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LIGHT RAYS IN STATIC SPACETIMES WITH CRITICAL
ASYMPTOTIC BEHAVIOR: A VARIATIONAL APPROACH

VALERIA LUISI

Abstract. Let M = M0 × R be a Lorentzian manifold equipped with the
static metric 〈·, ·〉z = 〈·, ·〉 − β(x)dt2. The aim of this paper is investigating

the existence of lightlike geodesics joining a point z0 = (x0, t0) to a line γ =

{x1} ×R when coefficient β has a quadratic asymptotic behavior by means of
a variational approach.

1. Introduction and main result

The aim of this paper is investigating the existence of lightlike geodesics in suit-
able semi-Riemannian manifolds by using variational tools and topological methods.
First of all, we recall the main definitions.

A Lorentzian manifold is a couple (M, 〈·, ·〉z) where M is a smooth connected
finite-dimensional manifold and 〈·, ·〉z is a Lorentzian metric, that is a smooth
symmetric (0, 2) tensor field which induces on the tangent space of each point of
M a bilinear form of index 1.

The importance of the study of these manifolds comes from General Relativity,
since some 4-dimensional Lorentzian manifolds are solutions of Einstein’s equations.
Differently from a Riemannian metric, a Lorentzian one does not induce a positive
definite bilinear form on its tangent space, thus each one of its tangent vectors
v 6= 0 can be timelike, lightlike or spacelike if the scalar product 〈v, v〉z is negative,
null or positive, respectively, while v = 0 is always spacelike.

In order to have informations on the geometry of a Lorentzian manifold, it is im-
portant to look for its geodesics and, similarly to the definition given for a geodesic
in a Riemannian manifold, the following definition can be stated.

Definition 1.1. Let M be a smooth finite dimensional manifold equipped with
a Lorentzian metric 〈·, ·〉z. A geodesic in M is a smooth curve z : I → M which
solves the equation

Dsż(s) = 0 for all s ∈ I,

where Ds denotes the covariant derivative along z induced by the Levi-Civita con-
nection of 〈·, ·〉z and I is a real interval.
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Let z = z(s) be a geodesic on M. It is easy to check that there exists a constant
E(z) ∈ R such that

〈ż(s), ż(s)〉z ≡ E(z) for all s ∈ I.

So, all the tangent vectors ż(s), s ∈ I, have the same causal character and a
geodesic z = z(s) is timelike, lightlike or spacelike if E(z) is negative, null or
positive, respectively.

From a physical point of view the most significant geodesics are the timelike
and the lightlike ones, named causal geodesics. In particular, in General Relativity
gravitational fields can be descrived by means of suitable Lorentzian manifolds in
which lightlike geodesics allow one to represent light rays.

In general, the study of geodesics in Lorentzian manifolds is not possible up to
consider special models. Here, we deal with (standard) static manifolds defined as
follows.

Definition 1.2. A Lorentzian manifold (M, 〈·, ·〉z) is called (standard) static if
there exists a finite dimensional Riemannian manifold (M0, 〈·, ·〉) such that M =
M0 × R and 〈·, ·〉z is given by

〈ζ, ζ〉z = 〈ξ, ξ〉 − β(x)τ2 (1.1)

for any z = (x, t) ∈M0×R and ζ = (ξ, τ) ∈ TzM≡ TxM0×R, where β : M0 → R
is a smooth and strictly positive scalar field.

Physically interesting examples of static spacetimes are anti-de Sitter, Schwar-
zschild or Reissner-Nordström ones; in the two-dimensional case, static spacetimes
are essentially equivalent to Generalized Robertson-Walker ones (for more details,
see [3]).

Let M = M0 × R be a Lorentzian manifold endowed with the static metric
defined in (1.1). Our main result is stated as under the following hypotheses:

(H1) (M0, 〈·, ·〉) is a complete C3 n-dimensional Riemannian manifold;
(H2) β has an asymptotic quadratic behaviour, that is there exist λ ≥ 0, µ1, µ2 ∈

R and a point x̄ ∈M0 such that

β(x) ≤ λd2(x, x̄) + µ1d
p(x, x̄) + µ2 (1.2)

where d(·, ·) is the distance induced on M0 by its Riemannian metric 〈·, ·〉
and 0 ≤ p < 2.

