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INSTABILITY RESULTS FOR CERTAIN THIRD ORDER
NONLINEAR VECTOR DIFFERENTIAL EQUATIONS

CEMIL TUNÇ, ERCAN TUNÇ

Abstract. Our goal in this paper is to obtain sufficient conditions for insta-

bility of the zero solution to the non-linear vector differential equation
...
X + F (X, Ẋ)Ẍ + G(Ẋ) + H(X) = 0.

An example illustrates the results obtained.

1. Introduction

It is well-known that, since Lyapunov [17] proposed his famous second (or di-
rect) method on the stability of motion, the problems related to the investigation
of instability of solutions of certain second-, third-, fourth-, fifth-, sixth-, seventh
and eighth-order linear and nonlinear differential equations have been given great
attention in the past decade due to the importance of the subject. During this pe-
riod, instability of solutions for various higher order linear and nonlinear differential
equations have been extensively studied and many results have been obtained in the
literature (see, e.g., Bereketoğlu [2], Bereketoğlu and Kart [3], Ezeilo [4, 5, 6, 7, 8],
Kipnis [9], Krasovskii [10], Liao and Lu [11], Li and Yu [12], Li and Duan [13],
Losprime [14], Lu and Liao [15], Lu [16], Reissig et al [18], Sadek [19, 20], Skrapek
[21, 22], Tejumola [23], Tiryaki [24, 25, 26], C. Tunç [27, 28, 29, 30, 31, 32, 33, 34, 35],
C.Tunç and E. Tunç [36, 37, 38], C. Tunç and Şevli [39], E. Tunç [40] and the ref-
erences cited in that works). Among which, the results performed on instability
properties of linear and nonlinear scalar and vector differential equations of third
order can briefly be summarized as follows: First, in 1966, Losprime [14] took
into consideration the third-order scalar linear differential equation with periodic
coefficients

...
x + ẍ + S(t)ẋ + T (t)x = 0.

Losprime [14] found the regions of stability and instability of this differential equa-
tion by means of some expansions and the Lyapunov’s second (or direct) method
(see, Lyapunov [17]). Then, in 1974, Kipnis [9] discussed the instability of the scalar
linear differential equation

...
x + p(t)x = 0.
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The author presented that if the function p is continuous, ω-periodic, non-positive,
and satisfies an inequality involving ω, then the above equation is unstable. Later,
in 1980, by using Lyapunov’s second (or direct) method, Skrapek [22] established
sufficient conditions which guarantee the instability of the trivial solution of the
scalar non-linear differential equation as

...
x + f1(ẍ) + f2(ẋ) + f3(x) + f4(x, ẋ, ẍ) = 0.

In 1995, Lu [16] discussed a similar problem for the third order nonlinear scalar
differential equation

...
x + f(x, ẋ)ẍ + g(x) = 0.

In a similar manner, in 1996, Bereketoğlu and Kart [3] also studied instability of
the trivial solution of scalar differential equation

...
x + f(ẋ)ẍ + g(x)ẋ + h(x, ẋ, ẍ) = 0.

Together the above works, by using Lyapunov function approach, more recently the
authors in [35, 40] also established some instability results for the zero solution of
the non-linear vector differential equations of third order

...
X + F (Ẋ)Ẍ + G(Ẋ) + H(X) = 0,

and ...
X + F (Ẋ)Ẍ + G(X)Ẋ + H(X, Ẋ, Ẍ) = 0

respectively. Furthermore, to the best of our knowledge in the relevant literature,
no author except that mentioned above has investigated the instability of solutions
of third order nonlinear vector differential equations of the form

...
X + A1Ẍ + A2Ẋ + A3X = 0

in which X ∈ Rn, A1, A2 and A3 are not necessarily n× n-constant matrices.
In the present paper, we concern with the instability of the trivial solution X = 0

of nonlinear vector differential equation
...
X + F (X, Ẋ)Ẍ + G(Ẋ) + H(X) = 0, (1.1)

in which X ∈ Rn; F is a continuous n × n -symmetric matrix; G : Rn → Rn,H :
Rn → Rn and G(0) = H(0) = 0. It will be supposed that the functions G and H
are continuous. Throughout this paper, we use the following differential system

