\int_{B \cap B^{c}\left(x_{0}, 2 \alpha\right) \cap B^{c}(x, 2 \alpha)}\left|\frac{\Gamma_{m, n}^{(p)}(x, y)}{(\delta(x))^{m}}-\frac{\Gamma_{m, n}^{(p)}\left(x^{\prime}, y\right)}{\left(\delta\left(x^{\prime}\right)\right)^{m}}\right|(\delta(y))^{m}|q(y)| d y
\end{aligned}
$$

Now since for $y \in B^{c}(x, 2 \alpha) \cap B$, from Proposition 2.1, we have

$$
\Gamma_{m, n}^{(p)}(x, y) \preceq(\delta(x) \delta(y))^{m}
$$

We deduce that

$$
\begin{aligned}
& \int_{B \cap B\left(x_{0}, 2 \alpha\right) \cap B^{c}(x, 2 \alpha)}\left|\frac{\Gamma_{m, n}^{(p)}(x, y)}{(\delta(x))^{m}}-\frac{\Gamma_{m, n}^{(p)}\left(x^{\prime}, y\right)}{\left(\delta\left(x^{\prime}\right)\right)^{m}}\right|(\delta(y))^{m}|q(y)| d y \\
& \preceq \int_{B \cap B\left(x_{0}, 2 \alpha\right)}(\delta(y))^{2 m}|q(y)| d y
\end{aligned}
$$

which tends by 2.4 to zero as $\alpha \rightarrow 0$.
Since for $y \in B^{c}\left(x_{0}, 2 \alpha\right) \cap B$, the function $x \mapsto\left(\frac{\delta(y)}{\delta(x)}\right)^{m} \Gamma_{m, n}^{(p)}(x, y)$ is continuous on $B\left(x_{0}, \alpha\right) \cap B$, by (2.4) and by the dominated convergence theorem, we have

$$
\int_{B \cap B^{c}\left(x_{0}, 2 \alpha\right) \cap B^{c}(x, 2 \alpha)}\left|\frac{\Gamma_{m, n}^{(p)}(x, y)}{(\delta(x))^{m}}-\frac{\Gamma_{m, n}^{(p)}\left(x^{\prime}, y\right)}{\left(\delta\left(x^{\prime}\right)\right)^{m}}\right|(\delta(y))^{m}|q(y)| d y \rightarrow 0
$$

as $\left|x-x^{\prime}\right| \rightarrow 0$. This proves that the family $L\left(\mathcal{M}_{q}\right)$ is equicontinuous in \bar{B}. It follows by Ascoli's theorem, that $L\left(\mathcal{M}_{q}\right)$ is relatively compact in $C(\bar{B})$.

The next remark will be used to obtain regularity of the solution.
Remark 3.2. Let $r>n$ and f be a nonnegative measurable function in $L^{r}(B)$. Then $V_{p} f \in C^{2 p m-1}(B)$.

Indeed, by using the regularity theory of [1] (see also [10, Theorem 5.1], and [7, Theorem IX.32]), we obtain that $V_{p} f \in W^{2 p m, r}(B)$. Furthermore, since $r>n$, then one finds that $V_{p} f \in C^{2 p m-1}(B)$ (see [9, Chap. 7, p.158], or [7, Corollary IX.15]).

Proof of Theorem 1.2. Let K be compact in B such that $\gamma:=\int_{K} h(y) d y>0$ and define $r_{0}:=\min _{y \in K}(\delta(y))^{m}>0$.

