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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
EIGENVALUE PROBLEMS

MEIQIANG FENG, WEIGAO GE

Abstract. In this paper, we discuss the existence, nonexistence, and multi-

plicity of positive solutions for a class of singular eigenvalue problems. Some
of our theorems are new, while others extend earlier results obtained by Zhang

and Kong [12]. The interesting point is that the authors obtain the relation be-

tween the existence of solutions and the parameter λ. The arguments are based
on the fixed point index theory and the upper and lower solutions method.

1. Introduction

The deformations of an elastic beam are described by a fourth-order differential
equation

u(4) = f(t, u, u′′).
Most of the available literature on fourth-order boundary value problems, for ex-
ample [1, 2, 5, 7, 8, 9, 10], discusses the case when f is either continuous or a
Caratheodory function and is concerned with the existence and uniqueness of posi-
tive solutions for boundary value problems for the above differential equation. How-
ever, only a small number of papers have discussed fourth-order singular eigenvalue
problems; see for example [11, 14].

In this paper, we study the fourth-order singular differential equation

u(4)(t) = λg(t)f(u(t)), 0 < t < 1, (1.1)

subject to one of the following boundary conditions:

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

u(0) = u′(1) = u′′(0) = u′′′(1) = 0, (1.3)

where λ > 0. The following assumptions will stand throughout this paper:
(H1) f ∈ C([0,+∞), (0,+∞)) and is nondecreasing on [0,+∞). Furthermore,

there exist δ̄ > 0,m ≥ 2 such that f(u) > δ̄um, u ∈ [0,+∞);
(H2) g ∈ C((0, 1), (0,+∞)) and 0 <

∫ 1

0
s(1− s)g(s)ds < +∞.
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It is the purpose of this paper to obtain the existence and the nonexistence of
positive solutions, and multiplicity results for the eigenvalue problems (EP) (1.1)-
(1.2) and (1.1)-(1.3) by employing new technique (different from the one used in
[12]). Very few papers discuss the connection between the existence of solutions
and the parameter λ. The work done by others [14] does not cover the general case
given in (1.1)-(1.2) and (1.1)-(1.3).

In this paper, we use mainly the following fixed point index theory to obtain
multiplicity results for (1.1)-(1.2) and (1.1)-(1.3).

Lemma 1.1 ([6]). Let P be a cone in a real Banach space E and Ω be a bounded
open subset of E with θ ∈ Ω. Suppose A : P ∩ Ω̄ → P is a completely continuous
operator, that satisfies

Ax = µx, x ∈ P ∩ ∂Ω =⇒ µ < 1.

Then i(A,P ∩ Ω, P ) = 1.

Lemma 1.2 ([6]). Suppose A : P ∩ Ω̄ → P is a completely continuous operator,
and satisfies:

(1) infx∈P∩∂Ω ‖Ax‖ > 0;
(2) Ax = µx, x ∈ P ∩ ∂Ω =⇒ µ 6∈ (0, 1].

Then i(A,P ∩ Ω, P ) = 0.

In Section 2, we provide some necessary background. In particular, we state some
properties of the Green’s function associated with (1.1)-(1.2) and some Lemmas.
In Section 3, we present our main result and discuss an example.

2. Preliminaries

For the convenience of the reader, we present here the necessary definitions
and Lemmas. Let E = C[0, 1] be a real Banach space with the norm ‖u‖ =
max0≤t≤1 |u(t)|. Let S = {λ > 0 such that (1.1) has at least one solution} and
P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}. It is clear that P is a cone of E.

We deal first with (1.1)-(1.2). Define

G1(t, ξ) =

{
t(1− ξ), 0 ≤ t ≤ ξ ≤ 1,

ξ(1− t), 0 ≤ ξ ≤ t ≤ 1.

G(t, s) =
∫ 1

0

G1(t, ξ)G1(ξ, s)dξ

=

{
t(1− s) 2s−s2−t2

6 , 0 ≤ t ≤ s ≤ 1,

s(1− t) 2t−t2−s2

6 , 0 ≤ s ≤ t ≤ 1.

It is easy to prove that G1(t, s) and G(t, s) have the following properties.

Proposition 2.1. For all t, s ∈ [0, 1], we have
G1(t, s) > 0, for (t, s) ∈ (0, 1)× (0, 1);

G1(t, s) ≤ G1(s, s) = s(1− s), for 0 ≤ t, s ≤ 1;

0 ≤ G1(t, s) ≤
1
4
, for 0 ≤ t, s ≤ 1;

G(t, s) ≤ 1
6
G1(s, s) =

1
6
s(1− s), for 0 ≤ t, s ≤ 1.

