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EXISTENCE OF SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL
DYNAMIC EQUATIONS ON TIME SCALES

CHANGXIU SONG

Abstract. In this paper, the author studies boundary-value problems for p-

Laplacian functional dynamic equations on a time scale. By using the fixed
point theorem, sufficient conditions are established for the existence of positive

solutions.

1. Introduction

Let T be a closed nonempty subset of R, and let subspace have the topology
inherited from the Euclidean topology on R. In some of the current literature, T is
called a time scale (or measure chain). For notation, we shall use the convention
that, for each interval of J of R, J will denote time scales interval, that is, J := J∩T.

In this paper, let T be a time scale such that −r, 0, T ∈ T. We are concerned
with the existence of positive solutions of the p-Laplacian dynamic equation, on a
time scale,

[φp(x4(t))]
∇

+ λa(t)f(x(t), x(µ(t))) = 0, t ∈ (0, T ),

x0(t) = ψ(t), t ∈ [−r, 0], x(0)−B0(x4(0)) = 0, x4(T ) = 0,
(1.1)

where λ > 0 and φp(u) is the p-Laplacian operator, i.e., φp(u) = |u|p−2u, p > 1,
(φp)−1(u) = φq(u), 1

p + 1
q = 1. Also we assume the following:

(A) The function f : (R+)2 → R+ is continuous;
(B) the function a : T → R+ is left dense continuous (i.e., a ∈ Cld(T,R+)).

Here Cld(T,R+) denotes the set of all left dense continuous functions from
T to R+;

(C) ψ : [−r, 0] → R+ is continuous and r > 0;
(D) µ : [0, T ] → [−r, T ] is continuous, µ(t) ≤ t for all t;
(E) B0 : R → R is continuous and satisfies that there are β ≥ δ > 0 such that

δs ≤ B0(s) ≤ βs for s ∈ R+.
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p-Laplacian problems with two-, three-, m-point boundary conditions for ordi-
nary differential equations and finite difference equations have been studied exten-
sively, for example see [3, 5, 9, 11] and references therein. However, there are not
many concerning the p-Laplacian problems on time scales, especially for p-Laplacian
functional dynamic equations on time scales.

The motivations for the present work stems from many recent investigations in
[2, 7, 10] and references therein. Especially, Kaufmann and Raffoul [7] considered
a nonlinear functional dynamic equation on a time scale and obtained sufficient
conditions for the existence of positive solutions. In this paper, we apply the fixed
point theorem to obtain at least one positive solution of boundary value problem
(BVP for short) (1.1). We do not need the condition that f(x1, x2) is increasing in
each xi, for xi > 0, i = 1, 2. And we claim the condition ψ ≡ 0 is not essential in
our results.

For convenience, we list the following well-known definitions which can be found
in [1, 4, 6] and the references therein.

Definition 1.1. For t < sup T and r > inf T, define the forward jump operator σ
and the backward jump operator ρ:

σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} ∈ T

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said
to be left scattered. If σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is
said to be left dense. If T has a right scattered minimum m, define Tκ = T− {m};
otherwise set Tκ = T. If T has a left scattered maximum M , define Tκ = T−{M};
otherwise set Tκ = T.

Definition 1.2. For x : T → R and t ∈ Tκ, we define the delta derivative of x(t),
x4(t), to be the number (when it exists), with the property that, for any ε > 0,
there is a neighborhood U of t such that

|[x(σ(t))− x(s)]− x4(t)[σ(t)− s]| < ε|σ(t)− s|
for all s ∈ U . For x : T → R and t ∈ Tκ, we define the nabla derivative of x(t),
x∇(t), to be the number (when it exists), with the property that, for any ε > 0,
there is a neighborhood V of t such that

|[x(ρ(t))− x(s)]− x∇(t)[ρ(t)− s]| < ε|ρ(t)− s|
for all s ∈ V . If T = R, then x4(t) = x∇(t) = x′(t). If T = Z, then x4(t) =
x(t + 1) − x(t) is forward difference operator while x∇(t) = x(t) − x(t − 1) is the
backward difference operator.

Definition 1.3. If F4(t) = f(t), then we define the delta integral by
∫ t
a
f(s)4s =

F (t) − F (a). If Φ∇(t) = f(t), then we define the nabla integral by
∫ t
a
f(s)∇s =

Φ(t)− Φ(a).

