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EXISTENCE OF POSITIVE SOLUTIONS FOR HIGHER ORDER
SINGULAR SUBLINEAR ELLIPTIC EQUATIONS

IMED BACHAR

Abstract. We present existence result for the polyharmonic nonlinear prob-

lem

(−∆)pmu = ϕ(., u) + ψ(., u), in B

u > 0, in B

lim
|x|→1

(−∆)jmu(x)

(1− |x|)m−1
= 0, 0 ≤ j ≤ p− 1,

in the sense of distributions. Here m, p are positive integers, B is the unit ball
in Rn(n ≥ 2) and the nonlinearity is a sum of a singular and sublinear terms

satisfying some appropriate conditions related to a polyharmonic Kato class

of functions J (p)
m,n.

1. Introduction

In this paper, we investigate the existence and the asymptotic behavior of posi-
tive solutions for the following iterated polyharmonic problem involving a singular
and sublinear terms:

(−∆)pmu = ϕ(., u) + ψ(., u), in B
u > 0 in B

lim
|x|→1

(−∆)jmu(x)
(1− |x|)m−1

= 0, for 0 ≤ j ≤ p− 1,

(1.1)

in the sense of distributions. Here B is the unit ball of Rn (n ≥ 2) and m, p are
positive integers. This research is a follow up to the work done by Shi and Yao [14],
who considered the problem

∆u+ k(x)u−γ + λuα = 0, in D,
u > 0, in D

(1.2)

where D is a bounded C1,1 domain in Rn(n ≥ 2), γ, α are two constants in (0, 1), λ
is a real parameter and k is a Hölder continuous function in Ω. They proved the
existence of positive solutions. Choi, Lazer and Mckenna in [8] and [11] have studied
a variety of singular boundary value problems of the type ∆u+p(x)u−γ , in a regular
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domain D, u = 0 on ∂D, where γ > 0 and p is a nonnegative function. They proved
the existence of positive solutions. This has been extended by Mâagli and Zribi [13]
to the problem ∆u = −f(., u) in D, u = 0 on ∂D, where f(x, .) is nonnegative and
nonincreasing on (0,∞).

On the other hand, problem (1.1) with a sublinear term ψ(., u) and a singular
term ϕ(., u) = 0, has been studied by Mâagli, Toumi and Zribi in [12] for p = 1 and
by Bachar [2] for p ≥ 1.

Thus a natural question to ask, is for more general singular and sublinear terms
combined in the nonlinearity, whether or not the problem (1.1) has a solution, which
we aim to study in this paper.

Our tools are based essentially on some inequalities satisfied by the Green func-
tion Γ(p)

m,n (see (2.1) below) of the polyharmonic operator u 7→ (−∆)pmu, on the
unit ball B of Rn (n ≥ 2) with boundary conditions ( ∂

∂ν )j(−∆)imu
∣∣
∂B

= 0, for
0 ≤ i ≤ p− 1 and 0 ≤ j ≤ m− 1, where ∂

∂ν is the outward normal derivative. Also,
we use some properties of functions belonging to the polyharmonic Kato class J (p)

m,n

which is defined as follows.

Definition 1.1 ([2]). A Borel measurable function q in B belongs to the class J (p)
m,n

if q satisfies the condition

lim
α→0

(
sup
x∈B

∫
B∩B(x,α)

(
δ(y)
δ(x)

)mΓ(p)
m,n(x, y)|q(y)|dy

)
= 0, (1.3)

where δ(x) = 1− |x|, denotes the Euclidean distance between x and ∂B.

Typical examples of elements in the class J (p)
m,n are functions in Ls(B), with

s >
n

2pm
if n > 2pm

or with
s >

n

2(p− 1)m
, if 2(p− 1)m < n < 2pm

or with
s ∈ (1,∞] if n ≤ 2(p− 1)m

or with n = 2pm; see [2]. Furthermore, if q(x) = (δ(x))−λ, then q ∈ J (p)
m,n if and

only if

λ < 2m, if p = 1 (see [4]) or

λ < 2m+ 1, if p ≥ 2 (see [2]).

For the rest of this paper, we refer to the potential of a nonnegative measurable
function f , defined in B by

Vp(f)(x) =
∫

B

Γ(p)
m,n(x, y)f(y)dy.

The plan for this paper is as follows. In section 2, we collect some estimates for
the Green function Γ(p)

m,n and some properties of functions belonging to the class
J (p)

m,n. In section 3, we will fix r > n and we assume that the functions ϕ and ψ
satisfy the following hypotheses:

(H1) ϕ is a nonnegative Borel measurable function on B × (0,∞), continuous
and nonincreasing with respect to the second variable.