Ẋ = Y, Ẏ = Z,

Ż = −F (X, Y )Z −G(Y )−H(X),
(1.2)

which was obtained as usual by setting Ẋ = Y, Ẍ = Z in (1.1).
Let J (F (X, Y )Y | X) , J (F (X, Y )Y | Y ) , JG(Y ) and JH(X) denote the Jaco-

bian matrices corresponding to F (X, Ẋ), G(Y ) and H(X), respectively:

J(F (X, Y )Y | X) =
( ∂

∂xj

n∑
k=1

fikyk

)
=

( n∑
k=1

∂fik

∂xj
yk

)
,

J(F (X, Y )Y | Y ) =
( ∂

∂yj

n∑
k=1

fikyk

)
= F (X, Y ) +

( n∑
k=1

∂fik

∂yj
yk

)
,

JG(Y ) =
( ∂gi

∂yj

)
, JH(X) =

( ∂hi

∂xj

)
(i, j = 1, 2, . . . , n),
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where (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn), (fik), (g1, g2, . . . , gn) and
(h1, h2, . . . , hn) are the components of X, Y, Z, F, G and H, respectively. It will also
be assumed as basic throughout the paper that the Jacobian matrices, J(F (X, Y )Y |
X), J(F (X, Y )Y | Y ), JG(Y ) and JH(X) exist, and are symmetric and continuous.
The symbol 〈X, Y 〉 will be used to denote the usual scalar product in Rn for given
any X, Y in Rn, that is, 〈X, Y 〉 =

∑n
i=1 xiyi; thus 〈X, X〉 = ‖X‖2. It is well-known

that the real symmetric matrix A = (aij), (i, j = 1, 2, . . . , n) is said to be positive
definite if and only if the quadratic form XT AX is positive definite, where X ∈ Rn

and XT denotes the transpose of X.
The reason for investigation equation (1.1) has been inspired basically by the

papers mentioned above. It is worth mentioning that the papers performed on the
instability of solutions of third order nonlinear differential equation (see, e.g., [9, 14,
16, 22, 35, 40]) have been published without an example. But, this paper includes
an explanatory example on the subject. It should be noted that the Lyapunov’s
second (or direct) method is used to verify the results established here.

2. main results

Now, above all, we state the following algebraic results, lemmas, which are needed
in the proofs of the main results.

Lemma 2.1. Let A be a real symmetric n× n-matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, . . . , n),

where a′, a are constants. Then

a′〈X, X〉 ≥ 〈AX, X〉 ≥ a〈X, X〉,

a′
2〈X, X〉 ≥ 〈AX, AX〉 ≥ a2〈X, X〉.

For a proof of the above lemma, see Bellman [1].

Lemma 2.2. Let Q,D be any two real n×n commuting symmetric matrices. Then
(i) The eigenvalues λi(QD), (i = 1, 2, . . . , n), of the product matrix QD are real
and satisfy

max
1≤j,k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤n

λj(Q)λk(D).

(ii) The eigenvalues λi(Q + D), (i = 1, 2, . . . , n), of the sum of matrices Q and D
are real and satisfy{

max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}
≥ λi(Q + D) ≥

{
min

1≤j≤n
λj(Q) + min

1≤k≤n
λk(D)

}
,

where λj(Q) and λk(D) are, respectively, the eigenvalues of Q and D.

For a proof of the above lemma, see Bellman [1]. We can now state our first
main result.

Theorem 2.3. In addition to the fundamental assumptions imposed on F,G and
H appeared in (1.2), suppose that there are constants a1, a2, a2 and a3 such that
one of the following conditions is satisfied:

(i) λi(F (X, Y )) ≤ a1, −a2 ≤ λi(JG(Y )) ≤ −a2 < 0 and λi(JH(X)) ≥ a3 > 0,
(i = 1, 2, . . . , n), for all X, Y ∈ Rn, and J(F (X, Y )Y | X) is positive-
definite for all X, Y ∈ Rn
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(i’) λi(F (X, Y )) ≤ a1, −a2 ≤ λi(JG(Y )) ≤ −a2 < 0 and λi(JH(X)) ≤ −a3 <
0, (i = 1, 2, . . . , n), for all X, Y ∈ Rn, and J(F (X, Y )Y | X) is positive-
definite for all X, Y ∈ Rn.