In the following, we provide the definition of cones in Banach spaces, and we
then state the fixed-point theorem for a cone preserving operator.

Definition 1.4. Let X be a real Banach space. A nonempty, closed, convex set
K ∈ X is called a cone, if it satisfies the following two conditions:

(i) x ∈ K, λ ≥ 0 implies λx ∈ K;
(ii) x and −x in K implies x = 0.
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Every cone K ⊂ X induces an ordering in X given by x ≤ y if and only if
y − x ∈ K.

Lemma 1.5 ([8]). Assume that X is a Banach space and K ⊂ X is a cone
in X; Ω1, Ω2 are open subsets of X, and 0 ∈ Ω1 ⊂ Ω2. Furthermore, let F :
K ∩ (Ω2 \ Ω1) → K be a completely continuous operator satisfying one of the
following conditions:

(i) ‖F (x)‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω1, ‖F (x)‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω2;
(i) ‖F (x)‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ω2, ‖F (x)‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ω1.

Then there is a fixed point of F in K ∩ (Ω2 \ Ω1).

2. Main results

We note that x(t) is a solution of (1.1) if and only if

x(t) =


B0

(
φq

( ∫ T
0
λa(r)f(x(r), x(µ(r)))∇r

))
+

∫ t
0
φq

( ∫ T
s
λa(r)f(x(r), x(µ(r)))∇r

)
4s, t ∈ [0, T ],

ψ(t), t ∈ [−r, 0].

(2.1)

Let X = Cld([0, T ],R) be endowed with the norm ‖x‖ = maxt∈[0,T ] |x(t)| and

K = {x ∈ X : x(t) ≥ δ

T + β
‖x‖ for t ∈ [0, T ]}.

Clearly, X is a Banach space with the norm ‖x‖ and K is a cone in X. For each
x ∈ X, extend x(t) to [−r, T ] with x(t) = ψ(t) for t ∈ [−r, 0].

For t ∈ [0, T ], define F : P → X as

Fx(t) = B0

(
φq

( ∫ T

0

λa(r)f(x(r), x(µ(r)))∇r
))

+
∫ t

0

φq

( ∫ T

s

λa(r)f(x(r), x(µ(r)))∇r
)
4s,

(2.2)

We seek a fixed point, x1, of F in the cone P . Define

x(t) =

{
x1(t), t ∈ [0, T ],
ψ(t), t ∈ [−r, 0].

Then x(t) denotes a positive solution of (1.1). It follows from (2.2) that

‖Fx‖ = (Fx)(T )

= B0

(
φq

( ∫ T

0

λa(r)f(x(r), x(µ(r)))∇r
))

+
∫ T

0

φq

( ∫ T

s

λa(r)f(x(r), x(µ(r)))∇r
)
4s

≤ (T + β)λq−1φq

( ∫ T

0

a(r)f(x(r), x(µ(r)))
)
.

(2.3)

From (2.2) and (2.3), we have the following lemma.

Lemma 2.1. Let F be defined by (2.2). If x ∈ K, then
(i) F (K) ⊂ K.
(ii) F : K → K is completely continuous.
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(iii) x(t) ≥ δ
T+β ‖x‖, t ∈ [0, T ].

We need to define subsets of [0, T ] with respect to the delay µ. Set

Y1 := {t ∈ [0, T ] : µ(t) < 0}; Y2 := {t ∈ [0, T ] : µ(t) ≥ 0}.

Throughout this paper, we assume Y1 is nonempty and
∫
Y1
a(r)∇r > 0. Let

l =:
λ1−q

(T + β)φq
( ∫ T

0
a(r)∇r

) , m =:
(T + β)λ1−q

δ2φq
( ∫

Y1
a(r)∇r

) ,
l̃ =:

1

(T + β)φq
( ∫ T

0
a(r)∇r

) .
In additions to Conditions (A)–(E), we shall also consider the following:

(H1) limx→0+
f(x,ψ(s))
xp−1 < lp−1, uniformly in s ∈ [−r, 0];

(H2) limx1→0+;x2→0+
f(x1,x2)

max{xp−1
1 ,xp−1

2 }
< lp−1;

(H3) limx→∞
f(x,ψ(s))
xp−1 > mp−1, uniformly in s ∈ [−r, 0].

Theorem 2.2. Assume Conditions (A)–(E), (H1)–(H3) are satisfied. Then, for
each 0 < λ <∞, BVP (1.1) has at least a positive solution.

