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ELLIPTIC PERTURBATIONS FOR HAMMERSTEIN EQUATIONS
WITH SINGULAR NONLINEAR TERM
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In memory of Professor Aldo Cossu

ABSTRACT. We consider a singular elliptic perturbation of a Hammerstein in-
tegral equation with singular nonlinear term at the origin. The compactness
of the solutions to the perturbed problem and, hence, the existence of a posi-
tive solution for the integral equation are proved. Moreover, these results are
applied to nonlinear singular homogeneous Dirichlet problems.

1. INTRODUCTION

In this paper, using elliptic perturbations, we show the existence of a positive
solution to the Hammerstein equation

u(z) = /Q K(x,y)g(y u()dy, €9, (L1)

where Q@ C RN, N > 1, is a bounded open set with smooth boundary and g(y, s),
y € Q, s >0, is a positive function that is bounded in a neighborhood of +o0c and
possibly nonsmooth as s — 0T, in particular we do not exclude that

liminf g(y,s) =0; limsupg(y,s) = +oc.

s—0+ s—0+

Moreover, we do not assume anything about the existence of super or sub solutions
to .

The literature on Hammerstein equations with integrand depending on the recip-
rocal of the solution is rather limited, nevertheless they arise, more or less directly,
in a variety of settings: semilinear boundary value problems with a nonlinear term
depending on the reciprocal of the solution, see [4, 5l [6], 10 12} T4] and Theorem
in the following section; mathematical models of signal theory, see [18]; ecological
models, see [19, pg. 103-104]; Boussinesq’s equation in filtration theory, see [16].
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In literature some existence results for (|1.1) are already present (see [3} [7, [8, [,
17]. In [9] 7], the solutions are obtained via the perturbed problem

ue(z) = /QK(ay)g(y,g—i—us(y))dy, u. € L*(Q). (1.2)

The argument of this paper consists in the approximation of (1.1)) with the following
elliptic integro-differential problem

fﬁA%@ﬁ+%@0:l?ﬂ%wﬂ%€+%@D@ zeQ

ue(z) >0 z€Q,
ue(z) =0 =z €09,

(1.3)

where a > 0. The elliptic perturbations are interesting from both the math-
ematical and the physical point of view. Indeed, the solutions to belong to
W29(2) N W,9(Q) on the other hand the ones of are merely in L(£2). The
convergence of the solutions of the approximated problems to one of the inte-
gral problem makes easier the implementation of robust numerical schemes.
In the fluidodynamic interpretation of in filtration theory (see [16]) the per-
turbation —e“Au, represents a small viscosity. This approach to the existence of
solutions for has been used extensively in the last years in various frameworks,
in particular it gives physically meaningful solutions to Conservation Laws (see e.g.
2).

Let us be more precise regarding our results. We prove that there exist an
infinitesimal sequence (gx)ren and a nontrivial solution ug to such that

liin/gn(x”uo(x) — tg,, (2)|dx =0,

where u., € W29(Q) N W, 4(Q) solves (T.3) with e instead of e, 5(x) is a positive
function depending on K(z,y) (see the assumption (K2) in the following section),
and the exponent ¢ depends on the regularity of K(z,y) (see (K1). Moreover, we
prove that

/Qn(ac)uo(x)da: < 400

and we give an estimate on the first and second derivatives of the solutions to
as e — 0.

Finally, we consider the particular case in which K (x,y) is the Green’s function
of —A on Q. We prove an existence result for homogeneous semilinear Dirichlet
problems with integrand depending on the reciprocal of the solution, our result is
a bit more general than the ones present in the literature, see for example [4] 5] [0}
101, 12, [14).

The starting points of our analysis are the estimates for the solutions of singular
linear elliptic perturbations proved by the Huet [15] and Friedman [I1].

The paper is organized as follows. Section 2 is dedicated to the assumptions and
results. In Section 3 we prove the existence principle for the integral equation .
In Section 4 we apply that result to semilinear homogeneous Dirichlet problem for
—A with singular nonlinear term in the origin. Finally, in the appendix some
convergence results are present.
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2. ASSUMPTIONS AND RESULTS
Let us list the notation used in this paper.
Ry :=[0,400; R} :=]0,400[; N*:=N\{0}.

Let E C R¥ k > 1, be a measurable set (we will consider only measurable sets). |E|
is the measure of E, x g is the characteristic map of E and |- |, 5,1 < p < 00, is the
L*(E) norm. L (E)is the cone of all ¢ € LP(E), ¢ > 0 almost everywhere in E and
L (0, E), 0 measurable, is the cone of all measurable ¢, ¢ > 0 almost everywhere in

E, such that ¢ € L°(E). W%’p(E) is the space of the maps ¢ € LP(E) such that
— P
JLELT
ExE

Let u,v be two maps, v < v is the set of all points x € Q such that u(z) < v(z).
Analogously, we define v < v, u > v, u > v.

We continue with the assumptions on the nonlinear term g(y, s) and the kernel
K(z,y). Let g : @ xR% — R be a positive Caratheodory function (namely g(-, s) is
measurable in € for each s > 0; g(y, ) is continuous in R* for almost every y € Q).

(G1) There exist ¢g € L™(92), 1 <r < 400, and p > 0 such that

0<g"(y,s) < %;y), ye, 0<s<l,
S
where g*(y, ) := sup,<, 9(y,t) € R, (y,s) € @ x RY.

(G2) There exist o > 0 and Qg C £, |Qg] > 0, such that

lim inf M > 1o,
s—0+ S

uniformly with respect to y € .
Let K(z,y), (z,y) € Q x Q, be a nonnegative kernel and introduce the notation

M@:AKMM@@

(K1) K € W%’Q(Q x Q) with 1 < ¢ <ooandqg+r <qgr.
(K2) There exist two measurable positive maps a(-),n(-) such that

a(x)aly) < K (z,y): AK@WMW&MW

! 1 . o 1 * L
ne L (), ¢:= -1 a1 €L (Q), p*:=max{p,1}.

(K3) For every n € N*, the operator K is compact from L(£,,) in itself, where
1
Q,={zeQ:=-<a(x)}, neN-
n

Observe that all the assumptions, except for (K1), are weaker than the ones in [9],
in particular on p we require only the positivity. In [9] it possible to find a long list
of kernels K satisfying (Ks), (K3), and within those we have the Green’s function
—A with Dirichlet boundary conditions and the Green’s functions associated to
several one-dimensional boundary value problems.