Then the trivial solution X = 0 of the system (1.2) is unstable.

Proof. In order to prove the theorem it will suffice (see Krasovskii [10]) to show
that there exists a continuous function V0 = V0(X, Y, Z) which has the following
Krasovskii properties:

(K1) In every neighborhood of (0, 0, 0) there exists a point (ξ, η, ζ) such that
V0(ξ, η, ζ) > 0.

(K2) The time derivative V̇0 = d
dtV0(X, Y, Z) along solution paths of the system

(1.2) is positive-semi definite.
(K3) The only solution (X, Y, Z) = (X(t), Y (t), Z(t)) of the system (1.2) which

satisfies V̇0 = 0 (t ≥ 0) is the trivial solution (0, 0, 0).
We claim that the function V0 = V0(X, Y, Z) defined by

2V0 = 2α

∫ 1

0

〈H(σX), X〉dσ + 2α〈Y,Z〉+ α

∫ 1

0

σ〈F (X, σY )Y, Y 〉dσ

+ 〈Y, Y 〉 − 2〈X, Z〉,
(2.1)

has all the three properties, where α is a positive constant. Indeed, it is clear from
(2.1) that V0(0, 0, 0) = 0. Since

H(0) = 0,
∂

∂σ
H(σX) = JH(σX)X,

then

H(X) =
∫ 1

0

JH(σX)Xdσ. (2.2)

Hence, in view of assumption (i) of Theorem 2.3 and (2.2), we obtain∫ 1

0

〈H(σX), X〉dσ =
∫ 1

0

∫ 1

0

〈σ1JH(σ1σ2X)X, X〉dσ2dσ1

≥
∫ 1

0

∫ 1

0

〈σ1a3X, X〉dσ2dσ1

=
a3

2
〈X, X〉 =

a3

2
‖X‖2.

(2.3)

Obviously, it follows from assumption (i) of Theorem 2.3, (2.1) and (2.3) that

V0(ε, 0, 0) ≥ a3

2
〈ε, ε〉 =

a3

2
‖ε‖2

> 0

for all arbitrary ε ∈ Rn , ε 6= 0. Thus, in every neighborhood of (0, 0, 0) there
exists a point (ξ, η, ζ) such that V0(ξ, η, ζ) > 0 for all ξ, η and ζ in Rn. Next, let
(X, Y, Z) = (X(t), Y (t), Z(t)) be an arbitrary solution of the system (1.2). Then,
the total derivative of the function V0 with respect to t along this solution path is

V̇0 =
d

dt
V0(X, Y, Z)

= α〈Z,Z〉 − α〈Y,G(Y )〉+ 〈X, H(X)〉+ 〈X, F (X, Y )Z〉
− α〈F (X, Y )Z, Y 〉+ 〈X, G(Y )〉 − α〈H(X), Y 〉

+ α
d

dt

∫ 1

0

〈H(σX), X〉dσ + α
d

dt

∫ 1

0

σ〈F (X, σY )Y, Y 〉dσ.

(2.4)
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Check that

d

dt

∫ 1

0

〈H(σX), X〉dσ =
∫ 1

0

σ〈JH(σX)Y,X〉dσ +
∫ 1

0

〈H(σX), Y 〉dσ

=
∫ 1

0

σ
∂

∂σ
〈H(σX), Y 〉dσ +

∫ 1

0

〈H(σX), Y 〉dσ

= σ〈H(σX), Y 〉
∣∣1
0

= 〈H(X), Y 〉

(2.5)

