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ANALYSIS OF A SINGLE SPECIES WITH DIFFUSION IN A
POLLUTED ENVIRONMENT

JING WANG, KE WANG

Abstract. In this paper, the effect of diffusion on the permanence and ex-

tinction in the polluted environment is studied by a single population diffusive
system in two patches. Assume that the two patches are a protective patch

and a non-protective patch. We examine the effects of protective patch and

conclude that it is effective for the conservation of a population facing pol-
luted environment. The conditions for the permanence and extinction of the

population are obtained.

1. Introduction

Biological resources are renewable resources. In recent years, many countries
have already realized that the pollution of the environment is a very urgent problem.
Specialists coming from all kinds of fields have studied and solved it. One of the
most meaningful question in mathematical biology is the permanence and extinction
of a population in a polluted environment. Organisms are often exposed to a
polluted environment and take up toxicant. Therefore, it is important to study the
effects of a toxicant and diffusion on populations and to find a theoretical threshold
value, which determines permanence or extinction of a population or community.

In order to prevent the biological resources from destruction and protect the
environment, all kinds of measures have been proposed. Establishing protective
patch as for a resource population is applied widely. The practical effects of the
protective patch on the polluted population is worth examination.

Since Hallam and his colleagues proposed a toxicant-population model in the
early 1980s [1]-[3], many authors have studied the mathematical models with tox-
icant effect [4, 5]. In this paper, pollution together with diffusional migration is
taken into account comprehensively. It is particularly interested in the managers
who need to deal with the size and control of barriers in protective patch [6, 7].
The organization of this paper is as follows. In the next section, we formulate our
model as a system of non-autonomous ordinary differential equations, and describe
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our hypotheses. In section 3, we determine the equilibria of two autonomous sys-
tems. In section 4, sufficient conditions are obtained for permanence and extinction
of population.

2. The Model

Let N(t) be the density of population in region Ω at time t; C0(t) be the toxicant
density in a body; Ce(t) be the toxicant density of environment; u(t) be the exoge-
nous toxicant input rate, which is nonnegative, continuous and bounded function
in the internal [0,∞).

The basic assumption is that compared with the number of the individuals,
the content of the environment is large enough, the uptake and egestion by the
organisms can be neglected. Equation of the polluted population reads

Ṅ(t) = N(t)[r(t)− d(t)C0(t)− a(t)N(t)],

Ċ0(t) = k(t)Ce(t)− g(t)C0(t)−m(t)C0(t),

Ċe(t) = −h(t)Ce(t) + u(t),

(2.1)

where r(t), d(t)C0(t), a(t) are the intrinsic growth rate, death rate, density restric-
tion respectively, k(t)Ce(t) represents the uptake of the toxicant from the environ-
ment by the population, g(t)C0(t) represents the toxicant quantity input to the
environment from the population due to egestion, m(t)C0(t) represents the meta-
bolic processes and other losses, h(t)Ce(t) represents the losses of the toxicant from
the environment due to egestion.

To protect the population resources, Ω is divided into two patches Ω1 and Ω2.
Pollution is permitted in Ω1 and is inhibited in Ω2. We call Ω2 the protective patch.
The densities of population in Ω1 and Ω2 are denoted by x(t), y(t) respectively, b(t)
is the density restriction of the population. The mathematical model of the polluted
population with protective patch can be described as

ẋ(t) = x(t)[r(t)− d(t)C0(t)− a(t)x(t)] + D(t)(y(t)− x(t)),

ẏ(t) = y(t)[r(t)− b(t)y(t)] + D(t)(x(t)− y(t)),

Ċ0(t) = k(t)Ce(t)− g(t)C0(t)−m(t)C0(t),

Ċe(t) = −h(t)Ce(t) + u(t).

(2.2)

The initial conditions are x0 = x(0) > 0, y0 = y(0) > 0, 0 ≤ C0(0) ≤ 1, 0 ≤
Ce(0) ≤ 1. Since the difference of densities between patch Ω1 and Ω2 exists, the
diffusive migration can occur between the two patches, which is assumed to be
D(t). The coefficients in the models are all nonnegative, continuous and bounded
functions in the internal [0,∞).