By 2.2 there exists a constant $c>0$ such that for each $x, y \in B$,

$$
\begin{equation*}
c(\delta(x) \delta(y))^{m} \leq \Gamma_{m, n}^{(p)}(x, y) \tag{3.2}
\end{equation*}
$$

By (1.5) we can find $a>0$ such that $c r_{0} \gamma f\left(a r_{0}\right) \geq a$.
By (H4) and (2.3), the function $k \in \mathcal{J}_{m, n}^{(1)} \subset \mathcal{J}_{m, n}^{(p)}$; then it follows from (2.5) that

$$
\delta:=\left\|V_{p}\left((\delta(.))^{m} k\right)\right\|_{\infty} \leq\|k\|_{m, n, p}<\infty
$$

Let $0<\alpha<\frac{1}{\delta}$, then using (1.6 we can find $\eta>0$ such that for each $t \geq \eta$, $g(t) \leq \alpha t$. Put $\beta:=\sup _{0 \leq t \leq \eta} g(t)$. Then we have

$$
\begin{equation*}
0 \leq g(t) \leq \alpha t+\beta, \text { for } t \geq 0 \tag{3.3}
\end{equation*}
$$

On the other hand, using (3.2) and (2.4), there exists a constant $c_{0}>0$ such that

$$
\begin{equation*}
V_{p}\left((\delta(.))^{m} k\right)(x) \geq c_{0}(\delta(x))^{m} \tag{3.4}
\end{equation*}
$$

From (H2), 2.5 and 2.3 we derive that

$$
\nu:=\| V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right) \|_{\infty}<\infty .\right.
$$

Put $b=\max \left\{\frac{a}{c_{0}}, \frac{\alpha \nu+\beta}{1-\alpha \delta}\right\}$ and let Λ be the convex set given by

$$
\Lambda=\left\{u \in C(\bar{B}): a(\delta(x))^{m} \leq u(x) \leq V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right)(x)+b V_{p}\left((\delta(.))^{m} k\right)(x)\right\}\right.
$$

and T be the operator defined on Λ by

$$
T u(x)=\int_{B} \Gamma_{m, n}^{(p)}(x, y)[\varphi(y, u(y))+\psi(y, u(y))] d y
$$

¿From (3.4), $\Lambda \neq \emptyset$. We will prove that T has a fixed point in Λ. Indeed, for $u \in \Lambda$, we have by (1.4), (3.2) and the monotonicity of f that

$$
\begin{aligned}
T u(x) & \geq \int_{B} \Gamma_{m, n}^{(p)}(x, y) \psi(y, u(y)) d y \\
& \geq c(\delta(x))^{m} \int_{B}(\delta(y))^{m} h(y) f(u(y)) d y \\
& \geq c(\delta(x))^{m} f\left(a r_{0}\right) r_{0} \int_{K} h(y) d y \\
& \geq a(\delta(x))^{m}
\end{aligned}
$$

On the other hand, using (H1), (1.4) and (3.3), we deduce that

$$
\begin{aligned}
T u(x) & \leq V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right)(x)+\int_{B} \Gamma_{m, n}^{(p)}(x, y)(\delta(y))^{m} k(y) g(u(y)) d y\right. \\
& \leq V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right)(x)+\int_{B} \Gamma_{m, n}^{(p)}(x, y)(\delta(y))^{m} k(y)(\alpha u(y)+\beta) d y\right. \\
& \leq V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right)(x)+(\alpha(\nu+b \delta)+\beta) V_{p}\left((\delta(.))^{m} k\right)(x)\right. \\
& \leq V_{p}\left(\varphi\left(., a(\delta(.))^{m}\right)(x)+b V_{p}\left((\delta(.))^{m} k\right)(x) .\right.
\end{aligned}
$$

Let $v(x)=\varphi\left(x, a(\delta(x))^{m} /(\delta(x))^{m}\right.$. Then using similar arguments as above, we deduce that for each $u \in \Lambda$

$$
\begin{align*}
& \varphi(., u) \leq \varphi\left(., a(\delta(.))^{m}\right)=(\delta(.))^{m} v \\
& \psi(., u) \leq g(u)(\delta(.))^{m} k \leq b(\delta(.))^{m} k \tag{3.5}
\end{align*}
$$