(H2) For each c > 0, the function x 7→ ϕ(x, c(δ(x))m)/(δ(x))m is in J (1)
m,n.
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(H3) For each c > 0, the function x 7→ ϕ(x, c(δ(x))m) is in Lr(B).
(H4) ψ is a nonnegative Borel measurable function on B×[0,∞), continuous with

respect to the second variable such that there exist a nontrivial nonnegative
function h ∈ L1

loc(B) and a nontrivial nonnegative function k ∈ J (1)
m,n such

that

h(x)f(t) ≤ ψ(x, t) ≤ (δ(x))mk(x)g(t), for (x, t) ∈ B × (0,∞), (1.4)

where f : [0,∞) → [0,∞) is a measurable nondecreasing function satisfying

lim
t→0+

f(t)
t

= +∞, (1.5)

and g is a nonnegative measurable function locally bounded on [0,∞) sat-
isfying

lim sup
t→∞

g(t)
t

< ‖Vp((δ(.))mk)‖∞. (1.6)

(H5) The function x 7→ (δ(x))mk(x) is in Lr(B).
Using a fixed point argument, we shall prove the following existence result.

Theorem 1.2. Assume (H1)–(H5). Then (1.1) has at least one positive solution
u ∈ C2pm−1(B), such that

aj(δ(x))m ≤ (−∆)jmu(x) ≤ Vp−j(ϕ(., aj(δ(.))m))(x) + bjVp−j((δ(.))mk)(x),

for j ∈ {0, . . . , p− 1}. In particular,

aj(δ(x))m ≤ (−∆)jmu(x) ≤ cj(δ(x))m,

where aj , bj , cj are positive constants.

Typical examples of nonlinearities satisfying (H1)–(H5) are:

ϕ(x, t) = k(x)(δ(x))mγ+mt−γ ,

for γ ≥ 0, and
ψ(x, t) = k(x)(δ(x))mtαLog(1 + tβ),

for α, β ≥ 0 such that α + β < 1, where k is a nontrivial nonnegative functions in
Lr(B).

Recently Ben Othman [5] considered (1.1) when p = 1 and the functions ϕ,ψ
satisfy hypotheses similar to the ones stated above. Then she proved that (1.1) has
a positive continuous solutions u satisfying

a0(δ(x))m ≤ u(x) ≤ V1(ϕ(., a0(δ(.))m))(x) + b0V1((δ(.))m−1k)(x).

Here we prove an existence result for the more general problem (1.1) and ob-
tain estimates both on the solution u and their derivatives (−∆)jmu, for all j ∈
{1, . . . , p− 1}.

To simplify our statements, we define some convenient notations:
(i) Let B = {x ∈ Rn : |x| < 1} and let B = {x ∈ Rn : |x| ≤ 1}, for n ≥ 2.
(ii) B(B) denotes the set of Borel measurable functions in B, and B+(B) the

set of nonnegative ones.
(iii) C(B) is the set of continuous functions in B.
(iv) Cj(B) is the set of functions having derivatives of order ≤ j, continuous in

B (j ∈ N).
(v) For x, y ∈ B, [x, y]2 = |x− y|2 + (1− |x|2)(1− |y|2).
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(vi) Let f and g be two positive functions on a set S. We call f � g, if there is
c > 0 such that f(x) ≤ cg(x), for all x ∈ S.
We call f ∼ g, if there is c > 0 such that 1

cg(x) ≤ f(x) ≤ cg(x), for all
x ∈ S.

(vii) For any q ∈ B(B), we put

‖q‖m,n,p := sup
x∈B

∫
B

(
δ(y)
δ(x)

)mΓ(p)
m,n(x, y)|q(y)|dy.

2. Properties of the iterated Green function and the Kato class

Let m ≥ 1, p ≥ 1 be a positive integer and Γ(p)
m,n be the iterated Green function

of the polyharmonic operator u 7→ (−∆)pmu, on the unit ball B of Rn (n ≥ 2) with
boundary conditions ( ∂

∂ν )j(−∆)imu
∣∣
∂B

= 0, for 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ m− 1,
where ∂

∂ν is the outward normal derivative.
Then for p ≥ 2 and x, y ∈ B,

Γ(p)
m,n(x, y) =

∫
B

. . .