(2.1)
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Proposition 2.2. For all t ∈ [θ, 1− θ], we have

G1(t, s) ≥ θG1(s, s), θ ∈ (0,
1
2
), s ∈ [0, 1]. (2.2)

In fact
G1(t, s)
G1(s, s)

=

{
t
s , 0 ≤ t ≤ s ≤ 1,
1−t
1−s , 1 ≥ t ≥ s ≥ 0.

≥

{
t ≥ θ, t ≤ s,

1− t ≥ θ, t ≥ s.

Therefore, for all t ∈ [θ, 1− θ], we have

G1(t, s) ≥ θG1(s, s), θ ∈ (0,
1
2
), s ∈ [0, 1].

Definition 2.3. Let α(t) ∈ C2[0, 1] ∩ C4(0, 1). We say that α is a lower solution
of (1.1)-(1.2) if it satisfies

α(4)(t) ≤ λg(t)f(u(t)), 0 < t < 1,

α(0) ≤ 0, α(1) ≤ 0, α′′(0) ≥ 0, α′′(1) ≥ 0.

Definition 2.4. Let β(t) ∈ C2[0, 1]∩C4(0, 1). We say that β is an upper solution
of (1.1)-(1.2) if it satisfies

β(4)(t) ≥ λg(t)f(u(t)), 0 < t < 1,

β(0) ≥ 0, β(1) ≥ 0, β′′(0) ≤ 0, β′′(1) ≤ 0.

First, we consider the following eigenvalue problem

u(4)(t) = λg(t)f(u(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = h ≥ 0.
(2.3)

Define Th
λ : E → E by

Th
λ u(t) = h +

∫ 1

0

G(t, s)λg(s)f(u(s))ds−
∫ 1

0

G1(t, s)hds. (2.4)

From (2.4), it is easy to obtain the following lemma, which is proved by a direct
computation.

Lemma 2.5. Suppose that (H1) and (H2) are satisfied. Then (1.1)-(1.2) has a
solution u if and only if u is a fixed point of T 0

λ .

To prove the following results we define the cone

Q = {u ∈ C[0, 1]|u(t) ≥ 0, min
θ≤t≤1−θ

u(t) ≥ Mθ‖u‖} (2.5)

where ‖u‖ = maxt∈[0,1] |u(t)|, Mθ = θ2(1 − 6θ2 + 4θ3), θ ∈ (0, 1
2 ). It is clear that

Q ⊂ P .

Lemma 2.6. Suppose that (H1) and (H2) are satisfied. Then T 0
λQ ⊂ Q is com-

pletely continuous and nondecreasing.

Proof. For any u ∈ P , by (2.1) and (2.4), we have

T 0
λu(t) =

∫ 1

0

G(t, s)λg(s)f(u(s))ds

≤ 1
6

∫ 1

0

λs(1− s)g(s)f(u(s))ds.
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Therefore,

‖T 0
λu‖ ≤ 1

6

∫ 1

0

λs(1− s)g(s)f(u(s))ds.

On the other hand, by (2.2), for any θ ≤ t ≤ 1− θ, we have

G(t, s) =
∫ 1

0

G1(t, ξ)G1(ξ, s)dξ ≥ Mθ
1
6
s(1− s). (2.6)

Therefore,

min
θ≤t≤1−θ

T 0
λu(t) = min

θ≤t≤1−θ

∫ 1

0

G(t, s)λg(s)f(u(s))ds

≥ Mθ
1
6

∫ 1

0

λs(1− s)g(s)f(u(s))ds

≥ Mθ‖T 0
λu‖.

Hence T 0
λP ⊂ Q and then T 0

λQ ⊂ Q by Q ⊂ P . By similar arguments in [2, 9, 12,
14], T 0

λ : Q → Q is completely continuous. Since f is increasing on [0,+∞), it is
easy to obtain that T 0

λ is nondecreasing on [0,+∞). �

Remark 2.7. Reasoning as in the proofs of Lemmas 2.5 and 2.6, we conclude that
Th

λ : Q → Q is completely continuous and that u(t) is a solution of (2.3) if and only
if u(t) is a fixed point of Th

λ .