Theorem 1.3. Suppose that (H1), (H2) are satisfied. Then, there exist at least
two non trivial lightlike geodesics joining the point z0 = (x0,t0) to the vertical line
γ = {x1} × R if x0 6= x1. Furthermore, if M0 is non contractible in itself, then
there exist two sequences of such lightlike geodesics z+

n = (x+
n , t+n ), z−n = (x−n , t−n )

such that t+n (1) ↗ +∞ and t−n (1) ↘ −∞ as n ↗ +∞.

In the previous years, the existence of causal geodesics in a static spacetime
has been widely exploited. A first result follows from Avez-Seifert Theorem (see
[3, Theorem 2.14]), in which it is proved that in a globally hyperbolic spacetime
two causally related points can be joined by a causal geodesic. In fact, if M0

is a complete Riemannian manifold and β has an (at most) quadratic growth the
corresponding static spacetime is globally hyperbolic and Avez-Seifert Theorem can
be applied (see [10, Corollary 3.4]).
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Furthermore, the existence of lightlike geodesics joining a point z0 = (x0, t0) to a
line γ = {x1} ×R has been obtained by means of geometrical tools in assumptions
(H1) and (H2) (see Remark 3.4).

On the other hand, by using variational methods, the existence and the mul-
tiplicity of such lightlike geodesics have been proved when β is bounded (see [8,
Subsection 6.3]) and then when β has a subquadratic growth (see [5]). But in [2]
the geodesic connectedness has been guaranteed if β grows quadratically and this
condition is optimal as showed by a family of explicit counterexamples (for more
details, see [2, Section 7]).

Here, we want to improve both the variational results, by using hypothesis (H2),
and the geometric existence one, obtaining a multiplicity theorem.

2. Variational tools

Let M = M0 × R be a static Lorentzian manifold equipped with metric (1.1).
Furthermore, fix z0 = (x0,t0) ∈M and γ = {x1} × R ⊂M.

If (M0, 〈·, ·〉) is a C3 n-dimensional Riemannian manifold, by the Nash Embed-
ding Theorem we can assume that M0 is a submanifold of RN and 〈·, ·〉 is the
restriction to M0 of its Euclidean metric, still denoted by 〈·, ·〉.

On the other hand, without loss of generality, we can take I = [0, 1], as geodesics
are independent by affine reparametrizations, and t0 = 0, since the coefficient β of
metric (1.1) does not depend on the coordinate t (in fact, if z(s) = (x(s), t(s)) is
a geodesic and T > 0 is a real number, the curve zT (s) = (x(s), t(s) + T ) is still a
geodesic).

Hence, our problem is reduced to look for solutions of

Dsż(s) = 0 ∀ s ∈ I,

〈ż(s), ż(s)〉z = 0 ∀ s ∈ I,

x(0) = x0, x(1) = x1, t(0) = 0.

(2.1)

Let H1(I, RN ) be the Sobolev space of the absolutely continuous curves x = x(s)
whose derivative is square summable. Such a space can be endowed with the norm

‖x‖2 =
∫ 1

0

〈ẋ, ẋ〉ds +
∫ 1

0

〈x, x〉ds.

If Ω1(x0, x1) is the set of H1-curves in M0 joining x0 to x1 and defined in I, then
it is

Ω1(x0, x1) ≡ {x ∈ H1(I, RN ) : x(I) ⊂M0, x(0) = x0, x(1) = x1}.
If M0 is complete, Ω1(x0, x1) is a complete Riemannian manifold (see [9]) and its
tangent space is

TxΩ1(x0, x1) = {ξ ∈ H1(I, TM0) : ξ(s) ∈ Tx(s)M0 ∀s ∈ I, ξ(0) = ξ(1) = 0}.