Proof. Apply Condition (H1) and set ε1 > 0 such that if 0 < x ≤ ε1, then

f(x, ψ(s)) < (lx)p−1, for each s ∈ [−r, 0].

Apply Condition (H2) and set ε2 > 0 such that if 0 < x1 ≤ ε2, 0 < x2 ≤ ε2, then

f(x1, x2) < max{xp−1
1 , xp−1

2 }lp−1.

Set ρ1 = min{ε1, ε2}. Then, for any x ∈ K with ‖x‖ = ρ1, from (2.3), we have

‖Fx‖

≤ (T + β)λq−1φq

( ∫ T

0

a(r)f(x(r), x(µ(r)))∇r
)

= (T + β)λq−1
[
φq

( ∫
Y1

a(r)f(x(r), ψ(µ(r)))∇r +
∫
Y2

a(r)f(x(r), x(µ(r)))∇r
)]

≤ l(T + β)λq−1 max
t∈[0,T ]

{x(t)}φq
( ∫ T

0

a(r)∇r
)

= l(T + β)λq−1‖x‖φq
( ∫ T

0

a(r)∇r
)

= ‖x‖ for x ∈ K ∩ ∂Ω1,

(2.4)
where Ω1 = {x ∈ K : ‖x‖ < ρ1}. On the other hand, apply Condition (H3) and set
ρ2 > ρ1 such that if x ≥ ρ2

T+1+β , then

f(x, ψ(s)) > (mx)p−1, for each s ∈ [−r, 0].

Define Ω2 = {x ∈ K : ‖x‖ < ρ2}. For x ∈ K with ‖x‖ = ρ2, we have

x(t) ≥ δ

T + β
‖x‖, t ∈ [0, T ],
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Thus, we have

‖Fx‖ = (Fx)(T )

≥ δφq

( ∫ T

0

λa(r)f(x(r), x(µ(r)))∇r
)

≥ δλq−1φq

( ∫
Y1

a(r)f(x(r), ψ(µ(r)))∇r
)

≥ mδλq−1 min
t∈Y1

{x(t)}φq
( ∫

Y1

a(r)∇r
)

≥ mδ2λq−1

T + β
‖x‖φq

( ∫
Y1

a(r)∇r
)

= ‖x‖ for x ∈ K ∩ ∂Ω2.

(2.5)

Applying Condition (i) of Lemma 1.5, the proof is complete. �

Note that Theorem 2.2 is useful, but it does not apply if

f(x1, x2) = x2
1 + x2

2,

and if µ(t) < 0 for some t satisfying ψ(µ(t)) > l and p = 2, for example. That is,
Condition (H1) is not satisfied in this case.

We now provide a second theorem to address the above case. Firstly, we assume

(H2’)

lim
x1→0+;x2→0+

f(x1, x2)
max{xp−1

1 , xp−1
2 }

< l̃p−1.

Theorem 2.3. Assume Conditions (A)–(E), (H2’) and (H3) are satisfied. Then,
there exists L > 0 such that for each 0 < λ < L, BVP (1.1) has at least a positive
solution.

Proof. We outline the proof as a modification of the proof of Theorem 2.2. Only
the argument in the construction of Ω1 is modified. As in the proof of Theorem 2.2,
apply Condition (H2’); this time set ε2 > 0 such that if 0 < x1 ≤ ε2, 0 < x2 ≤ ε2,
then

f(x1, x2) < max
{
xp−1

1 , xp−1
2

}
l̃p−1.

Now, set ρ1 = ε2 and define

Ω1 = {x ∈ K : ‖x‖ < ρ1}

In particular, note that ρ1 is independent of λ. Let

D =
{maxx∈Ω1

∫
Y1
f(x(r), ψ(µ(r))∇r)

(T + β)φq
( ∫ T

0
a(r)∇r

) }p−1

Recall that f is continuous so D is well defined. Assume

λq−1 ≤ min
{

1,
ρ1

maxx∈Ω1

∫
Y1
f(x(r), ψ(µ(r))∇r)

}
:= Lq−1.
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Then we have

‖Fx‖

≤ (T + β)λq−1φq

( ∫ T

0

a(r)f(x(r), x(µ(r)))∇r
)

= (T + β)λq−1
[
φq

( ∫
Y1

a(r)f(x(r), ψ(µ(r)))∇r +
∫
Y2

a(r)f(x(r), x(µ(r)))∇r
)]

≤ (T + β)λq−1 max
{
Dq−1, l̃max

t∈Y2
{x(t)}

}
φq

( ∫ T

0

a(r)∇r
)

≤ ‖x‖ for x ∈ K ∩ ∂Ω1.