Lemma 2.8. Suppose that λ ∈ S, S1 = (λ, +∞) ∩ S 6≡ ∅. Then there exists
R(λ) > 0, such that ‖uλ′‖ ≤ R(λ), where λ′ ∈ S1, and uλ′ ∈ Q is a solution of
(1.1)-(1.2) with λ′ instead of λ.

Proof. For any λ′ ∈ S, let uλ′ be a solution of (1.1)-(1.2) with λ′ instead of λ. Then

uλ′(t) = T 0
λ′uλ′(t) =

∫ 1

0

G(t, s)λ′g(s)f(uλ′(s))ds.

Let R(λ) = max{[ 16λ′Mm+1
θ δ̄

∫ 1−θ

θ
G1(s, s)g(s)ds]−1, 1}. Next we shall prove that

‖uλ′‖ ≤ R(λ). Indeed, if ‖uλ′‖ < 1, the result is easily obtained. On the other
hand, if ‖uλ′‖ ≥ 1, then we have by (H1) and (2.6),

1
‖uλ′‖

≥ minθ≤t≤1−θ uλ′(t)
‖uλ′‖2

=
1

‖uλ′‖2
min

θ≤t≤1−θ

∫ 1

0

G(t, s)λ′g(s)f(uλ′(s))ds

≥ 1
‖uλ′‖2

Mθ

∫ 1−θ

θ

1
6
G1(s, s)λ′g(s)δ̄uλ′(s)mds

≥ 1
‖uλ′‖2

Mm+1
θ

∫ 1−θ

θ

1
6
G1(s, s)λ′g(s)δ̄‖uλ′‖mds

≥ 1
6
λ′Mm+1

θ δ̄

∫ 1−θ

θ

G1(s, s)g(s)ds.

Therefore, ‖uλ′‖ ≤ R(λ) and the conclusion of Lemma 2.8 follows. �
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Lemma 2.9 ([4]). Suppose that f : [0,+∞) → (0,+∞) is continuous and in-
creasing. If s, s0 and M are such that 0 < s < s0,M > 0, then there exist
s̄ ∈ (s, s0), h0 ∈ (0, 1) such that

sf(u + h) < s̄f(u), u ∈ [0,M ], h ∈ (0, h0).

3. Main results

In this section, we apply Lemmas 1.1 and 1.2 to establish nonexistence and
existence of positive solutions, as well as multiplicity results for (1.1)-(1.2) and
(1.1)-(1.3). Our approach depends on the upper and lower solutions method and
the fixed point index theory. We deal with (1.1)-(1.2) first.

Theorem 3.1. Let (H1) and (H2) be satisfied. Then there exists 0 < λ∗ < +∞
such that

(1) EP (1.1)-(1.2) has no solution for λ > λ∗;
(2) EP (1.1)-(1.2) has at least one positive solution for λ = λ∗;
(3) EP (1.1)-(1.2) has at least two positive solutions for 0 < λ < λ∗.

Proof. First, we prove that the conclusion (1) of Theorem 3.1 holds. If β(t) is a
solution of the boundary-value problem

u(4)(t) = g(t) 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(3.1)

then, by Lemma 2.5, we have β(t) =
∫ 1

0
G(t, s)g(s)ds. Let β0 = maxt∈[0,1] β(t);

therefore, by (H1) and (2.4),

T 0
λβ(t) ≤ T 0

λβ0 =
∫ 1

0

G(t, s)λg(s)f(β0)ds < β(t), ∀0 < λ <
1

f(β0)
.

This implies that β(t) is an upper solution of T 0
λ . On the other hand, let α(t) ≡

0, t ∈ [0, 1], then α(t) is a lower solution of T 0
λ , and α(t) < β(t), t ∈ [0, 1]. Clearly

T 0
λ is completely continuous on [α, β]. Therefore, T 0

λ has a fixed point uλ ∈ [α, β],
and therefore uλ is a solution of (1.1)-(1.2). Hence, for any 0 < λ < 1

f(β0)
, we have

λ ∈ S, which implies that S 6= ∅.
On the other hand, if λ1 ∈ S, then we must have (0, λ1) ⊂ S. In fact, let uλ1 be

a solution of (1.1)-(1.2). Then, by Lemma 2.5, we have

uλ1(t) = T 0
λ1

uλ1(t), t ∈ [0, 1].