That is, $\varphi(., u)+\psi(., u) \in \mathcal{M}_{(v+b k)(\delta(.))^{m}}$. Now since by (H2) and (H4), the function $(v+b k)(\delta(.))^{m} \in \mathcal{J}_{m, n}^{(1)} \subset \mathcal{J}_{m, n}^{(p)}$, we deduce from Lemma 3.1 , that $T(\Lambda)$ is relatively compact in $C(\bar{B})$. In particular, for all $u \in \Lambda, T u \in C(\bar{B})$ and so $T(\Lambda) \subset \Lambda$. Next, let us prove the continuity of T in Λ. We consider a sequence $\left(u_{j}\right)_{j \in \mathbb{N}}$ in Λ which converges uniformly to a function $u \in \Lambda$. Then we have

$$
\left|T u_{j}(x)-T u(x)\right| \leq V_{p}\left[\mid \varphi\left(., u_{j}(.)-\varphi(., u(.))|+| \psi\left(., u_{j}(.)\right)-\psi(., u(.) \mid] .\right.\right.
$$

Now, by 3.5, we have

$$
\mid \varphi\left(., u_{j}(.)-\varphi(., u(.))|+| \psi\left(., u_{j}(.)\right)-\psi\left(., u(.) \mid \leq 2(1+b)(\delta(.))^{m}(v+k)\right.\right.
$$

and since φ, ψ are continuous with respect on the second variable, we deduce by 2.5 and the dominated convergence theorem that

$$
\forall x \in B, T u_{j}(x) \rightarrow T u(x) \quad \text { as } j \rightarrow \infty
$$

Since $T \Lambda$ is relatively compact in $C(\bar{B})$, we have the uniform convergence, namely

$$
\left\|T u_{j}-T u\right\|_{\infty} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Thus we have proved that T is a compact mapping from Λ to itself. Hence by the Schauder fixed point theorem, there exists $u \in \Lambda$ such that

$$
\begin{equation*}
u(x)=\int_{B} \Gamma_{m, n}^{(p)}(x, y)[\varphi(y, u(y))+\psi(y, u(y))] d y \tag{3.6}
\end{equation*}
$$

Using (3.5), (H3) and (H5), for each $y \in B$,

$$
\begin{equation*}
\varphi(y, u(y))+\psi(y, u(y)) \leq \varphi\left(y, a(\delta(y))^{m}\right)+b(\delta(y))^{m} k(y) \in L^{r}(B) \tag{3.7}
\end{equation*}
$$

So it is clear that u satisfies (in the sense of distributions) the elliptic differential equation

$$
(-\Delta)^{p m} u=\varphi(., u)+\psi(., u), \quad \text { in } B
$$

Furthermore, by (3.6), (3.7) and Remark 3.2, we deduce that $u \in C^{2 p m-1}(B)$. Therefore, using again (3.6) and 2.1 we obtain for $j \in\{0, \ldots, p-1\}$,

$$
\begin{equation*}
(-\Delta)^{j m} u(x)=\int_{B} \Gamma_{m, n}^{(p-j)}(x, y)[\varphi(y, u(y))+\psi(y, u(y))] d y \tag{3.8}
\end{equation*}
$$

Using similar arguments as above, we obtain for all $j \in\{0, \ldots, p-1\}$,

$$
\begin{equation*}
a_{j}(\delta(x))^{m} \leq(-\Delta)^{j m} u(x) \leq V_{p-j}\left(\varphi\left(., a_{j}(\delta(.))^{m}\right)\right)(x)+b_{j} V_{p-j}\left((\delta(.))^{m} k\right)(x), \tag{3.9}
\end{equation*}
$$

where a_{j}, b_{j} are positive constants. Finally, for $j \in\{0, \ldots, p-1\}$, from (3.9, 2.3) and 2.5), we have

$$
\begin{aligned}
a_{j}(\delta(x))^{m} & \leq(-\Delta)^{j m} u(x) \\
& \leq(\delta(x))^{m}\left(\left\|\frac{\varphi\left(., a_{j}(\delta(.))^{m}\right)}{(\delta(.))^{m}}\right\|_{m, n, p-j}+b_{j}\|k\|_{m, n, p-j}\right) \\
& \preceq(\delta(x))^{m}
\end{aligned}
$$