∫
B

Gm,n(x, z1)Gm,n(z1, z2) . . . Gm,n(zp−1, y)dz1 . . . dzp−1,

(2.1)
where Gm,n is the Green function of the polyharmonic operator u 7→ (−∆)mu, on
B with Dirichlet boundary conditions ( ∂

∂ν )ju = 0, 0 ≤ j ≤ m− 1.
Recall that Boggio in [6] gave an explicit expression for Gm,n: For each x, y in

B,

Gm,n(x, y) = km,n|x− y|2m−n
∫ [x,y]

|x−y|

1

(v2 − 1)m−1

vn−1
dv,

where km,n is a positive constant.
In this section we state some properties of Γ(p)

m,n and of functions belonging to
the Kato class J (p)

m,n. These properties are useful for the statements of our existence
result, and their proofs can be found in [2].

Proposition 2.1. On B2, the following estimates hold

Γ(p)
m,n(x, y) ∼


(δ(x)δ(y))m

|x−y|n−2pm[x,y]2m , for n > 2pm,

(δ(x)δ(y))m

[x,y]2m log(1 + [x,y]2

|x−y|2 ), for n = 2pm
(δ(x)δ(y))m

[x,y]n−2(p−1)m , for 2(p− 1)m < n < 2pm.

(2.2)

Proposition 2.2. With the above notation,

(δ(x)δ(y))m � Γ(p)
m,n(x, y),

Γ(p)
m,n(x, y) � Γ(p−1)

m,n (x, y), for p ≥ 2.

Γ(p)
m,n(x, y) � δ(x)δ(y)Γ(p)

m−1,n(x, y), for m ≥ 2.

In particular,

J (1)
m,n ⊂ J (2)

m,n · · · ⊂ J (p)
m,n , J (p)

1,n ⊂ J (p)
2,n ⊂ · · · ⊂ J (p)

m,n. (2.3)

Proposition 2.3. Let q be a function in J (p)
m,n. Then

The function x 7→ (δ(x))2mq(x) is in L1(B). (2.4)

‖q‖m,n,p <∞. (2.5)
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3. Existence result

We are concerned with the existence of positive solutions for the iterated poly-
harmonic nonlinear problems (1.1). For the proof, we need the next Lemma. For a
given nonnegative function q in J (p)

m,n, we define

Mq = {θ ∈ B(B), |θ| ≤ q}.

Lemma 3.1. For any nonnegative function q ∈ J (p)
m,n, the family of functions{ ∫

B

( δ(y)
δ(x)

)mΓ(p)
m,n(x, y)|θ(y)|dy : θ ∈Mq

}
(3.1)

is uniformly bounded and equicontinuous in B and consequently it is relatively com-
pact in C(B).

Proof. Let q be a nonnegative function q ∈ J (p)
m,n and L be the operator defined on

Mq by

Lθ(x) =
∫

B

( δ(y)
δ(x)

)mΓ(p)
m,n(x, y)|θ(y)|dy.

By (2.5), for each θ ∈Mq, we have

sup
x∈B

∫
B

( δ(y)
δ(x)

)mΓ(p)
m,n(x, y)|θ(y)|dy ≤ ‖q‖m,n,p <∞.

Then the family L(Mq) is uniformly bounded. Next, we prove the equicontinuity
of functions in L(Mq) on B. Indeed, let x0 ∈ B and ε > 0. By (1.3), there exists
α > 0 such that for each x, x′ ∈ B(x0, α) ∩B, we have

|Lθ(x)− Lθ(x′)|

≤
∫

B

∣∣Γ(p)
m,n(x, y)
(δ(x))m

− Γ(p)
m,n(x′, y)
(δ(x′))m

∣∣(δ(y))m|q(y)| dy

≤ ε+
∫

B∩B(x0,2α)∩Bc(x,2α)

∣∣Γ(p)
m,n(x, y)
(δ(x))m

− Γ(p)
m,n(x′, y)
(δ(x′))m

∣∣(δ(y))m|q(y)| dy

+
∫

B∩Bc(x0,2α)∩Bc(x,2α)

∣∣Γ(p)
m,n(x, y)
(δ(x))m

− Γ(p)
m,n(x′, y)
(δ(x′))m

∣∣(δ(y))m|q(y)| dy

Now since for y ∈ Bc(x, 2α) ∩B, from Proposition 2.1, we have

Γ(p)
m,n(x, y) � (δ(x)δ(y))m.