Remark 2.1. Hypothesis (G1) implies g*(-,s) € L"(£2), s > 0. Hypotheses (K1),
(K2) imply a € LI(Q).
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Remark 2.2. The condition a > 0 a.e. in  is equivalent to the fact that (Qy,),en=
covers §). Indeed, assuming by contradiction that |\ (US2,€,)| > 0. Since ¢ > 0
a.e. in Q and (Qy,),en+ is increasing we have

Q\Q,
0< / a(x)dzr = lim a(z)dz < lim 191 Q| =0,
(Q\ (U, 20)) non

*oJ@\Qn)

that is absurd. The other implication is trivial. Finally, due to the continuity of
the Lebesgue measure we have also lim, |2\ Q,| = 0.

Regarding the constant « (see (|1.3)) we consider only the case o = 10g(p + 1).
The main results of this paper are the following.

Theorem 2.3. If
pola®la, > 1, (2.1)
then there exists a solution ug € LY (n,) to (L.1) such that |ag(-,uo)|1,0 >0 and

lag(-,uo0)1,0a(z) <wuo(z), z€Q ae
Moreover, there exists (e)ken,ex — 0, such that

lilgn [n(uo — ue, )10 =0, wue, —up a.e. in

where uz, € W21(Q) N W, %(Q) solves (1.3).,. Finally, there exist 0 < & < L and

a constant ¢ > 0, independent on €, such that
N N
2 2 _ 2 _
e Z |07 juclg0 +e2 Z |Oiue|g0 < cePt? 0<e<e
i,j=1 i=1

If K(z,y) is the Green’s function of —A on 2, we get an existence result for the
Dirichlet problem

—Au = g(z,u) in Q;
u=0 on JN.

Theorem 2.4. Let N > 2. Assume that g(y, s) satisfies (G1), (G2) with

. . ¢O 1 *
(<7 4tTsSre g € L), pt=max{p 1},
where §(x) = dist(z,09), xRN,
If
piolé3l1,00 > 1, (2.2)

where ¢1 is a positive eigenfunction of the Dirichlet problem for —A in Q such that
¢1(2)¢1(y) < G(z,y),
then there exist ug € VVE)CT(Q) NC(Q) and ca > 0 such that ca6(z) < ug(z) and
—Aug(z) = g(z,uo(z)) = €Q,

up(x) >0 =z €9, (2.3)
up(z) =0 x € 9N
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Moreover, for every e > 0 there exists u. € W*"(Q), a solution of
e”A%u.(7) — Auc(2) = g(z,e +u-(z)) z€Q,
ue(z) >0 zeq, (2.4)
Aue(z) =us(x) =0 =z €09,

and (e)ken, ek — 0, such that ue, — ug in WQ’T(Q) N L1(0).

loc
In light of Lemma [4.1] below, G(z,y) satisfies (K1), (K2), (K3) with
N 1 1
. = §(2): _
q < N _ 1’ a’(ir) \/CT (‘r)’ n(‘r) Cl\/a7

hence the integral equation associated with (2.3 satisfies the same hypotheses of
(1.1). Since 4 is equivalent to each positive eigenfunction of the Dirichlet problem
for —A in Q (see [M]), (2.2) coincides with (2.1)) when K = G.

3. PROOF OF THEOREM [2.3]

In the following statements and proofs we write “cost” for positive constants
independent of €.

The first step of our analysis consists in the existence of solutions for .
Thanks to (G1), (K1),

K(g°(e)) = /Q K(-y)g"(.e)dy € LI(), &> 0;

therefore, K(g(-,e +u)) € L9(Q2), € >0, v € LL(Q2). Due to [I3, Theorem 9.15],

for each ¢ > 0 and u € L% (), there exists a unique . (u) € W>4(Q) N W, ()
such that

—*Ad (u) + P (u) = K(g9(,e+u)) inQ,
O (u) >0 inQ,
®.(u) =0 on 9.
Analogously, there exists a unique U, € W22(Q) N Wy'?(2) such that
—e*AU. + U, = K(g*(',€)) in €,
U.>0 inQ,
U. =0 on 0N.

Since 0 < K(g(-,e + u)) < K(g*(-,¢)), a.e. in Q, the Maximum Principle states
that 0 < ®.(u) < U.. Hence, we have that

(L) C S ={weW>(Q)|0<w< U}
Moreover, we have the following result.

Lemma 3.1. Let ¢ > 0.

(i) ®. is continuous in the sense that for every (un)nen and @ in LI (),
Uy — U i LIQ) = B(uy) — B(a) in WHUQ).
(ii) ®(LL(R)) is compact in LI(L).
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Proof. (i) Let (upn)nen and @ in L% (Q) be such that u, — @ in L9(Q). By (G1),
0<g(e+un) <g'(he) €L7(Q) C LY(Q), neN.
Due to the continuity of the Nemytskii operator u € LY(Q) — g(-,e +u) € LY (Q):
g(e+un) — g(e+a) in L7(Q).
Then
K(g(- e +uy)) — K(g(-,e +u)) in LI(Q). (3.1)

Since ®. (uy) — ®.(u) € W24(Q) N W, 4(Q) and

e Ao () — ()] + [®e(un) — B(@)] = K(g-re +un)) — K(g(-r= + ),

employing [I3, Lemma 9.17], there exists ¢. > 0 independent on u, and @, such
that

”(I)E(un) - q)s(ﬂ)HW?’q(Q) < CE‘K(Q(HE + un)) - K(g(-,& + 7:L))|q,ﬂ~

Hence (i) follows from (3.1)).

(ii) Let (un)nen, un € L%(Q) be bounded. We prove that (®.(un))nen has a
converging subsequence in L(€2). Due to (G1) and ((K1), (K(g(-,€ + ©n)))nen is
bounded in L9(Q). Hence (®.(un))nen is bounded in Wy 9(Q) (see [I3, Lemma
9.17]). Using Wy*(Q) < < L(2), (P.(un))nen has a converging subsequence in
L2(Q)). The lemma is proved. O

Corollary 3.2. For each ¢ > 0 there exists u. € S. C W24(Q), such that u. =
b (ue), namely
—e*Aue +ue = K(g(-, e +ue)) in Q,
us >0 in Q,
us =0 on IN.