Therefore, for any λ ∈ (0, λ1), by (2.4), we have

T 0
λuλ1(t) =

∫ 1

0

G(t, s)λg(s)f(uλ1(s)ds

≤
∫ 1

0

G(t, s)λ1g(s)f(uλ1(s)ds

= T 0
λ1

uλ1(t)

= uλ1(t),

which implies that uλ1 is an upper solution of T 0
λ . Combining this with the fact that

α(t) ≡ 0 (t ∈ [0, 1]) is a lower solution of T 0
λ , then, by Lemma 2.5, EP (1.1)-(1.2)

has a solution, therefore λ ∈ S. Thus we have (0, λ1) ⊂ S.
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Let λ∗ = supS, now we prove that λ∗ < +∞. If this is not true, then we must
have N ⊂ S, where N denotes natural number numbers. Therefore, for any n ∈ N ,
by Lemma 2.5, there exists un ∈ Q satisfying

un = T 0
nun =

∫ 1

0

G(t, s)ng(s)f(un(s)ds.

Let K = [ δ̄Mm+1
θ

6

∫ 1−θ

θ
G1(s, s)g(s)ds]−1. Suppose ‖un‖ ≥ 1. Then we have

1 ≥ 1
‖un‖

≥ minθ≤t≤1−θ un(t)
‖un‖2

=
1

‖un‖2
min

θ≤t≤1−θ

∫ 1

0

G(t, s)ng(s)f(un(s)ds

≥ 1
‖un‖2

Mθ

∫ 1−θ

θ

1
6
G1(s, s)ng(s)δ̄un(s)mds

≥ 1
‖un‖2

Mm+1
θ

∫ 1−θ

θ

1
6
G1(s, s)ng(s)δ̄‖un‖mds

≥ 1
6
nMm+1

θ δ̄

∫ 1−θ

θ

G1(s, s)g(s)ds.

If ‖un‖ ≤ 1, then

1 ≥ ‖un‖ ≥ min
θ≤t≤1−θ

∫ 1

0

G(t, s)ng(s)f(un(s)ds

≥ Mθ

∫ 1−θ

θ

1
6
G1(s, s)ng(s)f(0)ds.

Hence n ≤ {K, (Mθ

∫ 1−θ

θ
1
6G1(s, s)g(s)f(0)ds)−1}, this contradicts the fact that N

is unbounded; therefore λ∗ < +∞, and the proof of the conclusion (1) is complete.
Secondly, we verify the conclusion (2) of Theorem 3.1. Let {λn} ⊂ [λ∗

2 , λ∗), λn →
λ∗(n →∞), {λn} be an increasing sequence. Suppose un is solution of (1.1) with λn

instead of λ. By Lemma 2.8, there exists R(λ∗

2 ) > 0 such that ‖un‖ ≤ R(λ∗

2 ), n =
1, 2, · · · . Hence un is a bounded set. It is clear that {un} is an equicontinuous set
of C[0, 1]. Therefore, by the Ascoli-Arzela theorem, it follows that {un} is compact
set, and therefore {un} has a convergent subsequence. Without loss of generality,
we suppose that un is convergent: un → u∗(n → +∞). Since un = T 0

λn
un, by

control convergence theorem (f is bounded), we have u∗ = T 0
λ∗u∗. Therefore, by

Lemma 2.5, u∗ is a solution of (1.1)-(1.2) with λ∗ instead of λ. Hence the conclusion
(2) of Theorem 3.1 holds.

Finally, we prove the conclusion (3) of Theorem 3.1. Let α(t) ≡ h (t ∈ [0, 1]).
Then for any λ ∈ (0, λ∗), α(t) is a lower solution of (2.3). On the other hand,
by Lemma 2.8, there exists R(λ) > 0 such that ‖uλ′‖ ≤ R(λ), λ′ ∈ [λ, λ∗], where
uλ′ is a solution of (1.1) with λ′ instead of λ. Also by Lemma 2.9, there exist
λ̄ ∈ [λ, λ∗], h0 ∈ (0, 1) satisfying

λf(u + h) < λ̄f(u), u ∈ [0, R(λ)], h ∈ (0, h0).
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Let uλ̄ be a solution of (1.1)-(1.2) with λ̄, and ūλ(t) = uλ̄ + h, h ∈ (0, h0). Then

ūλ(t) = uλ̄ + h

=
∫ 1

0

G(t, s)λ̄g(s)f(uλ̄(s))ds + h

≥ h +
∫ 1

0

G(t, s)λg(s)f(uλ̄(s) + h)ds−
∫ 1

0

G1(t, s)hds

= Th
λ ūλ(t).