We deduce that∫
B∩B(x0,2α)∩Bc(x,2α)

|Γ
(p)
m,n(x, y)
(δ(x))m

− Γ(p)
m,n(x′, y)
(δ(x′))m

|(δ(y))m|q(y)| dy

�
∫

B∩B(x0,2α)

(δ(y))2m|q(y)| dy,

which tends by (2.4) to zero as α→ 0.
Since for y ∈ Bc(x0, 2α) ∩ B, the function x 7→ ( δ(y)

δ(x) )
mΓ(p)

m,n(x, y) is continuous
on B(x0, α) ∩B, by (2.4) and by the dominated convergence theorem, we have∫

B∩Bc(x0,2α)∩Bc(x,2α)

|Γ
(p)
m,n(x, y)
(δ(x))m

− Γ(p)
m,n(x′, y)
(δ(x′))m

|(δ(y))m|q(y)| dy → 0
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as |x − x′| → 0. This proves that the family L(Mq) is equicontinuous in B. It
follows by Ascoli’s theorem, that L(Mq) is relatively compact in C(B). �

The next remark will be used to obtain regularity of the solution.

Remark 3.2. Let r > n and f be a nonnegative measurable function in Lr(B).
Then Vpf ∈ C2pm−1(B).

Indeed, by using the regularity theory of [1] (see also [10, Theorem 5.1], and [7,
Theorem IX.32]), we obtain that Vpf ∈ W 2pm,r(B). Furthermore, since r > n,
then one finds that Vpf ∈ C2pm−1(B) (see [9, Chap. 7, p.158], or [7, Corollary
IX.15]).

Proof of Theorem 1.2. Let K be compact in B such that γ :=
∫

K
h(y)dy > 0 and

define r0 := miny∈K(δ(y))m > 0.
By (2.2) there exists a constant c > 0 such that for each x, y ∈ B,

c(δ(x)δ(y))m ≤ Γ(p)
m,n(x, y). (3.2)

By (1.5) we can find a > 0 such that cr0γf(ar0) ≥ a.
By (H4) and (2.3), the function k ∈ J (1)

m,n ⊂ J (p)
m,n; then it follows from (2.5) that

δ := ‖Vp((δ(.))mk)‖∞ ≤ ‖k‖m,n,p <∞.

Let 0 < α < 1
δ , then using (1.6) we can find η > 0 such that for each t ≥ η,

g(t) ≤ αt. Put β := sup0≤t≤η g(t). Then we have

0 ≤ g(t) ≤ αt+ β, for t ≥ 0. (3.3)

On the other hand, using (3.2) and (2.4), there exists a constant c0 > 0 such that

Vp((δ(.))mk)(x) ≥ c0(δ(x))m. (3.4)

From (H2), (2.5) and (2.3) we derive that

ν := ‖Vp(ϕ(., a(δ(.))m)‖∞ <∞.

Put b = max{ a
c0
, αν+β

1−αδ } and let Λ be the convex set given by

Λ =
{
u ∈ C(B) : a(δ(x))m ≤ u(x) ≤ Vp(ϕ(., a(δ(.))m)(x) + bVp((δ(.))mk)(x)

}
.

and T be the operator defined on Λ by

Tu(x) =
∫

B

Γ(p)
m,n(x, y)[ϕ(y, u(y)) + ψ(y, u(y))]dy.

¿From (3.4), Λ 6= ∅. We will prove that T has a fixed point in Λ. Indeed, for u ∈ Λ,
we have by (1.4), (3.2) and the monotonicity of f that

Tu(x) ≥
∫

B

Γ(p)
m,n(x, y)ψ(y, u(y))dy

≥ c(δ(x))m

∫
B

(δ(y))mh(y)f(u(y))dy

≥ c(δ(x))mf(ar0)r0
∫

K

h(y)dy

≥ a(δ(x))m.
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On the other hand, using (H1), (1.4) and (3.3), we deduce that

Tu(x) ≤ Vp(ϕ(., a(δ(.))m)(x) +
∫

B

Γ(p)
m,n(x, y)(δ(y))mk(y)g(u(y))dy

≤ Vp(ϕ(., a(δ(.))m)(x) +
∫

B

Γ(p)
m,n(x, y)(δ(y))mk(y)(αu(y) + β)dy

≤ Vp(ϕ(., a(δ(.))m)(x) + (α(ν + bδ) + β)Vp((δ(.))mk)(x)

≤ Vp(ϕ(., a(δ(.))m)(x) + bVp((δ(.))mk)(x).