To simplify our representations, we introduce the following notations in this
paper: if f(t) is a nonnegative, continuous and bounded functions in the internal
(−∞,∞),

fu = max
t∈R

f(t), f l = min
t∈R

f(t).

Considering the realistic situation, the toxicant density of single body or the envi-
ronment can’t be greater than 1, or any population wiil not survive. So we should
give some conditions, such that

0 ≤ C0(t) ≤ 1, 0 ≤ Ce(t) ≤ 1, for all t ≥ 0.
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Lemma 2.1. The set

{(x(t), y(t), C0(t), Ce(t)) : x(t) > 0, y(t) > 0, C0(t) > 0, Ce(t) > 0}
is an invariant region of system (2.2)

Lemma 2.2. For (2.2), if ku ≤ gl +ml, uu ≤ hl, then 0 ≤ C0(t) ≤ 1, 0 ≤ Ce(t) ≤
1, for all t ≥ 0.

Proof. According to Lemma 2.1, we have 0 ≤ C0(t), 0 ≤ Ce(t), for all t ≥ 0. Now
we are going to prove that C0(t) ≤ 1, Ce(t) ≤ 1, for all t ≥ 0.

If the conclusion is false, then the maximum interval is [0, T ]. At least one of
the following cases will happen:

(1) C0(t) = 1, Ce(t) < 1;
(2) C0(t) < 1, Ce(t) = 1;
(3) C0(t) = 1, Ce(t) = 1.

We will prove that none of this cases will happen. (1) C0(t) = 1, Ce(t) < 1: Using
the condition ku ≤ gl + ml, we get

dC0(t)
dt

|t=T = k(t)Ce(t)− g(t)C0(t)−m(t)C0(t) ≤ 0,

thus ∃t1 > 0, such that C0(t) ≤ 1, Ce(t) < 1, for all t ∈ [T, T + t1]. This is the
contradiction with the definition of the interval [0, T ]. So there is no T such that
Ce(t) < 1, t ∈ [0, T ]; C0(t) < 1, t ∈ [0, T ) and C0(T ) = 1.

With the same reasoning as in case (1), for cases (2) and (3), as far as t which
keeps C0(t) ≤ 1 and Ce(t) ≤ 1 is concerned, the interval [0, T ] can be extended
rightwards. This contradicts the property of T . Therefore, there is no such T ,
furthermore 0 ≤ C0(t) ≤ 1, 0 ≤ Ce(t) ≤ 1, for all t ≥ 0. �

It is clear C0(t) and Ce(t) can be easily solved formally from the last two equa-
tions of the system (2.2),

C0(t) = e−
R

(m(s)+g(s))ds[
∫

k(s)e
R

(m(s)+g(s))dsCe(s)ds + C0(0)],

Ce(t) = e−
R

(h(s))ds[
∫

u(s)e
R

(h(s))dsds + Ce(0)],

Substituting Ce(t) in C0(t), we can express C0(t) in term of some bounded contin-
uous functions; therefore, the system (2.1) may be simplified as follows:

ẋ(t) = x(t)[r(t)− d(t)C0(t)− a(t)x(t)] + D(t)(y(t)− x(t)),

ẏ(t) = y(t)[r(t)− b(t)y(t)] + D(t)(x(t)− y(t)).
(2.3)

The initial conditions are x0 = x(0) > 0, y0 = y(0) > 0. For the simplified model
(2.3), because the C0(t) may be regarded as a known function of t, we need only
to impose the conditions of the diffusive coefficient D(t) and the toxicant density
in a body C0(t) in order to investigate the threshold between permanence and
extinction of the populations. There is toxicant in patch Ω1, but not in patch Ω2

of systems (2.2), (2.3). Assume patch Ω2 is the protective patch in order to the
conservation of population resources in the polluted environment, though in some
case the extinction can not be eliminated.

Considering the biological significance, we study system (2.3) in the region

R2
+ = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}.
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Defintion 2.3. [6]] A solution x(t) of the system (2.3) is said to be permanent if
for any x(0) > 0, there exist positive constants 0 < δ < ε (independent of x(0))
such that δ < x(t) < ε, then x(t) is said to be uniformly permanent for large enough
t. x(t) is said to go to extinction if limt→+∞ x(t) = 0.