and

d

dt

∫ 1

0

σ〈F (X, σY )Y, Y 〉dσ

=
∫ 1

0

〈σF (X, σY )Z, Y 〉dσ +
∫ 1

0

〈σF (X, σY )Y,Z〉dσ

+
∫ 1

0

〈σJ(F (X, σY )Y | X)Y, Y 〉dσ +
∫ 1

0

〈σ2J(F (X, σY )Z | Y )Y, Y 〉dσ

=
∫ 1

0

〈σF (X, σY )Z, Y 〉dσ +
∫ 1

0

〈σJ(F (X, σY )Y | X)Y, Y 〉dσ

+
∫ 1

0

σ
∂

∂σ
〈σF (X, σY )Z, Y 〉dσ

= σ2〈F (X, Y )Z, Y 〉
∣∣1
0

+
∫ 1

0

〈σJ(F (X, σY )Y | X)Y, Y 〉dσ

= 〈F (X, Y )Z, Y 〉+
∫ 1

0

〈σJ(F (X, σY )Y | X)Y, Y 〉dσ.

(2.6)

Combining the estimates (2.5) and (2.6) with (2.4), we obtain

V̇0 = α〈Z,Z〉 − α〈Y, G(Y )〉+ 〈X, H(X)〉

+ 〈X, F (X, Y )Z〉+ 〈X, G(Y )〉+ α

∫ 1

0

〈σJ(F (X, σY )Y | X)Y, Y 〉dσ.
(2.7)

Since

G(0) = 0,
∂

∂σ
G(σY ) = JG(σY )Y,

it follows that

G(Y ) =
∫ 1

0

JG(σY )Y dσ.

Thus, assumption (i) of Theorem 2.3 shows that

α〈Y,G(Y )〉 = α

∫ 1

0

〈Y, JG(σY )Y 〉dσ

≤ −αa2

∫ 1

0

〈Y, Y 〉dσ

= −αa2〈Y, Y 〉 = −αa2‖Y ‖2.

(2.8)

By noting assumption (i) of Theorem 2.3 and then combining the estimate (2.8)
with (2.7) we can easily find that

V̇0 ≥ α‖Z‖2 + αa2‖Y ‖2 + a3‖X‖2 + 〈X, F (X, Y )Z〉+ 〈X, G(Y )〉. (2.9)
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Now, for some constants k1 and k2 conveniently chosen later, we have

〈X, G(Y )〉 =
1
2

∥∥k1X + k−1
1 G(Y )

∥∥2 − 1
2
k2
1〈X, X〉 − 1

2
k−2
1 〈G(Y ), G(Y )〉

≥ −1
2
k2
1〈X, X〉 − 1

2k2
1

a2
2〈Y, Y 〉

= −1
2
k2
1‖X‖2 − 1

2k2
1

a2
2‖Y ‖2

(2.10)

and
〈X, F (X, Y )Z〉

=
1
2

∥∥k2X + k−1
2 F (X, Y )Z

∥∥2 − 1
2
k2
2〈X, X〉 − 1

2k2
2

〈F (X, Y )Z,F (X, Y )Z〉

≥ −1
2
k2
2〈X, X〉 − 1

2k2
2

〈F (X, Y )Z,F (X, Y )Z〉

≥ −1
2
k2
2‖X‖2 − 1

2k2
2

a2
1‖Z‖2.

(2.11)

From the estimates (2.9)-(2.11), we deduce that

V̇0 ≥ [a3 −
1
2
k2
1 −

1
2
k2
2]‖X‖2 + [αa2 −

1
2k2

1

a2
2]‖Y ‖2 + [α− 1

2k2
2

a2
1]‖Z‖2.

Let

k2
1 = min

{a3

2
,

a2
2

a2α

}
, k2

2 = min
{a3

2
, a2

1α
−1

}
.

Then

V̇0 ≥
(a3

2

)
‖X‖2 +

(αa2

2

)
‖Y ‖2 +

(
3α

4

)
‖Z‖2

≥ k
(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
> 0,

where
k = min

{a3

2
,
αa2

2
,
α

2
}
.

Thus, assumption (i) of Theorem 2.3 shows that V̇0(t) ≥ 0 for all t ≥ 0, that is,
V̇0 is positive semi-definite. Furthermore, the equality V̇0 = 0 (t ≥ 0) necessarily
implies that Y = 0 for all t ≥ 0. Hence, we obtain that X = ξ (a constant vector),
Z = Ẏ = 0 for all t ≥ 0. Substituting the estimates

X = ξ, Y = Z = 0

in the system (1.2) it follows that H(ξ) = 0 which necessarily implies that ξ = 0
because of H(0) = 0. So

X = Y = Z = 0 for all t ≥ 0.