So u is the required solution.
Example 3.3. Let $r>n, \lambda<m+\frac{1}{r}, \gamma \geq 0$ and $\alpha, \beta \geq 0$ with $\alpha+\beta<1$. Let ρ_{1}, ρ_{2} be a nontrivial nonnegative Borel measurable functions on B satisfying $\rho_{1}(x) \leq(\delta(x))^{m(1+\gamma)-\lambda}$ and $\rho_{2}(x) \leq(\delta(x))^{m-\lambda}$. Then the problem

$$
\begin{gathered}
(-\Delta)^{p m} u=\rho_{1}(x) u^{-\gamma}+\rho_{2}(x) u^{\alpha} \log \left(1+u^{\beta}\right), \quad \text { in } B \\
u>0 \quad \text { in } B \\
\lim _{|x| \rightarrow 1} \frac{(-\Delta)^{j m} u(x)}{(1-|x|)^{m-1}}=0, \quad \text { for } 0 \leq j \leq p-1,
\end{gathered}
$$

has at least one positive solution, $u \in C^{2 p m-1}(B)$, satisfying

$$
(-\Delta)^{j m} u(x) \sim(\delta(x))^{m}, \quad \forall j \in\{0, \ldots, p-1\}
$$

Remark 3.4. If $m=1$ and $p \geq 1$, one can obtain similar existence result for 1.1) on a bounded domain $D \subset \mathbb{R}^{n}(n \geq 2)$ of class $C^{2 p, \alpha}$ with $\alpha \in(0,1]$.
Acknowledgements. I would like to thank Professor Habib Mâagli for stimulating discussions and useful suggestions. I also thank the anonymous referee for his/her careful reading of the paper.

References

[1] S. Agmon, A. Douglis, L. Nirenberg; Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math, 12 (1959), 623-727.
[2] I. Bachar; Estimates for the Green function and Existence of positive solutions for higher order elliptic equations, to appear in Abstract and Applied Analysis (2006).
[3] I. Bachar; Estimates for the Green function and existence of positive solutions of polyharmonic nonlinear equations with Navier boundary conditions, New Trends in Potential Theory, Theta, Bucharest 2005, 101-113.
[4] I. Bachar, H. Mâagli, S. Masmoudi, M Zribi; Estimates on the Green function and singular solutions for polyharmonic nonlinear equation, Abstract and Applied Analysis, 2003 (2003), no. 12, 715-741.
[5] S. Ben Othman; On a singular sublinear polyharmonic problem, to appear in Abstract and Applied Analysis.
[6] T. Boggio; Sulle funzioni di Green d'ordine m, Rend. Circ. Mat. Palermo 20, (1905), 97-135.
[7] H. Brezis; Analyse fonctionnelle, Dunod, Paris, 1999.
[8] Y. S. Choi, P. J. Mckenna; A singular quasilinear anisotropic elliptic boundary value problem, II, Trans. Amer. Math. Soc. 350(7) (1998), 2925-2937.
[9] D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of Second Order. SpringerVerlag 1983.
[10] H. C. Grunau, G. Sweers; Positivity for equations involving polyharmonic oprators with Dirichlet boundary conditions, Math. Ann. Man. 307 (1997), no. 4, 589-626.
[11] A. C. Lazer, P. J. Mckenna; On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), no. 3, 721-730.
[12] H. Mâagli, F. Toumi, M. Zribi; Existence of positive solutions for some polyharmonic nonlinear boundary value problems, Electron. Journal Diff. Eqns., 2003 (2003), no. 58, 1-19.
[13] H. Mâagli, M. Zribi; Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl. 263 (2001), no. 2, 522-542.
[14] J. P. Shi, M. X. Yao; On a singular semilinear elliptic problem, Proc. Roy. Soc. Edinburg 128A (1998) 1389-1401.

Imed Bachar
Département de mathématiques, Faculté des sciences de Tunis, campus universitaire, 2092 Tunis, Tunisia

E-mail address: Imed.Bachar@ipeit.rnu.tn

[^0]: 2000 Mathematics Subject Classification. 34B27, 35J40.
 Key words and phrases. Green function; higher-order elliptic equations;
 positive solution; Schauder fixed point theorem.
 (C) 2006 Texas State University - San Marcos.

 Submitted May 10, 2006. Published August 31, 2006.