The remainder of the proof of Theorem 2.2 carries over verbatim. �

We now consider analogous conditions:
(H4) limx→0+

f(x,ψ(s))
xp−1 > mp−1, uniformly in s ∈ [−r, 0];

(H5) limx→∞
f(x,ψ(s))
xp−1 < lp−1, uniformly in s ∈ [−r, 0];

(H6) limx1→∞;x2→∞
f(x1,x2)

max{xp−1
1 ,xp−1

2 }
< lp−1.

Theorem 2.4. Assume Conditions (A)–(E), (H4)–(H6) are satisfied. Then, for
each 0 < λ <∞, BVP (1.1) has at least a positive solution.

Proof. Apply Condition (H4) and set ρ1 > 0 such that if 0 < x ≤ ρ1, then

f(x, ψ(s)) > (mx)p−1.

Define Ω1 = {x ∈ K : ‖x‖ < ρ1}. For x ∈ K with ‖x‖ = ρ1, we have

x(t) ≥ δ

T + β
‖x‖, t ∈ [0, T ],

Thus,

‖Fx‖ = (Fx)(T )

≥ δφq

( ∫ T

0

λa(r)f(x(r), x(µ(r)))∇r
)

≥ δλq−1φq

( ∫
Y1

a(r)f(x(r), ψ(µ(r)))∇r
)

≥ mδλq−1 min
t∈Y1

{x(t)}φq
( ∫

Y1

a(r)∇r
)

≥ mδ2λq−1

T + β
‖x‖φq

( ∫
Y1

a(r)∇r
)

= ‖x‖ for x ∈ K ∩ ∂Ω1.

To construct Ω2, we consider two cases, f bounded and f unbounded: When f is
bounded, the construction is straightforward. If f(x1, x2) is bounded by Np−1 > 0,
set

ρ2 = max
{
2ρ1, N(T + β)φq

( ∫ T

0

a(r)∇r
)}
.

Then define Ω2 = {x ∈ K : ‖x‖ < ρ2}. For x ∈ K with ‖x‖ = ρ2, we have

‖Fx‖ ≤ N(T + β)φq
( ∫ T

0

a(r)∇r
)
≤ ρ2.
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Assume f is unbounded. Apply Condition (H5) and set ε1 > 0 such that if x > ε1,
then

f(x, ψ(s)) < (lx)p−1, for each s ∈ [−r, 0].

Apply Condition (H6) and set ε2 > 0 such that if x1 ≥ ε2, x2 ≥ ε2, then

f(x1, x2) < max
{
xp−1

1 , xp−1
2

}
lp−1.

Set ρ2 = max{2ρ1, ε1, ε2}. Then, for any x ∈ K with ‖x‖ = ρ2, from (2.3), we have

‖Fx‖

≤ (T + β)λq−1φq

( ∫ T

0

a(r)f(x(r), x(µ(r)))∇r
)

= (T + β)λq−1
[
φq

( ∫
Y1

a(r)f(x(r), ψ(µ(r)))∇r +
∫
Y2

a(r)f(x(r), x(µ(r)))∇r
)]

≤ l(T + β)λq−1 max
t∈[0,T ]

{x(t)}φq
( ∫ T

0

a(r)∇r
)

= l(T + β)λq−1‖x‖φq
( ∫ T

0

a(r)∇r
)

= ‖x‖ for x ∈ K ∩ ∂Ω2,

where Ω2 = {x ∈ K : ‖x‖ < ρ2}. Apply Condition (ii) of Lemma 1.5, the proof is
complete. �

Similarly, assuming
(H6’)

lim
x1→∞;x2→∞

f(x1, x2)
max{xp−1

1 , xp−1
2 }

< l̃p−1,

we have the following theorem which is analogous to Theorem 2.3.

Theorem 2.5. Assume Conditions (A)–(E), (H5) and (H6’) are satisfied. Then,
there exists L > 0 such that for each 0 < λ < L, BVP (1.1) has at least one positive
solution.
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