Let v(x) = ϕ(x, a(δ(x))m/(δ(x))m. Then using similar arguments as above, we
deduce that for each u ∈ Λ

ϕ(., u) ≤ ϕ(., a(δ(.))m) = (δ(.))mv,

ψ(., u) ≤ g(u)(δ(.))mk ≤ b(δ(.))mk.
(3.5)

That is, ϕ(., u)+ψ(., u) ∈M(v+bk)(δ(.))m . Now since by (H2) and (H4), the function
(v+ bk)(δ(.))m ∈ J (1)

m,n ⊂ J (p)
m,n, we deduce from Lemma 3.1, that T (Λ) is relatively

compact in C(B). In particular, for all u ∈ Λ, Tu ∈ C(B) and so T (Λ) ⊂ Λ. Next,
let us prove the continuity of T in Λ. We consider a sequence (uj)j∈N in Λ which
converges uniformly to a function u ∈ Λ. Then we have

|Tuj(x)− Tu(x)| ≤ Vp[|ϕ(., uj(.)− ϕ(., u(.))|+ |ψ(., uj(.))− ψ(., u(.)|].

Now, by (3.5), we have

|ϕ(., uj(.)− ϕ(., u(.))|+ |ψ(., uj(.))− ψ(., u(.)| ≤ 2(1 + b)(δ(.))m(v + k)

and since ϕ,ψ are continuous with respect on the second variable, we deduce by
(2.5) and the dominated convergence theorem that

∀x ∈ B, Tuj(x) → Tu(x) as j →∞

Since TΛ is relatively compact in C(B), we have the uniform convergence, namely

‖Tuj − Tu‖∞ → 0 as j →∞.

Thus we have proved that T is a compact mapping from Λ to itself. Hence by the
Schauder fixed point theorem, there exists u ∈ Λ such that

u(x) =
∫

B

Γ(p)
m,n(x, y)[ϕ(y, u(y)) + ψ(y, u(y))]dy. (3.6)

Using (3.5), (H3) and (H5), for each y ∈ B,

ϕ(y, u(y)) + ψ(y, u(y)) ≤ ϕ(y, a(δ(y))m) + b(δ(y))mk(y) ∈ Lr(B). (3.7)

So it is clear that u satisfies (in the sense of distributions) the elliptic differential
equation

(−∆)pmu = ϕ(., u) + ψ(., u), in B.

Furthermore, by (3.6), (3.7) and Remark 3.2, we deduce that u ∈ C2pm−1(B).
Therefore, using again (3.6) and (2.1) we obtain for j ∈ {0, . . . , p− 1},

(−∆)jmu(x) =
∫

B

Γ(p−j)
m,n (x, y)[ϕ(y, u(y)) + ψ(y, u(y))]dy. (3.8)

Using similar arguments as above, we obtain for all j ∈ {0, . . . , p− 1},

aj(δ(x))m ≤ (−∆)jmu(x) ≤ Vp−j(ϕ(., aj(δ(.))m))(x) + bjVp−j((δ(.))mk)(x), (3.9)
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where aj , bj are positive constants. Finally, for j ∈ {0, . . . , p− 1}, from (3.9), (2.3)
and (2.5), we have

aj(δ(x))m ≤ (−∆)jmu(x)

≤ (δ(x))m(‖ϕ(., aj(δ(.))m)
(δ(.))m

‖m,n,p−j + bj‖k‖m,n,p−j)

� (δ(x))m.

So u is the required solution. �

Example 3.3. Let r > n, λ < m + 1
r , γ ≥ 0 and α, β ≥ 0 with α + β < 1.

Let ρ1, ρ2 be a nontrivial nonnegative Borel measurable functions on B satisfying
ρ1(x) ≤ (δ(x))m(1+γ)−λ and ρ2(x) ≤ (δ(x))m−λ. Then the problem

(−∆)pmu = ρ1(x)u−γ + ρ2(x)uα log(1 + uβ), in B

u > 0 in B

lim
|x|→1

(−∆)jmu(x)
(1− |x|)m−1

= 0, for 0 ≤ j ≤ p− 1,

has at least one positive solution, u ∈ C2pm−1(B), satisfying

(−∆)jmu(x) ∼ (δ(x))m, ∀j ∈ {0, . . . , p− 1}.

Remark 3.4. If m = 1 and p ≥ 1, one can obtain similar existence result for (1.1)
on a bounded domain D ⊂ Rn (n ≥ 2) of class C2p,α with α ∈ (0, 1].
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