Furthermore, we can define H1(0), the subspace of H1(I, R) of those curves t = t(s)
such that t(0) = 0.

It is well known that problem (2.1) has a variational structure; so it is quite
standard to prove that z = z(s) is a lightlike geodesic joining z0 = (x0,0) to γ if
and only if it is a critical point of the C1 functional

f(z) =
1
2

∫ 1

0

〈ż, ż〉zds, in Z = Ω1(x0, x1)×H1(0), (2.2)
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with critical level f(z) = 0. But a direct investigation of the zero critical level of
f is not easy as the functional in (2.2) is unbounded both from below and from
above. In order to overcome this difficulty, Fortunato, Giannoni and Masiello in [7]
stated a new variational principle similar to the Fermat one so to introduce a new
functional, arrival time T = T (x), which is bounded from below on Riemannian
manifold Ω1(x0, x1).

Theorem 2.1 (Fermat principle). Let z : I → M, z = z(s), be a smooth curve
such that z = (x, t). Then, the following statements are equivalent:

(a) z is a solution of problem (2.1) with arrival time t(1) = T > 0;
(b) x is a critical point of functional

F (x) =

√∫ 1

0

〈ẋ, ẋ〉ds ·
∫ 1

0

1
β(x)

ds in Ω1(x0, x1),

with critical level T = F (x) > 0 and

t(s) = T
( ∫ 1

0

1
β(x)

ds
)−1

∫ s

0

1
β(x)

dσ for all s ∈ I. (2.3)

Proof. The proof can be found, for example, in [8]. Anyway, here, for completeness,
we outline its main arguments. Fixed T ∈ R, let us define

WT = {t ∈ H1(0) : t(1) = T}.

It is easy to see that WT is an affine submanifold of H1(I, R) whose tangent space
is given by H1

0 (I, R) = {τ ∈ H1(I, R) | τ(0) = τ(1) = 0}. Thus, the space of curves
joining z0 to (x1, T ) is

ZT = Ω1(x0, x1)×WT

with tangent space given by

TzZT ≡ TxΩ1(x0, x1)×H1
0 (I, R) for any z = (x, t) ∈ ZT .

Let fT be the restriction of functional f to ZT , so, by (1.1), for each z = (x, t) ∈ ZT

it is

fT (z) =
1
2

∫ 1

0

〈ẋ, ẋ〉ds− 1
2

∫ 1

0

β(x)ṫ2ds (2.4)

whose differential is given by

f ′T (z)[ζ] =
∫ 1

0

〈ẋ, ξ̇〉ds− 1
2

∫ 1

0

β′(x)[ξ]ṫ2ds−
∫ 1

0

β(x)ṫτ̇ ds (2.5)

for all ζ = (ξ, τ) ∈ TxΩ1(x0, x1)×H1
0 (I, R). If, for simplicity, we assume

∂fT

∂x
(z)[ξ] = f ′T (z)[(ξ, 0)] ∀ ξ ∈ TxΩ1(x0, x1),

∂fT

∂t
(z)[τ ] = f ′T (z)[(0, τ)] ∀ τ ∈ H1

0 (I, R),

then, z is a critical point of functional fT in ZT if and only if z ∈ NT and ∂fT

∂x (z)[ξ] =
0 for all ξ ∈ TxΩ1(x0, x1), where NT = {z ∈ ZT | ∂fT

∂t (z) ≡ 0} is the kernel of ∂fT

∂t
in ZT .
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Let us remark that, by (2.5) and simple calculations it follows that NT is the
graph of the C1 map ΦT : Ω1(x0, x1) → WT such that

ΦT (x)(s) = T
( ∫ 1

0

1
β(x(σ))

dσ
)−1

∫ s

0

1
β(x(σ))

dσ for all s ∈ I. (2.6)

So, considered the restriction of fT to NT , we can define a new C1 functional

JT (x) = fT (x,ΦT (x)), x ∈ Ω1(x0, x1), (2.7)

which can be explicitely written as

JT (x) =
1
2

∫ 1

0

〈ẋ, ẋ〉ds− 1
2
T 2

( ∫ 1

0

1
β(x)

ds
)−1

, x ∈ Ω1(x0, x1).