Defintion 2.4 ([8]). The differential equation

ẋ(t) = F (t, x), x ∈ Rn,

is said to be cooperative if the off-diagonal elements of DxF (t, x) are nonnegative,
where DxF (t, x) is the n× n matrix derivative of F with respect to x.

Theorem 2.5 (Kamke). Let x(t) and y(t)be the solutions of

ẋ(t) = F (t, x)

ẏ(t) = G(t, x)

respectively, where both systems are assumed to have the uniqueness property for
initial value problems. Assume both x(t) and y(t) belong to a domain D ⊆ Rn for
[t0, t1] in which one of the two systems is cooperative and

F (t, z) ≤ G(t, z) (t, z) ∈ [t0, t1]×D.

if x(t0) ≤ y(t0) then x(t1) ≤ y(t1). If F = G and x(t0) < y(t0) then x(t1) < y(t1).

Lemma 2.6. The set R2
+ is an invariant region of system (2.3).

Lemma 2.7. Solutions of system (2.3) with the positive initial conditions are uni-
formly bounded and ultimately uniformly bounded.

Proof. Let

∆ > max{ru − dlCl
0

al
,
ru

bl
},

ẋ(t)|x=∆,y<∆ ≤ x(rl − duCu
0 − aux) + D(t)(y − x) < 0,

ẏ(t)|y=∆,x<∆ ≤ y(rl − buy) + D(t)(x− y) < 0,

(i) If max{x(0), y(0)} ≤ ∆, then max{x(t), y(t)} ≤ ∆ for t ≥ 0.
(ii) If max{x(0), y(0)} > ∆, then there exists µ > 0, max{x(t), y(t)} > ∆, for

t ∈ [0, µ).

When max{x(t), y(t)} = x(t), letting α = al( ru−dlCl
0

al −∆) < 0, we have

ẋ(t) = x(t)[r(t)− d(t)C0(t)− a(t)x(t)] + D(t)(y(t)− x(t))

≤ alx(
ru − dlCl

0

al
− x)

< αx .

Then x(t) is monotone decreasing with speed α, so there exists T1 = −1
α ln ∆

x(0) ,
such that x(t) < ∆ for t ≥ T1.

When max{x(t), y(t)} = y(t), letting α = bl( ru

bl −∆) < 0, we have

ẏ(t) = y(t)[r(t)− b(t)y(t)] + D(t)(x(t)− y(t))

≤ blx(
ru

bl
−∆)

< αy .
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Then y(t) is monotone decreasing with speed α, so there exists T2 = −1
α ln ∆

y(0) ,
such that y(t) < δ for t ≥ T2.

So that max{x(t), y(t)} is monotonically decreasing with speed α in the interval
[0, µ). For all t∗ ∈ [0,+∞), if max{x(t∗), y(t∗)} > ∆, there exists µ, such that
max{x(t), y(t)} is monotonically decreasing with speed α in the interval [t∗, t∗+µ).
Then there is T ∗ > t∗, with max{x(t), y(t)} < ∆, for t > T ∗.

Solutions of system (2.3) with positive initial conditions are uniformly bounded
and ultimately uniformly bounded. �

3. Two Cooperative Systems

In this section we consider two autonomous systems generated by the system
(2.3):

ẋ = x[ru −Dl − dlCl
0 − alx] + Duy := P1(x, y),

ẏ = y[ru −Dl − bly] + Dux := Q1(x, y),
(3.1)

and
ẋ = x[rl −Du − duCu

0 − aux] + Dly := P2(x, y),

ẏ = y[rl −Du − buy] + Dlx := Q2(x, y).
(3.2)

Obviously, systems (3.1) and (3.2) are cooperative. Now we study the existence
and the stability of equilibria of (3.1), which are solutions of

l1 : x[ru −Dl − dlCl
0 − alx] + Duy = 0,

l2 : y[ru −Dl − bly] + Dux = 0.
(3.3)

We are only interested in the non-negative equilibria, they are the intersection
of the isoclines l1, l2. The graph of l1 and l2 are parabolas. l1 is symmetric to
line x = − ru−Dl−dlCl

0
2al and l2 is symmetric to line y = − ru−Dl

2bl . We denote the
intersection in the first quadrant by (x∗, y∗).