The claim of the above corollary follows directly from the Schauder theorem.
The following two lemmas play a key role in our argument.

Lemma 3.3 ([I5 Proposition 2.1]). Let 1 < p < oo and A1 be the first eigenvalue
of the Dirichlet problem for —A on . For every 0 < ¢ < )\—11 and w € W2P(Q) N

WP () we have that
e lwllwaria + 3 [wllwrom + [wlpa < const| — c®Aw + w0,
Moreover, if w. € W*P(Q) solves
—%Aw. +w. =h. in 9,
we =0 on 09,
with he € LP(2) converging as € — 0 in LP(QY), there results
lim jwe = helpo =05 lim e¥{|we w2 ) = 0.

Lemma 3.4. For each e > 0 there exists a unique K. € W294(Qx Q)NW, (2 x Q)
such that

—eSIPTVAK, + K. =K inQxQ,

K. >0 nQxQ,
rK. =0 ond(Q2xQ).
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Moreover,

(i) ePTVIK [lw2aiaxa) + 2P K. [wia@axa) + [Kelgaxa
< const | K|q.axa-
(ii) There exists eg > 0 such that |K. — K|q.0x0

< const(£84(P+1)) 3¢ ||K|| aaxay’ ,0<e<eg.

Proof. Part (i) follows from the previous lemma, and (ii) follows from [I1 Theorem
1.2]. O

For short, introduce the notation

. 1
g- = g(, e +u:); €:=minfe, 5}

For the rest of this article, we assume that 0 < ¢ < & The second step of our
argument consists in the following estimates.

Lemma 3.5. The following results hold:
(a) |K(9e)|q,0 < conste™P. (It suffices to assume K € LI(Q2 x §).)
(b) |Kc(9e)]q.0 < consteP.
(c) [[K:(g:)|wraga) < consteP=3a@+l),
(@) [[Kc(9e)llwa() < conste™P=6altl),
(e) [K(ge) — Ko(g:)lg0 < consteP 2.
(f) |uelq,0 < conste™P.
(g) |lucllwrag) < consteP=2aP+l),
Proof. We begin by proving
| K (ge)lq,0 < conste P| K|, axa, (3.2)

which implies (a). Since ¢ + 7 < ¢r is equivalent to ¢’ < r, thanks to (G1),
¢ng ( 9 2) S Lq (Q) Deﬁne X = (/LL6 g l)7

2
|K(9e)lq.0
<K (gexx)lg.0 + K (gexarx)lg.

/ IR a+u(5<)))pdy)qdl’);+ /(/K(l"vy)g*(y,l)dy)qu)‘ll
Sgp / /Kqudy)|¢o|q19da: / /ny

|dolq 02 1 ‘ )
IRAal IS L (. = .
( s 9°(+3)] o) Klasxe

Hence (3.2)) is proved. Analogously we can prove
| K:(ge)|q.0 < conste™P| K.
Then employing (3.4) (i), we get (b). Since

@Ks(gs)(x):/Qc?mKs(x,y)gs(y)dy; 0?,st(95)($):/Qf’ii,x_jKe(ﬂc,y)gs(y)dyv

arguing in the same way we have

‘aK (96)|qQ < const E7p|a ~K€|q79><Q§

I A

IN

_|_

q,2x0-

| (95)|QQ <CODStE p| T4 :ijé"q,QXQ‘
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Employing again (3.4)(ii) we get (c), (d).
Using the same argument of (3.2]),

|K(g€) - Ks(gs)|q,(2 < const 5_p|K - KE'q,QXQv
by (3.4) (i),

|K(9:) — K=(9:)
that is (e). Applying Lemma to ue in light of (3.2)

€5q(p+1)Huenwlvq(ﬂ) + |u6|q,§2 < const |K(96)|q,9 < conste™?,

from which (f) and (g) follow. O

< p+2
.0 < conste HKHW%‘Q(QXQ)’

Lemma 3.6. The following estimate holds
N N
e Z |8i2,jus|q,9 tez Z |05ue g, + ue — K(ge)lg0 < cePt?,

ij=1 i=1
for some constant ¢ > 0 independent of .

Proof. We begin by proving that K.(g.) € W24(Q) N W, %(Q). The fact K.(g.) €
W24(Q) follows from (3.5 (d). Due to Lemma K. € Wyl (Q2xQ). By definition
of W 4(Q x Q) there exists (®,),, B, € C5°( x Q) such that

hﬁn HKE - (I)nHWLq(QxQ) =0. (3'3)
Denote
®,,(ge)(x) = /Q%(Ly)ga(y)dy, reQ.

Since 90 x Q@ C 9(Q x Q) we have that ®,(g.) € C§°(Q). Using the Holder
Inequality,
N

[ K (g:) — (I)n(ga)Hleq(Q) = Z |0i K (g:) — 8iq)n(96)‘q,ﬂ + [Ke(g:) — ‘I)n(ga”qﬂ

i=1
N
S (Z |811K5 - azi®n|q,9 + |Ks - ¢n|q,Q) |gs|q/,9
i=1

= K = Pullwra(e)lgel, o

Employing (3.3),
lim || K (92) = ®n(ge)lwrao) =0,

then by definition, K.(g.) € Wy?(€2). We continue by observing that
—e%Aue — Ke(ge)) + (ue — Ke(9:)) = K(ge) — Ke(g:) + e*AK:(ge ).
From Lemma [3.3]

e¥||ue — Ks(gs)HVqu(Q) +e2 llue — Ks(gs)||W1=q(Q) + |ue — Ks(gs)|q79
< const |K(ga) - Ke(gs) + EQAKE(QE)L],Q;

hence
L := EQHUEHWZ‘I(Q) + E%HUEHW“I(Q) + |u€ - K(QS)lq,Q

< const (|K(g2) = Ke(g:)lo.o + €1 Kelge) o) + e 1Ka(92) lwrncey )



EJDE-2006/104 ELLIPTIC PERTURBATIONS FOR HAMMERSTEIN EQUATIONS 9

Using Lemma[3.5]
L. < const (€p+2 + glalp+1)—p + EQQ(P'H)—P).