Therefore, the function V0 has the entire requisite Krasovskii’s criteria [10] if as-
sumption (i) in Theorem 2.3 holds. This proves part (i) of Theorem 2.3.

Similarly, for the proof of part (i’) of Theorem 2.3, we consider the Lyapunov
function V1 = V1(X, Y, Z) defined by:

2V1 = −2α

∫ 1

0

〈H(σX), X〉dσ + 2α〈Y, Z〉+ α

∫ 1

0

σ〈F (X, σY )Y, Y 〉dσ

− 〈Y, Y 〉+ 2〈X, Z〉,
(2.12)
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where α is a positive constant.
When we follow the lines indicated in the proof of part (i) of Theorem 2.3, we

can easily obtain
V1(0, 0, 0) = 0, V1(ε, 0, 0) ≥ a3

2
‖ε‖2

> 0

for all arbitrary ε 6= 0, ε ∈ Rn and

V̇1 ≥ k
(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
> 0,

where k is a certain positive constant. This proves the proof of the part (i’) of
Theorem 2.3. The basic properties of V0(X, Y, Z) and V1(X, Y, Z), which we have
proved just above, justify that the zero solution of the system (1.2) is unstable. See
[18, theorem 1.15], see also [10]. The system (1.2) is equivalent to the differential
equation (1.1). It follows thus the original statement of the theorem. �

Example: As a special case of the system (1.2), let us choose, for the case n =
3, F, G and H that appeared in (1.2) as follows:

F (X, Y ) =

1 −5x2
1 + 1

1+y2
1

x3 + 2y3

0 1
1+x2

2+y2
2

0
0 0 1

2+x4
3+y4

3

 ,

G(Y ) =

−y1 − y3
1

−y2 − y3
2

−y3 − y3
3

 , H(X) =

x1 + x3
1

x2 + x3
2

x3 + x3
3


Then, clearly, the eigenvalues of the matrix F (X, Y ) are

λ1(F (X, Y )) = 1, λ2(F (X, Y )) =
1

1 + x2
2 + y2

2

≤ 1,

λ3(F (X, Y )) =
1

2 + x4
3 + y4

3

≤ 1.

Next, observe that

JG(Y ) =

−1− 3y2
1 0 0

0 −1− 3y2
2 0

0 0 −1− 3y2
3

 ,

and hence λ1(JG(Y )) = −1− 3y2
1 , λ2(JG(Y )) = −1− 3y2

2 , λ3(JG(Y )) = −1− 3y2
3 .

Clearly, −1 ≤ λ1(JG(Y )) ≤ − 1
2 , −1 ≤ λ2(JG(Y )) ≤ − 1

2 and −1 ≤ λ3(JG(Y )) ≤
− 1

2 . Finally, we have that

JH(X) =

1 + 3x2
1 0 0

0 1 + 3x2
2 0

0 0 1 + 3x2
3

 ,

and λ1(JH(X)) = 1 + 3x2
1 ≥ 1 > 0, λ2(JH(X)) = 1 + 3x2

2 ≥ 1 > 0, λ3(JH(X)) =
1 + 3x2

3 ≥ 1 > 0. Thus all the conditions of part (i) of Theorem 2.3 are satisfied.
The next theorem is our second main result.

Theorem 2.4. Further to the basic assumptions imposed on F,G and H appeared
in (1.2), suppose that there are constants a1, a2 and a3 such that one of the following
conditions is satisfied:

(i) λi(F (X, Y )) ≤ −a1 < 0, λi(JG(Y )) ≤ a2 and λi(JH(X)) ≥ a3 > 0, (i =
1, 2, . . . , n), for all X, Y ∈ Rn.
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(i’) λi(F (X, Y )) ≥ a1 > 0, λi(JG(Y )) ≤ a2 and λi(JH(X)) ≤ −a3 < 0, (i =
1, 2, . . . , n), for all X, Y ∈ Rn.

Then the zero solution X = 0 of the system (1.2) is unstable.