Let ki (i = 1, 2) denote the slope of the tangent line of li at (0, 0). Clearly
k1 = dlCl

0+Dl−ru

Du , k2 = Du

Dl−ru .
Condition 1: If ru < Dl and (Du)2 < (Dl−ru)(dlCl

0 +Dl−ru), then 0 < k1, 0 < k2

and k1 > k2, the curves l1, l2 do not intersect in the positive quadrant. That is to
say, the unique non-negative equilibrium is (0, 0) (see Fig. 1(a)).
Condition 2: If ru < Dl and (Du)2 > (Dl−ru)(dlCl

0+Dl−ru) , then 0 < k1, 0 < k2

and k1 < k2, the curves l1, l2 intersect in the positive quadrant. That is to say, the
unique positive equilibrium is (x∗, y∗) in the positive quadrant. At the same time,
the unique nonnegative equilibrium (0, 0) exists(see Fig. 1(b)).
Condition 3: If ru ≥ Dl, the existence of the unique positive equilibrium (x∗, y∗)
and the nonnegative equilibrium (0, 0) can be proved (see Fig.1(c)(d)(e)).

Theorem 3.1. The point (0, 0) is always an equilibrium of system (3.1). If ru < Dl

and (Du)2 < (Dl − ru)(dlCl
0 + Dl − ru), then (0, 0) is the unique nonnegative

equilibrium, it is a stable node.

Proof. Obviously, (0, 0) is an equilibrium system of (3.1). The Jacobian matrix
corresponding to the linearized system of (3.1), at (0, 0), is

J(0, 0) =
(

ru −Dl − dlCl
0 Du

Du ru −Dl

)
.
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Figure 1.

Hence, the stability of (0, 0) is determined by the characteristic equation’s eigen-
values λ1, λ2 that satisfy

λ2 − [2ru − 2Dl − dlCl
0]λ + (ru −Dl)(ru −Dl − dlCl

0)− (Du)2 = 0.

Solving it produces

∆ = [2ru − 2Dl − dlCl
0]

2 − 4(ru −Dl)(ru −Dl − dlCl
0) + 4(Du)2

= (dlCl
0)

2 + 4(Du)2 > 0.
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Assuming without loss of generality that λ1 < λ2, we have

λ1 + λ2 = 2ru − 2Dl − dlCl
0 < 0,

λ1λ2 = (ru −Dl)(ru −Dl − dlCl
0)− (Du)2 > 0.

Hence, when the condition of the theorem is satisfied, which implies λ1 < λ2 < 0,
therefore (0, 0) is a stable node. This completes the proof. �

Theorem 3.2. If ru < Dl, and (Du)2 > (Dl − ru)(dlCl
0 + Dl − ru), or ru ≥ Dl,

then there exists a unique positive equilibrium (x∗, y∗) of (3.1) which is a stable
node.

Proof. our previous discussion establishes the existence of a positive equilibrium.
Now, we analyze the local geometric properties of (x∗, y∗). The Jacobian matrix of
(x∗, y∗) is

J(x∗, y∗) =
(

ru −Dl − dlCl
0 − 2alx∗ Du

Du ru −Dl − 2bly∗

)
=

(
−Duy∗

x∗ − alx∗ Du

Du −Dux∗

y∗ − bly∗

)
.

Hence, the stability of (x∗, y∗) determined by the characteristic equation’s eigen-
values

λ2 + [
Duy∗

x∗
+ alx∗ +

Dux∗

y∗
+ bly∗]λ + (

Duy∗

x∗
+ alx∗)(

Dux∗

y∗
+ bly∗)− (Du)2 = 0.

∆ = [
Duy∗

x∗
+ alx∗ +

Dux∗

y∗
+ bly∗]2 − 4(

Duy∗

x∗
+ alx∗)(

Dux∗

y∗
+ bly∗) + 4(Du)2

= [(
Duy∗

x∗
+ alx∗)− (

Dux∗

y∗
+ bly∗)]2 + 4(Du)2 > 0.

Under the condition of the theorem, it produces λ1 + λ2 < 0, λ1λ2 > 0. We have
λ1 < λ2 < 0. (x∗, y∗) is a stable node. The proof is completed. �

Theorem 3.3. Each trajectory of (3.1) starting in R2
+ is positive-going bounded.