Since p+2 < 2q(p+1) —p < 4q(p + 1) — p, we have L. < consteP*2. This gives
the claim. 0

Lemma 3.7. The sequence (age)o<e<e is equiabsolutely continuous, more precisely
for each E CC Q,
lageh e <T(E), 0<e<Eg,

where
T(E) = A(E) + C(E) + /B(E) + C(E); A(E)= ’ag*("%)‘w;
B(E) = ¢lgolqy,p; C(E) = ‘% ?E

Proof. Define X = EN (u. < %) Multiplying (1.3) by g and integrating on X :

—50‘/ (Aug)ggdm—l-/ ueggdxz/ K(g:)gedx. (3.4)
X X X

We continue by estimating separately the three terms. By (K1), ¢ < r, hence
$o € L7 () (see (G1)) so

N N
—60“/ Au.g.dr < e*7P Z / |8ijug|¢odx <eg¥P Z |8iju€
X X

ij=1 ij=1

0.X [ dolg x-

. 1
Since € < 55 from Lemma

c
~e [ Aucgede < oy < Slély. < B(E). (35)
X

We distinguish two cases. If p <1,

- 1
/uegadxé/ uz Pgodr < o= |doh,x < Idol1e-
X X
Ifp>1,
1
5 6 1 6o /0 | b

/uagedm:/ ugt/P gk dxé/ T (ag:)? dx < p-l’ “lagel{ x
X X X a? a LE ’

where p’ = ﬁ. Therefore,
C(E ifp <1,
/ Uegedr < (®) il (3.6)
X C(E)-lage|l} x ifp>1.
Finally, from (K2),
/ K(ge)gedr > / a(x)g:(x)a(y)ge (y)dz dy
X XxQ

2 |age|1,ﬂ . |ags|1,X (3 7)

> lage|1, e (lagel1,p — lage|i,m\ x)

1
> lagelr,e(lagel.z — |ag* (., §)|17E)-
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Using (3.5), (3.6), (3.7) in (3.4), we obtain that p < 1 implies

oolg. B + |¢ol1,E + |age

o 1
Lefag (.3, = lagl

which in turn implies

lag-|1.r < A(E) + /B(E) + C(E).

Also p > 1 implies

_ do VP o 1 2
eloolap+ | x| a9l + lagelr lag™ (2 5)| | > lagell .

Denoting 0 = |ags|1,E, the previous estimate becomes
02 < A(E)0 + C(E)07 + B(E).
Then p > 1 and 6 < 1 imply

6> < A(E)0 + B(E) + C(E) = 6 < A(E) + /B(E) + C(E).
Also p > 1 and 6 > 1 imply

0> < (A(E)+ C(E))0 + B(E) = 0 < A(E)+ C(E) + /B(E).
In conclusion, for every p, we have

0 <AE)+C(E)++/B(E)+ C(E).

The proof is complete. O

In light of the estimates of the previous lemmas we are now able to prove that
the family (ue)o<e<z is compact and has a subsequence that converges to a positive

solution of (1.1)).

Lemma 3.8. There exists (¢;)ken, €k — 0, such that (K(g:, xq,,))ken converges
in L'(Qy,), for each n € N*.

Proof. Due to the previous lemma, (g.)o<c<z is bounded in L'(€;), and by (K3)
there exists (€1,%) ke, €1,k — 0, such that (K (ge, , X0, ))ken is converging in L (Qy).
Iterating this argument, for each n € N there exist (&;x)ken, 1 < i < n, tending
to 0 with (gj11,x)ren subsequence of (¢ x)ren and (K(ge, , Xa;))ren converging in
LY(©Q;),1 < j < n. Hence, by induction there exists (£;x)ren playing the same
game. (e k)ken+ is a subsequence of every (&; i) ken, hence it fulfills the claim. O

Thanks to the previous lemma we can define

oo Jime K (gexe,), in Qn,
"o, in Q\ Q,.

From Lemma v, € LY(Q), and by construction (v, )nen- is increasing, so

ug = lim v, = sup v,.
n n

Lemma 3.9. ug satisfies the following conditions:
(a) uo € L (1, Q) and |nuelr,0 < T().
(b) lim, |n(uo — vn)l1,0 =0.

* 15 _n_ _ —
(¢) For all n € N*, limy, ‘Hn (uo — K(ge,)) o, 0.
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(d) For alln € N*, limk‘ﬁ(uo — Ug,) =0.

N En

(e) Passing to a subsequence K(gc,) — uo, U, — Ug, a.e. in .

Proof. (a) By Lemma [3.7 and (K2),

T() > |age,|1,0 2/ gsk(y)dy/QK(x,y)n(m)dw > [nK (g, X, )

n

1,05

Sending n, k — 400,
T(Q) 2 limlim [nK (ge, xo. )10, = lm |pva 1,0, = lim g0 = [ruoh.o-
Part (b) is a direct consequence of the definition of wg, (a) and the Dominate

Convergence Theorem.
(c) Let m > n > 0 be integer numbers. Observe that

K
1+ n(uo (9.)) 1.9,

< [n(uo = vm)lra, + [om = K(geo X, ) 10, + 1K (g2 x0\0,0) 1.0
and limy, [vm — K (ge, @, )|1,0, = 0. By (K2) and Lemma [3.7]
K (9= xene, )10 < lage,1ova, < T2\ Q).

Hence

: n
| ’ K ( < . T\ Q).
imsup |1 (w0 = K(ge0))| |, < o = o), + T2\ 820)
Since |\ 2,,,| — 0, using the absolute continuity of the integrals in 7'(-) we have
that T(2\ Q) — 0. Hence (b) implies (c).

(d) Due to Lemma [3.6) and (K2),

n n
o] S [ o= K], )+ In(E(ga) — ue)lio,
n
< iy o = Klga)], Il ol K (92) = vl
Ui e P2
< - K(g.,))| kPt
< |y o~ K@), 1l ek

using (c¢) we have (d).
Part e) is a consequence of (c), (d) and of the positivity of the map n a.e. in £;
see (K2). O

In the proof of Lemma we will use the following convergence theorem that
will be proved in the appendix.