Combining this with ūλ(0) = ūλ(1) ≥ h, ū′′λ(0) = 0 ≤ h, ū′′λ(1) = 0 ≤ h, we have
the ūλ(t) is an upper solution of (2.3). Therefore (2.3) has solution. Let vλ(t)
be a solution of (2.3). Let Ω = {u ∈ Q|u(t) < vλ(t), t ∈ [0, 1]}. It is clear that
Ω ⊂ Q is a bounded open set. If u ∈ ∂Ω, then there exists t0 ∈ [0, 1], such that
u(t0) = vλ(t0). Therefore, for any µ ≥ 1, h ∈ (0, h0), u ∈ ∂Ω, we have

T 0
λu(t0) < h + T 0

λu(t0)−
∫ 1

0

G1(t, s)hds

≤ h + T 0
λvλ(t0)−

∫ 1

0

G1(t, s)hds

= Th
λ vλ(t0)

= vλ(t0)

= u(t0)

≤ µu(t0).

Hence for any µ ≥ 1, we have T 0
λu 6= µu, u ∈ ∂Ω. Therefore, by Lemma 1.1,

i(T 0
λ ,Ω, Q) = 1. (3.2)

It remains to prove that the conditions of Lemma 1.2 are satisfied Firstly, we
check the condition (1) of Lemma 1.2 is fulfilled. In fact, for any u ∈ Q, we have
by (H1) and (2.5),

T 0
λu(

1
2
) =

∫ 1

0

G(
1
2
, s)λg(s)f(u(s))ds

≥
∫ 1−θ

θ

G(
1
2
, s)λg(s)δ̄Mm

θ ‖u‖mds

= ‖u‖m

∫ 1−θ

θ

G(
1
2
, s)λg(s)δ̄Mm

θ ds

= ‖u‖m−1

∫ 1−θ

θ

G(
1
2
, s)λg(s)δ̄Mm

θ ds‖u‖

(3.3)

Choose R̄ > 0 such that R̄m−1
∫ 1−θ

θ
G( 1

2 , s)λg(s)δ̄Mm
θ ds > 1. Therefore, for any

R > R̄ and BR ⊂ Q, by (3.3),

‖T 0
λu‖ > ‖u‖ > 0, u ∈ ∂BR, (3.4)

where BR = {u ∈ Q|‖u‖ < R}. Hence the condition (1) of Lemma 1.2 is fulfilled.
Now we prove that the condition (2) of Lemma 1.2 is satisfied. In fact, if the

condition (2) of Lemma 1.2 does not hold, then there exist u1 ∈ Q∩∂BR, 0 < µ1 ≤ 1,
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such that T 0
λu1 = µ1u1. Therefore, ‖T 0

λu1‖ ≤ ‖u1‖. This conflicts with (3.4). Hence
the condition (2) of Lemma 1.2 is satisfied. Therefore by Lemma 1.2, we have

i(T 0
λ , BR, Q) = 0. (3.5)

Consequently, by the additivity of the fixed point index, we get

0 = i(T 0
λ , BR, Q) = i(T 0

λ ,Ω, Q) + i(T 0
λ , BR \ Ω̄, Q).

Since i(T 0
λ ,Ω, Q) = 1, i(T 0

λ , BR \ Ω̄, Q) = −1. Therefore, by the solution property
of the fixed point index, there is a fixed point of T 0

λ in Ω and a fixed point of T 0
λ

in BR \ Ω̄, respectively. Therefore by Lemma 2.5, EP (1.1)-(1.2) has at least two
solutions. Furthermore, (1.1)-(1.2) has at least two positive solutions by (H1) and
(H2). The proof of Theorem 3.1 is complete. �

Now we study (1.1)-(1.3). The method is similar to the method above. Define

Ĝ(t, s) = min{t, s} =

{
t, t ≤ s, 0 ≤ t ≤ s ≤ 1,

s, s ≤ t, 0 ≤ s ≤ t ≤ 1,

G̃(t, s) =
∫ 1

0

Ĝ(t, r)Ĝ(r, s)dr

=

{
s3

3 + s(t2−s2)
2 + st(1− t), 0 ≤ s ≤ t ≤ 1,

t3

3 + t(s2−t2)
2 + ts(1− s), 0 ≤ t ≤ s ≤ 1.

It is easy to prove that Ĝ(t, s) and G̃(t, s) have the following properties.