Proof. We want to construct an outer boundary of a positive invariant region which
contains (x∗, y∗). Let AB and BC be the line segments of L1 : x = p, L2 : y = q,
and (p, q) is an arbitrary fixed point in R2

+ satisfying p > x∗ and

ru −Dl +
√

(ru −Dl)2 + 4blDup

2bl
< q <

(alp + dlCl
0 + Dl − ru)p
Du

where the intersections of the straight line L1 and l1, l2 are F (p, y2) and E(p, y1)
respectively.

y1 =
ru −Dl +

√
(ru −Dl)2 + 4blDup

2bl
,

y2 =
(alp + dlCl

0 + Dl − ru)p
Du

The domain is enclosed by OABCO, (see Fig. 2). By the sign of ẋ, ẏ, we can say
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Figure 2. with A(p, 0), B(p, q), C(0, q), E(p, y1), F (p, y2), P (x∗, y∗)

that the trajectory starting from (p, q) of (3.1) can not leave the confined set.

ẋ |x=0= Duy > 0,

ẏ
∣∣
y=0

= Dux > 0,

ẋ
∣∣
x=p

= p(ru −Dl − dlCl
0 − alp) + Duy < 0,

ẏ
∣∣
y=q

= q(ru −Dl − blq) + Dux < 0.

This completes the proof. �

Theorem 3.4. For system (3.1), if ru < Dl and (Du)2 < (Dl−ru)(dlCl
0+Dl−ru),

then (0, 0) is the unique nonnegative equilibrium, it is globally asymptotically stable.

Proof. By theorem 3.3, we can easily prove that in OABCO,

∂P

∂x
+

∂Q

∂y
= −2ru − 2Dl − dlCl

0 − 2alx− 2bly < 0

then by Poincare-Bendixon theorem there are no limit cycles in OABCO, and (0, 0)
is the unique positive equilibrium which is stable node in OABCO, so it is globally
asymptotically stable. This completes the proof. �

Theorem 3.5. For system (3.1), if ru < Dl and (Du)2 > (Dl − ru)(dlCl
0 +

Dl − ru), or ru ≥ Dl then (x∗, y∗) is the unique positive equilibrium, it is globally
asymptotically stable.

Proof. We construct the Liapunov function

V (x, y) = α(x− x∗ − x∗ ln
x

x∗
) + β(y − y∗ − y∗ ln

y

y∗
),
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where α, β are positive constants. Calculating the derivative of V (x, y) along (3.1),
we have

V ′
(3.1)(x, y) = α(x− x∗)

ẋ

x
+ β(y − y∗)

ẏ

y

= −αal(x− x∗)2 − βbl(y − y∗)2

+ αDu(x− x∗)(
y

x
− y∗

x∗
) + βDu(y − y∗)(

x

y
− x∗

y∗
)

= −x∗al(x− x∗)2 − y∗bl(y − y∗)2

−Du[
√

y

x
(x− x∗)−

√
x

y
(y − y∗)]2 ≤ 0,

In fact, we choose that α = x∗, β = y∗. We can see that in the domain OABCO,
V ′

(3.1) = 0 if and only if x = x∗, y = y∗. Hence (x∗, y∗) is globally asymptotically
stable. This completes the proof. �

The specific computation is similar to above-proved theorems, for the system
(3.2) has two equilibria O(0, 0) and (x∗∗, y∗∗).

Theorem 3.6. The point (0, 0) is always an equilibrium of system (3.2). If rl <
Du, (Dl)2 < (Du − rl)(duCu

0 + Du − rl), then (0, 0) is the unique nonnegative
equilibrium, which is a stable node and globally asymptotically stable.

Theorem 3.7. If rl < Du and (Dl)2 > (Du − rl)(duCu
0 + Du − rl) , or rl ≥ Du,

then there exists a unique positive equilibrium (x∗, y∗) of system (3.2) which is a
stable node and globally asymptotically stable.

In other words, for the systems (3.1), (3.2), when the only nonnegative equi-
librium (0, 0) exists, it is stable node and is globally asymptotically stable. If the
(0, 0) is unstable, then there exists a unique positive equilibrium which is globally
asymptotically stable.

4. Permanence and Extinction

In this section, we study the permanence and extinction of population of system
(2.3).