Lemma 3.10. Let f, € LY(Q), ¢ € L®(Q), k € N, and Q C RN, If|Q| < oo,
(fr)ren is bounded in LY(2) and equiabsolutely continuous, (¢r)ren s bounded in
L>(Q), and converging in measure to ¢ € L>°(S2), then

(i) limy |fror — fudlio =0
(ii)
limksup | frudrli,0 = limksup | frdl10; liﬂiinf | frdrl1,0 = 1imkinf |frdl1-
Lemma 3.11. Letn € N* and L > 0. Then
Hmksup lage, 1,0, n(wo<r) < nL(L+ L);  lag(-,uo)|1,0,nue<r) < nL(1+ L).
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Proof. Denote X1, = (up < L). Multiplying (1.3)) with ¢ replaced by ., , by 1gak
and integrating on €, N Xp:

9er (%)
—————K(x,9)g., (y)dx dy
/(QmXL) o 1+ue, (z) (:9)6e. (W)

(3.8)
U
:/ Jerler gy g, / Au,, ey,
Qunx; 1+ ue, Q.NXp, 1+ ue,

Due to (K2),

gEk(x) agﬁk
— = K(z,y)9:, (y)dz dy > ‘7
/(QnﬁXL)xQ 1+Uek($) ( ) k( ) lJruEk

hence from (3.8)),

lim sup (
k

1,QnﬂXL : |a‘g€k |1,Q;

agEk
1+ wue,

: |agsk |LQ)

1,9,NXp,

u
glimsup/ Jei Uew cla;—l—hmsupa;C /|Au5k| Jes
ko Ja.nx, 1+ ue,

Moreover, by Lemmas [3.7] and [3.10}

(3.9)

ek
14 ue,
QAGe,,
14 ue,
Qagey,
14+ ug

lim sup (’agi
k 1+u6k

- lage, \1 Q) > hmsup )

1,Q,NnX1 1,2,NXg

2
= (lim sup ‘ )
k 1,Q2,NXL

2
= (lim sup‘ )
k 1,2,NXL

1 . 9
2 m(hm:ul) |age, l1.0,0x1)
(3.10)

age, U
lim sup/ Ierler g1 < plim sup/ HWerUer gy
k Q.NX1 1+ Ugy, k Q,NXr I+ Uey,

Uo

:nlimsup/ age, ——dx 3.11
k anx, 14 ug (3:.11)

nL
~“14L
Finally, since ¢, <& < %, we get
a/ |Au5k| Gex, dx < 5ko‘(/ +/ )|Au€k|ggkd1‘
Q 1 + U, (extue, <1) (extuc, >1)

Eka_p/ \Au5k|¢0dx+5ka/ |Aug, |g*(-,1)dx

”Z/WW%W(D

zgl

e’ Z 102 1e, lg0 - |90 + 97 (Dl 0,

1,j=1
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so due to Lemma

. ey,

1 [ A E_dr = 0. 3.12

imey /QI u5k|1+usk T (3.12)
Using (3-10), B-11), B-12) in (B.9)

1 . 2
1 L T7\2 ( llmksup |agEk |17QnﬁXL)

nL .
lim sup |age, |1,0,nx
L

(1+1L)? 1+
that is the first estimate of the claim. The second one follows from the first one,
(3.9)and the Fatou’s Lemma. O

Proof of Theorem[2.3, Fix n,l € N*, and introduced the notation ¥; = (ug < 7).
From (K2),

n
= |7 - K — o,
1,99 ‘ 1+ 17( (9 X0, (Ger X2nY:) — Un) Lo,

< K (ger X0) — vnl1,0, + 1K (g, x2,0v1) 1,0,
<K (gerx,) — Unl1,0, + [age, [1,0,0v;-
Due to the definition of v,, and Lemma, sending k — +o00, we obtain

K(gstQn\Yz) — V)

Fet
1+n

. n n 1 2n
hmksup ‘m(K(gakXQn\Yl) —Up) ™ < 7(1 + 7) < s
Using Fatou’s Lemma and (3.9)),
n 2
T (K(al- — v, < 2
| (Kot woxa, ) —w)| <5
Passing to the limit as | — +o0,
o) =lim [ Kooy = [ K(p)gly. )y
2, \Y; Q,N(0<ug)
z € Q,. Then sending n — o0,
up(x) = /( )K(x, Yv)g(y,uo(y))dy, =z €. (3.13)
0<ug

We claim that |(0 < up)| = ||, namely |ag(-,uo)|1,0 > 0. Assume, by contradic-
tion, that A" = (ug = 0) has positive measure. We have that

0= K(z,9)9(y, uo(y))dy, z€N,
QN
and using (K2)

0= /Q\N a(y)g(y, uo(y))dy.

Since a(y) > 0 a.e. in 2, we have that g(y,uo(y)) = 0 in Q\ N. From (3.13)
NV = 19].
Due to (3.9) we know u., — 0 a.e. in Q and in particular in €. By fixed
0 < 0 < po, in light of (G3) there exists sg > 0 such that
yeQy, 0<s<sy = g(y,s)> (1o —0)s.
For the reason that || < oo, there exists 0, C Qg such that |Q,| < o and u,, — 0
uniformly in Qg \ ©Q, (Egorov-Severini Theorem). Then

k>ko, y€Qo\ Qs = ge,.(y) > (o — 0)(er + ue, (y)),



14 G. M. COCLITE, M. M. COCLITE EJDE-2006/104

for some ko € N. Multiplying (1.3 with € replaced by ,, by ax(z) := % and
integrating on Qg \ 2,

—ako‘/ a,\AuEkdx—l—/ a,\ugkdx:/ggk(y)dy/ K(z,y)ay(z)dz.
Q0\ Q0 Qo\ 20 Q Q0\ Q0

(3.14)
Since ay € L*°(f), Lemma [3.6] implies
N
_5ka/ arAug, dx < g, Z |a7;2,jusk|q,§lo\ﬂa|a)\‘q’,Qo\Q,,
Q0\ Qe i,j=1
< 5€kp+2\a,\|q/,90\9(,
(3.15)

cePta
_ R | ’\lq/’QO\Q"/ axerdx
lax|1,00\0, 20\

< Mgkp+l/ ax(en + ue, )dz.
‘a)\|1,Qo\Qa Q0\ Q0

Using now (K2) and (3)), for every k > ko, we have that

/ 0er (9)dy / K(z,y)ar(@)dz > (5o — o) / ax(ex+us, )dz / aaxde.
Q QO\QH QO\QU QO\Qa

(3.16)

Substituting (3.15), (3.16]) in (3.14)),

Mek’ﬂrl / ax(eg + ue,, )dr + / ax(ex + ue,, )dz
Qo\Qs

lax|1,0n0, o2
> (ko — o)laax]1,00\0, / ax(ex + e, )dz,
0\ Q.
that gives
claxlq’ 0
%ekﬁl + 12> (o — o)|aax]r,an\0, -
lax|i,on0,

Sending first & — 400, then ¢ — 0 and finally A — 0, we get
1> ﬂ0|a2|1790'

That contradicts (2.1)), hence ug > 0 a.e. in Q.
We continue by proving that u., — ug in L% (n,2). Reminding that ug, u., are

solutions of (1.1)) and (|1.3) we get
I = |n(uo — uey) |10
< [n(K(g(:,u0)) = K(ge,)) |10 + ex® InAug, 1.0

N
< lalg(-,u0) = ge) 0 +exlnlg o Y 107 uelg0-
i,j=1
In light of Lemma [3.6

I < la(g(-;u0) = ge) o + el oex”.