Proposition 3.2. For all t, s ∈ [0, 1], α ∈ (0, 1
2 ) we have

Ĝ(t, s) > 0, t, s ∈ (0, 1),

Ĝ(t, s) ≤ Ĝ(s, s) = s, t, s ∈ [0, 1],

Ĝ(t, s) ≥ αĜ(s, s), t ∈ [α, 1− α], s ∈ [0, 1],

G̃(t, s) ≤ 1
2
s, t, s ∈ [0, 1];

G̃(t, s) ≥ 1
2
Mαs, t ∈ [α, 1− α], s ∈ [0, 1]

where Mα = α2(1− 2α).

Define the cone

Q̂ = {u ∈ C[0, 1]|u(t) ≥ 0, min
α≤t≤1−α

u(t) ≥ Mα‖u‖}

and let
(H3) g ∈ C((0, 1), (0,+∞)) and 0 <

∫ 1

0
sg(s)ds < +∞

Theorem 3.3. Let (H1) and (H3) be satisfied. Then there exists 0 < λ∗ < +∞
such that:

(1) EP (1.1)-(1.3) has no solution for λ > λ∗;
(2) EP (1.1)-(1.3) has at least one positive solution for λ = λ∗;
(3) EP (1.1)-(1.3) has at least two positive solutions for 0 < λ < λ∗.



EJDE-2006/105 EXISTENCE OF POSITIVE SOLUTIONS 9

As an example we consider the eigenvalue problem

u(4)(t) = λ
1

t(1− t)
22u, 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

(3.6)

It is clear that (3.6) is not covered by the results in [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14].
Let g(t) = 1

t(1−t) , f(u) = 22u. It is obvious that g(t) is singular at both t = 0 and
at t = 1. However, hypothesis (H2) is satisfied. In addition, for δ̄ = 1 > 0,m = 2,
we have f(u) = 22u = δ̄22u > u2 = um > 0. So that (H1) is satisfied.

Acknowledgments. The author is thankful to the referee for his/her valuable
suggestions regarding the original manuscript.

References

[1] R. P. Agarwal, Some new results on two point boundary value problems for higher order

differential equations, Funkcial. Ekvac. 29(1986), 197-212.
[2] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value prob-

lem, J. Math. Anal. Appl., 116(1986), 415-426.

[3] Y. S. Choi, A singular boundary value problem arising from near-ignition analysis of flame
structure, Diff. Intergral Eqns, 4(1991), 891-895.

[4] R. Dalmasso, Positive solutions of singular boundary value problems. Nonlinear Analy-

sis,1996, 27(6), 645-652.
[5] A. Granas, R. B. Guenther, and J. W. Lee; Nonlinear boundary value problems for some

classes of ordinary differential equations, Rocky Mountain J. Math. 10(1980), 35-58.

[6] D. Guo, V. Lakshmikantham, X. Z. Liu; Nonlinear integral equations in abstract cones, New
York ; Academic Press, 1988.

[7] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation,
Appl.Anal., 26(1988), 289-304.

[8] L. K. Jackson, Existence and uniqueness of solutions of boundary value problems for Lipschitz

equations, J. Differential Equations 32(1979), 76-90.
[9] D. O’Regan, Solvability of some fourth (and higher) order singular boundary value problems,

J. Math. Anal. Appl., 161(1991), 78-116.

[10] Z. Wei, Positive solutions of singular boundary value problems of fourth order differential
equations (in Chinese), Acta Mathematica Sinica, 1999, 42(4), 715-722.

[11] Q. Yao, Z. Bai, The existence of positive solutions of boundary value problem u(4)(t) −
λh(t)f(u(t)) = 0 (in chinese), Chinese Annals of Mathematics (A), 1999, 20(5), 575-578.

[12] B. Zhang , L. Kong, Positive solutions of fourth order singular boundary value problems,

Nonlinear Studies, 7(2000), 70-77.

[13] B. Zhang , L. Kong, Existence of positive solutions of fourth order singular boundary value
problems, Chinese Annals of Mathematics, 22A: 4(2001), 397-402.

[14] Y. Zhou, Positive solutions of fourth order nonlinear eigenvalue problems (in chinese), J.
Sys. Sci. & Math. Scis, 2004, 24(4): 433-442.

Meiqiang Feng

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081,

China
Department of Fundamental Sciences, Beijing Information Technology Institute, Bei-

jing 100101, China

E-mail address: meiqiangfeng@sina.com

Weigao Ge

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081,
China

E-mail address: gew@bit.edu.cn


	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgments

	References