Theorem 4.1. (1) If ru < Dl and (Dl)2 > (Du−rl)(duCu
0 +Du−rl), or rl ≥ Du,

then the system (2.3) is permanent; (2) If ru < Dl and (Du)2 < (Dl − ru)(dlCl
0 +

Dl − ru), system (2.3) goes to extinction.

Proof. From the conditions (1) of the theorem, we know that rl < Du and (Du)2 >
(Dul−ru)(dlCl

0+Dl−ru), or ru ≥ Dl holds. By the above discussion of the theorem
3.5 and 3.7, we know that the system (3.1) and (3.2) have the globally asymptoti-
cally stable positive equilibria (x∗, y∗) and (x∗∗, y∗∗), the trivial equilibrium (0, 0)
is unstable. We construct a positively invariant region for system (2.3).

where p1, p2, q1, q2 are positive constants satisfying

p1 < min{x∗, x∗∗}, p2 > max{x∗, x∗∗},
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Figure 3. The rectangle ABCD with A(p1, q1), B(p2, q1),
C(p2, q2), D(p1, q2) and P (x∗∗, y∗∗), Q(x∗, y∗)

p1

Dl
(aup1 + duCu

0 + Du − rl)

< q1

< min{y∗, y∗∗, −(rl −Du) +
√

(rl −Du)2 + 4buDlp1

2bu
},

and

max{y∗, y∗∗, −(ru −Dl) +
√

(ru −Dl)2 + 4blDup2

2bl
}

< q2

<
p2

Du
(alp2 + dlCl

0 + Dl − ru).

Since

ẋ(t)
∣∣
x=p1

≥ p1(rl −Du − duCu
0 + aup1) + Dly

∣∣
q1≤y≤q2

> 0,

ẋ(t)
∣∣
x=p2

≤ p2(ru −Dl − dlCl
0 + alp2) + Duy

∣∣
q1≤y≤q2

< 0,

ẏ(t)
∣∣
y=q1

≥ q1(rl −Du − buq1) + Dlx
∣∣
p1≤x≤p2

> 0,

ẏ(t)
∣∣
y=q2

≤ q2(ru −Dl − blq2) + Dux
∣∣
p1≤x≤p2

< 0,

So the compact confined set ABCD in R2
+, the phase trajectories of the system

(2.3) starting from the boundary always point into the enclosed domain. According
to the Kamke theorem and definition 2.3, for any positive solution (x(t), y(t)) of
(2.3) with positive initial value, there exists a time T, when (x(t), y(t)) goes in the
ABCD and never leaves for all t > T . Hence the system (2.3) is permanent.

Let (x(t), y(t)) be an arbitrary positive solution of system (2.3) with the positive
initial value; (x∗(t), y∗(t)) and (x∗∗(t), y∗∗(t)) are the same of systems (3.1) and
(3.2) respectively. Choose initial value x∗∗(0) = x(0) = x∗(0), y∗∗(0) = y(0) =
y∗(0), If the condition (2) of the theorem exists, then the conditions rl < Du and
(Dl)2 < (Du− rl)(duCu

0 +Du− rl) hold, according to the Theorem 3.4 and 3.6, we
know that the systems (3.1) and (3.2) have unique trivial equilibrium (0, 0) which
is globally asymptotically stable. By the Kamke theorem, x∗∗(t) ≤ x(t) ≤ x∗(t),
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y∗∗(t) ≤ y(t) ≤ y∗(t), for t ≥ 0. Furthermore, we have

lim
t→+∞

x(t) = lim
t→+∞

y(t) = 0,

then system (2.3) is extinctive. �

Discussion. The toxic of the polluted population comes from the environment.
Suppose environment of patch 1 is polluted–non-protective patch, and patch 2 is
the ecological protective patch. In order to protect the existence of the polluted
population, we can use the artificial method, the one’s own purification function of
the population, toxin in the body of the individuals in patch 1 can be removed, then
we will put them into the protective patch. Set up ecological protective patch need
a large number of financial resources, material resources and manpower, so when
the scale of the protective patch is too large, individuals of some populations are
put back non-protective patch. So, they will be polluted by the toxic in the patch1.
The scale of the protection zone can be regulated through diffusive coefficient D(t).

These conditions can simplify the mathematical model, I supposed that no toxic
effects in the protective patch. The nest step in these investigations would be to
consider systems in which there are toxic in the protective patch.
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