Due to the positivity of ug, g, — g(-,ug) a.e. in £; hence the equiabsolute conti-
nuity of the integrals in ag., (see Lemma and Vitali’s Theorem say

la(g(+; uo) — ge, )10 — 0. (3.17)
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Therefore, I, — 0, so the claim is proved.
We conclude by proving that |ag(-, ug)|1,0a(x) < ug(x), z € Q a.e. Due to (K2),

_EkaAuEk (l‘) + Uegy, (‘r)

K(g:,)(x)
> a(z)lage, 1,0
> a(;v)(|ag(-,u0) 1,0 — |a(gsk - g(',uo))h,ﬂ)-

Since u., — ug a.e. in Q in light of Lemma [3.6] that must be e,*Au., — 0 in
L1(2), and passing to a subsequence £,*Au., — 0 a.e. in Q. Hence the claim

follows from ([3.17)).

The last part of the statement was proved in Lemma [3.6 ([

4. PROOF OF THEOREM [2.4]

Let us list some of the properties of the Green’s function G(z,y) of the Dirichlet
problem for —A in .
Lemma 4.1 ([3, Lemma 3.1]). There exists a constant ¢c; > 0 such that
(i) 2R < Ga,y); [, Glay)de < eid(y).
(i)

( / Gla,y)7dy)” < e / Gla,y)dy, 1<o<
Q Q
(i) [V, G(z,y)| < —Shor, 7 £ .

Lemma 4.2. Let p € L"(2), 1 <r < co. The maps

G)(z) = / Gla,y)i(w)dy: C)(x) = / V.G )by, €9

N-1

satisfy the following conditions:

(i) G() € W27(Q); G(v) € WH(Q); VG() = G(¥).
(il) —AG®) =1 in Q; G(¢b) =0 on 0.

In particular, if r > N, then G(v) € W27(Q) C CL(Q).

We will use a simplified version of the following Agmon’s interior regularity
result.

Lemma 4.3 ([I, Theorem 7.1]). Letu € L{ (), 1 < «, be such that Au € LﬁC(Q),
1 < B, where Au is defined by

/Au-(bdac:/UoAgédm, Vo € C5°(Q).
Q Q

Then u € VVI?)CB(Q) and for every ' CC Q" CC Q there exists ¢ > 0 such that
lullwzs @) < c(|Aulgar + |ulg.or).
First of all we prove that the solutions of ([1.3)) are also solutions of (2.4)).

Lemma 4.4. For each € > 0, the solutions to (L.3)) in W24(Q2) belong to W4 ()
and solves (2.4)).
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Proof. Let u. € W24(Q) be solution to (1.3 with G(z,y) instead of K (z,y) (see

Corollary [3.2). Since g. € L"(2) (see (G1) and Remark [2.1)), due to Lemma [1.2]
we have that G(g.) € W27 (Q), hence u. € W27 (Q). From (1.3)

Au, = e %(ue — G(ge)) € WT(Q);  Au. =0 on 99.

The lemma is established. (]
Due to Theorem there exist ug € L1 (Q) and (ex)pen, 0 < & < € < 3,
tending to 0, such that
uo(z) = / G(@,y)9(y,uo(y))dy, z€Q,
Q (4.1)

lilgn lup — ue, 1.0 =0; ue, —up qoin Q;  u., € WHQ) N W, (),

and

—er " Aug, () + ue, (v) = / Gz, 9)g(ys ex + ue, (v))dy, =€ Q.
Q

Lemma 4.5. There exist kg € N and co > 0 such that
ko < k= c2d(x) < ug, ();  c26(x) < up(x).
Proof. The second estimate comes from Theorem We have to prove the first
estimate. From ,
6(x)

G(ggk)(x) Z ?‘5g€k|1,ﬂa T € Q, k S N

Since
limkinf 10ge, 11,0 > |limkinfdgak|1,g = |0g(-, uo)|1,0 > 0,
there exists ky € N such that
k> ko = [0 > 3logCuoho = Glo)@) > S0 w0

Let ¢1 be a positive eigenfunction and A; be the first eigenvalue of the Dirichlet
problem for —A in €. Since ¢; and § are equivalent in the sense that

.. O(z) d()
0< ;gg ¢1(7) = 228 #1() =00

there exists an eigenfunction ¢; relatively to A; such that
E>kyo = G(ge,)(@) > (A1 +1D)o1(x) > (M + 1)d1(z) = —ex A1 (x) + o1 ().
From (1.3)) with & replaced by ey,

k>ky = _gkaAu€k + Ugy, > —EkaA¢1 + (;51.