Proof. Consider the function V2 = V2(X, Y, Z) defined by

2V2 = β〈Z,Z〉+ 2β〈Y, H(X)〉+ 2β

∫ 1

0

〈G(σY ), Y 〉dσ + 〈Y, Y 〉 − 2〈X, Z〉, (2.13)

where β is a positive constant. Observe that V2(0, 0, 0) = 0. It is also clear from
assumption (i) of Theorem 2.4 that

V2(0, 0, ε) ≥ β〈ε, ε〉 = β‖ε‖2 > 0

for all arbitrary ε ∈ Rn, ε 6= 0. So that in every neighborhood of (0, 0, 0) there
exists a point (ξ, η, ζ) such that V2(ξ, η, ζ) > 0 for all ξ, η and ζ in Rn. Next, let
(X, Y, Z) = (X(t), Y (t), Z(t)) be an arbitrary solution of the system (1.2). An easy
calculation from (2.13) and (1.2) yields that

V̇2 =
d

dt
V2(X, Y, Z)

= −β〈Z,F (X, Y )Z〉+ β〈Y, JH(X)Y 〉+ 〈X, H(X)〉

+ 〈X, F (X, Y )Z〉+ 〈X, G(Y )〉 − β〈G(Y ), Z〉+ β
d

dt

∫ 1

0

〈G(σY ), Y 〉dσ.

But
d

dt

∫ 1

0

〈G(σY ), Y 〉dσ =
∫ 1

0

σ〈JG(σY )Z, Y 〉dσ +
∫ 1

0

〈G(σY ), Z〉dσ

=
∫ 1

0

σ
∂

∂σ
〈G(σY ), Z〉dσ +

∫ 1

0

〈G(σY ), Z〉dσ

= σ〈G(σY ), Z〉
∣∣1
0

= 〈G(Y ), Z〉.

(2.14)

Therefore, by using (2.14) and assumption (i) of Theorem 2.4, we get

V̇2 = −β〈Z,F (X, Y )Z〉+ β〈Y, JH(X)Y 〉+ 〈X, H(X)〉
+ 〈X, F (X, Y )Z〉+ 〈X, G(Y )〉

≥ βa1‖Z‖2 + βa3‖Y ‖2 + a3‖X‖2 + 〈X, F (X, Y )Z〉+ 〈X, G(Y )〉.
(2.15)

Similarly, as shown just above for some constants k1 and k2 conveniently chosen
later, we can easily obtain from (2.15) that

V̇2 ≥
(
a3 −

1
2
k

2

1 −
1
2
k

2

2

)
‖X‖2 +

(
βa3 −

1
2
k
−2

1 a2
2

)
‖Y ‖2 +

(
βa1 −

1
2
k
−2

2 a2
1

)
‖Z‖2.

Let

k
2

1 = min
{a3

2
,

a2
2

βa3

}
, k

2

2 = min
{a3

2
,
a1

β

}
.

Hence

V̇2 ≥
(a3

2

)
‖X‖2 +

(
βa3

2

)
‖Y ‖2 +

(
βa1

2

)
‖Z‖2

≥ k
(
‖X‖2 + ‖Y ‖2 + ‖Z‖2

)
> 0,

where
k = min

{a3

2
,
βa3

2
,
βa1

2
}
.
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The rest of the proof of part (i) of Theorem 2.4 is the same as the proof of part (i)
of Theorem 2.3 just proved above and hence it is omitted the details. �

Finally, for the proof of part (i’) of Theorem 2.4, we consider the Lyapunov
function

V3(X, Y, Z) = V2(X, Y, Z)− 2β

∫ 1

0

〈H(σX), X〉dσ,

where V2(X, Y, Z) is defined as the same the function in (2.13). The remaining of
the proof can be verified proceeding exactly along the lines indicated just in the
proof of Theorem 2.3. Hence we omit the detailed proof.
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[30] C. Tunç; On the instability of certain sixth-order nonlinear differential equations, Electron.
J. Diff. Eqns., Vol.2004, (2004), no. 117, 1-6.
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65080, Van, Turkey

E-mail address: cemtunc@yahoo.com

Ercan Tunç
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