Due to the Maximum Principle u., > ¢1,k > ko. Finally, since ¢; and J are
equivalent we get the first estimate of the claim. O

Lemma 4.6. ug € VViJ(Q) N L) and —Aug(z) = g(z,up(z)).
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Proof. Introduce the notation v, := —Au,,. From Lemma [£.4]
—er*Ave, + e, =g, 1n £,
Ve, =0 on 0.
Hence for a fixed ¢ € CZ(Q),
75kaA(¢v€k) + (¢Ufk) = f5k7 (43)
where
fsk = Ofe, — Eka<2v¢vvek + UskA(b)‘
From Lemma [.5 and (G1), g, € L"(2), g(-,uo) € L,.(2). We claim that
h}?l |f€k - ¢9(’7U0)|T,Q =0. (4'4)
Observe that
|f£k - ¢g(au0)

r0 < 10(ge, — 9(u0)) |0 + £ [2VOVe, + v,
< [@(ger, — g(-su0))|r0 + const ex ™ [|ve, [[wir ()
Applying Lemma [3.3] to (4.2),
| fer — d9(-,u0)lr0
< [6(ge, — 9(-u0))lr + constex ? |ge, |r.2

1
<16(0e, gl teonstz ([ 4 [ )
ktue, <1 eptuc, >1

(¢*(z, 1))%) "

r,Q

< 1¢(ger — 9(-su0))|r0 + const (5kr(%7p) / ¢odz +5k%/
Q

Q
Recalling that § —p = 5¢(p + 1) —p > 0 we have

limksup | fer. = 9(, wo) |0 < 1imksup |9(9e. — 9(, uo0))lr0- (4.5)

Since ue, — ug a.e. in Q implies g, — g(-,up) a.e. in © and dist(supp ¢, 9Q) > 0
from Lemma (4.1) and the Dominate Convergence Theorem,

lim |(ge, = 9(-, uo))lr0 = 0.

Hence (4.4)) follows from (4.5). Applying Lemma to (4.3), by (4.4)),

Vo € CS(Q) : hllcm |p(ve, — (- u0))|r0 =0. (4.6)

Observing that , 4.6|) give

/qﬁ g(x,up)dx = hm/ Pve, dx

:hgl/ﬂ(ﬁ(—AuEk)dx
:hin/ﬂ(—Acﬁ)uEkdac
— [ (-A0)undz;

Q

therefore,
—Aug = g(-,up) in 2 in the sense of distributions. (4.7
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We claim that
ug € L1(Q). (4.8)
Observe that

M@ZLQMMW%@M
= [ S8 g0y ) 6w w0 ()
2 o(y)7
(e,9)" : ,

/Q f;(y)qy1 g(y’UO(y))dy) “18g(-, o) [

Hence

luoli o < 10g(- uo)l{ / /5 i 1gy,uO(y))dy

_ ) S Uy
=@uwm@1;@ y° /Gwywx

From (| . )(i) and ( . ii
)|q 1 2q/ 5(y)g(y7u0(y>)5q

luolg o < 10g(-suo)l{ g cf 59(3) (y)dy = c?q|5g(-,u0)|§,ﬂ.

In light of Theorem g(-,uo) € L1 (6,9), hence ([4.8) is true. We need to prove
that

uo € Wil (Q).
Since ([4.7)) holds in the sense of distributions we have simply to apply Lemma
with o = ¢ and § = r. The lemma is proved. O

Lemma 4.7. uy € C(Q) and uo(x) = 0,z € 0.

Proof. Since ¢ < % and ¢ +r < gr give r > N, due to Lemmas and E
0 < 90 < g € C(Q). Therefore, we have only to prove that

lim ug(x) =0, xq € IN. (4.9)

T—x(

Define 61 : Ry — R by

Pl 5
edw:{gm+2xm+wﬁ <<

where [p] is the integer part of p, and 03 € C*°(R) such that
OSQQS]., 0§t§1:>92(t):1, t22:>92(t):0.

t t1
) :/ dtl/ 00(r)0s(r)dr, tER,,
0 0

0>0; 0t)=tP2 o0<t<1;

Denoting
observe that

t
0'(t) = / 0,(1)0:(1)dr < 0'(2); 0" =010, >0; 0 CF(Ry).
0
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Since 0”7 > 0, —A(0(ue,,)) < 0'(ue,)(—Aug,). As in the Proof of Lemma
denoting —Au,, = v.,, from (2.4]) with e}, instead of e, we get

—Aue, = gey, — €kaA2uak = 0e, + EkaAvgk.

Therefore,
—A(0(ue,)) < 0 (ue, ) (ge, +ex™Ave,). (4.10)

Since r > N, u., € W4(Q) c C3(Q) and u., = 0 on 9, from the properties of
we deduce that §(u,) € W47 () and 0(u., ) = 0 on 9. Thanks to the positivity
of the Green’s function from (4.10), we get

O(ue,) < G(6'(ue,)ge,) + €6 G0 (ue, ) Ave, ). (4.11)
Integrating by parts

GO ey ) A, ) () = — / Y, G 9)6 (te, (4)) Ve, (v)dy

- / G (2,1)V (0 (ter (1)) Ve, (),

SO
Ik = Eka\G(O’(usk)Avek)h@
< / IV, G2 9)0 (1, (1) [ Ve, () ly
QxQ
4 / G, )V (8 (uer (9)))] - [V, (9) e d.
QxQ
Since

sup(/Q|VyG(x,y)|dac+/QG(ac,y)dx> < 00,

ISy
the boundedness of §" and §” implies

I, < constei® / (14| Vue, )| Ve, |dy < const e, (|Vve, 1,0+ | Ve .0 Ve, g ,0)-
Q

Since ¢’ <,

N

Ik S const Eka(]. + Z |8Zu5k |q79)||'l}€k ||W1’7'(Q)7

i=1

applying Theorem [2.3| and Lemma [3.3] to (2.4) with ¢, instead of ¢,
I, < const(sk% + skp+2)|gsk|ryg < const(sk% + skp+2) (% + g (-, 1)|T’Q>.
k
Hence
lim I, = 0. (4.12)

Observe that (6'(ue, )ge, )ken is bounded in L"(Q). Indeed from (G1) and the
properties of §’,

|01(u5k)gsk |T,Q < |9/(u’5k )gEkX(ak+u5k§1)|r,Q + |‘9/(Usk)gst(ak+u5k21) ‘T,Q

(Ip] + 2)u ™ Gox ey 4, <)
(e + ue, )P
< const(|¢olr,0 + 97 (-, 1)|r0)-

R AT CRI
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Fatou’s Lemma and Vitali’s Theorem give
0" (uo)g (- uo) € L"(Q); - 1im G(0'(ue, )9, ) = G(0' (uo0)g (-5 wo)). (4.13)
Hence, from (4.11)) and ( we get
0< 9(Uo) < G(0' (uo)g (-, uo))-
)

0)9
Since > N, by G0 (u0)g(-,up)) € CHQ) and G(0'(u)g(-, 1)) = 0 on 99,
it follows that
lim O(up(z)) =0, zo € .
x—xT(

Then the monotonicity of § implies (4.9). O

Proof of Theorem[2.4. In light of previous lemmas we have to prove that u., — g
in W27 (Q) N L9(Q). We begin by proving
Ue,, — up in LI(Q). (4.14)
Observing that
=k Aty + (e, — ug) = G(ge,, — 9(+su0)),
and using the same argument of the proof of , from Lemma
|te), —u0lg,0 < |G(ger, —9(+ u0)) . = c%|6(95k —g(+u0))l1,

Since the integrals that define dg., are equiabsolutely continuous (see Lemma |3.7)

and g., — g(-,uo) a.e. in €, Vitali’s Theorem gives (4.14)).
We continue by proving that

p+2

g ter®|Aue,

— g in W2 (). (4.15)
Let €, Q" be two open subsets of 2 such that Q' CcC Q" cC Q. Denoting v,, =
—Au,, from ([2.3), ([2.4), we get

—A(ue, —ug) = ge,, — 9(-yu0) + e Ave, . (4.16)
Introducing the notation

Je () = |ge, — g(-;u0)|r0x + 6% Ave, |0+ Ok = ug, —uo; F CC Q,

Ug,,

applying Lemma [£.3| with a = 8 = g,
lue, — uo||wz,q(g/) < const (|g€k — g(.,uo)|q’9,, + Eka|AUak|q,m +lue, — u0|q’m)
< const(J(Q") + [0k[q.0)-

(4.17)
If N =2 we have & =1 < g, hence W2%(Q) — C(). Therefore, ([{.17) gives
|(S/€‘OO o < CODSt(Jk(QN) + |5k|q Q)- (4.18)
If N > 3 there results ¢ < 125 < &. Let [ € N* be such that
N
< —<I+1.
2q
Denoting
Nq
P = XT o i N7 21 N7
q. N — 2ig S 1q <
we have
Ng; . N
i1 = ;2 1 N; i< 1<+
G = N o (i+1)g < ¢<¢i< - <q1<5
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Since Wi () = Lis (), by (17,
10k g1, < const(J () + |0kq.0)-
Applying Lemma to with « = ¢ and 8 = ¢y,
[0k llw2.01 () < const(Ji () + [0k lq.0)-
Iterating this argument we get

00l gy < cOnst(T(Q7) + [8clg.). (4.19)

Ifl = Qﬂq we have g1 = &, hence Wi’fl’l(Q) — L7 (Q),1 <o < oo. From (4.19),

[0k |o.0r < const(J,(Q") + 10k |q.0)- (4.20)
In the case | < 2—1\2 < 1+1, we have q;_1 < & < ¢;. Therefore, I/Vli’cql’l(Q) — L (Q)
and W24 (Q) — C(Q). From (&19),

[0klq,. 0 < const(Ji (") + [0k[q.0)-
Hence if r < ¢,

|0k |70 < const(Ji () + |0klq.0) (4.21)
and if r > ¢,

16k [lw2.a () < const(Jx(Q") + [0klg,0),

which gives (4.18]). In conclusion both (4.18) and (4.20) imply (4.21)). Applying
Lemma [4.3]to (4.16) with @ =g and 3 =1,

||5kHW2,r(Q/) S CODSt(Jk(Q”) + |5k|q7g) (422)
Since g., — g(-,ug) a.e. in , from Lemma [4.5 and (G1),

li;gn |9e), — 9(-;u0)|r0r = 0.

Thanks to (4.4), applying Lemmato [4.3) for each ¢ € CS*(RY), with ¢(x) =1

for z € Q”, we have

h]l(;l’lgka|Au5k|r’Q// < liinska|A(¢ugk)|nQ =0.
Hence limy, Ji(€2’) = 0. Finally, in light of (4.14)), (4.15]) follows from (4.22)). |

5. APPENDIX

In this appendix for the sake of completeness, we prove the following result from
which Lemma [3.10] follows.

Lemma 5.1. Let fi, € LP(Q), ¢ € LU(Q), k e N, 1 < p < oo, 1 < g < o0,
and |Q] < oo. If (fr)ken is bounded in LP(QY), (¢r)ren is bounded in LL(Q), is
converging in measure to ¢ € L1(Q) and

¢ <p ¢ =—-:, (5.1)

or
qd = p and (| fx|?)renis equiabsolutely continuous , (5.2)

then (3.10) (i) and (3.10)) (ii) hold.
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Proof. Since ¢ — ¢ in measure, by fixing ¢ > 0, it follows that
liin Qx| =0 (5.3)
and

|fe(or — D) = [fe(dr — D)|1.a,, + [fu(dr — D)1\, (5.4)

where Q) := {z € Q : [¢x(z) — ¢(z)| > 0}. We begin by considering the case
in which (5.1]) holds. Since 1 < p < o0, ¢’ < 00, and (fx)k, (¢x)r are bounded in
LP(Q)), L1(9), respectively, using (5.1) and the Holder Inequality

[fr(r — D)|1.0,., < ok — dlg.al frle ..,

= |px — ¢|q,ﬂ(/Q

1 _ 1
<|ox = 9lg.0l k7| frlpe

1 _ 1
< Q|7 T sup (16 — ¢la.0l filpo)-

1
7

|fk|q/d$ !
el de)

Hence, due to (5.3)), there exists ko € N such that

k> ko= |frx(ox — d)10,, <0 (5.5)

Using again the boundedness of (fx) in LP(€), the definition of Q, ; and the Holder
Inequality,

(01 = B)lone,. < olfilve < ol9f7 sup|filpo. (5.6)
Therefore, , , imply
k2 ko = fi(0k = 8)lo < o (14127 sup |fil.0),
from which (3.10))(i) and (3-10)(ii) follow. When holds, observe that
fioe=dha= ([ +[ )il -o)d
Qe JOQ

1/p
<suplon — dlyo( [ 1pds) "+ asuplilia,
k Qo i k

T,

Thanks to the equiabsolute continuity of (| fx|?)r there exists § > 0 such that
Bl <6 = / fulPde < o”, ke
E

Moreover, due to (5.3)), there is kg € N such that |Q, x| < J, k > ko. Therefore,

k0<k:></
¢

2o,k

1/p
|fk|pdx) < o,

and then

ko <k = |fulor — d)10 < U(Sl]ip|¢k — dlg. +Sl;p|fk|1,9),

that give (3.10)(i) and (3.10])(ii). O
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