Now, let us point out that z = (x, t) solves (2.1) with t(1) = T if and only if z ∈ ZT

is such that f ′T (z) = 0 and fT (z) = 0; hence, if and only if x ∈ Ω1(x0, x1) is such
that J ′T (x) = 0, JT (x) = 0 and t = ΦT (x).

Therefore, our problem (2.1) is reduced to search for T > 0 and x ∈ Ω1(x0, x1)
such that

J ′T (x) = 0,

JT (x) = 0,
(2.8)

i.e., to search for a couple (x, T ) ∈ Ω1(x0, x1)× R∗+ solution of the problem

∂H

∂x
(x, T ) = 0,

H(x, T ) = 0,
(2.9)

with H(x, T ) = 2JT (x). By solving the equation H(x, T ) = 0 we obtain

T 2 =
∫ 1

0

〈ẋ, ẋ〉ds ·
∫ 1

0

1
β(x)

ds;

thus, in order to have a positive T , we can consider

F (x) =

√∫ 1

0

〈ẋ, ẋ〉ds ·
∫ 1

0

1
β(x)

ds. (2.10)

We can easily see that G ={(x, t) ∈ Ω1(x0, x1) × R+ | H(x, T ) = 0} is the graph
of F . So, by applying the abstract theorem in [7, Theorem 2.3] it follows that, if
(x, T ) is a solution of problem (2.9) with T > 0, then x is a critical point of F such
that T = F (x) > 0 and vice versa. �

Remark 2.2. By differentiating the map x ∈ Ω1(x0, x1) 7−→ H(x, F (x)) ∈ R we
have

∂H

∂x
(x, F (x)) +

∂H

∂T
(x, F (x))F ′(x) = 0 for all x ∈ Ω1(x0, x1). (2.11)

Remark 2.3. Functional F is continuous in all Ω1(x0, x1), but eventually it is
not differentiable only at the zero level, i.e. on constant curves. Thus, if x0 6= x1

the manifold Ω1(x0, x1) does not contain any constant curve, so F is a smooth
functional on all Ω1(x0, x1).

Remark 2.4. By reasoning as outlined in the previous proof it is also possible to
prove that:

(a) z = (x, t) is a solution of problem (2.1) with arrival time t(1) = T < 0;
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if and only if
(b) x is a critical point of functional

F−(x) = −

√∫ 1

0

〈ẋ, ẋ〉ds ·
∫ 1

0

1
β(x)

ds = −F (x) on Ω1(x0, x1),

with critical level T = F−(x) < 0, and t = t(s) is given by (2.3).

Now, our aim is reduced to look for critical points of F in Ω1(x0, x1). Thus, we
need the Ljusternik-Schnirelmann Theory (for more details, see, e.g., [13]).

Definition 2.5. Let X be a topological space and A ⊆ X. The Ljusternik-
Schnirelman category of A in X (catX A) is the least number of closed and con-
tractible subsets of X covering A. If this is not possible we say that catX A = +∞.
We denote catX = catX X.

Definition 2.6. Let Ω be a Riemannian manifold and f a C1 functional on Ω. f
is said to satisfy the Palais-Smale condition if any (xn)n ⊂ Ω such that

(f(xn))n is bounded and lim
n→+∞

f ′(xn) = 0

converges in Ω up to subsequences.

Theorem 2.7 (Ljusternik-Schnirelmann). Let Ω be a complete Riemannian man-
ifold and f a C1 functional on Ω. If f satisfies the Palais-Smale condition and
is bounded from below, then f attains its infimum and has at least catΩ critical
points. Furthermore, if sup

Ω
F = +∞ and catΩ = +∞ there exists a sequence of

critical points (xn)n ⊂ Ω such that F (xn) ↗ +∞.

Remark 2.8. If 1 ≤ k ≤ catΩ, then each critical level ck of the previous theorem
is given by

ck = inf
A∈Γk

sup
x∈A

f(x)

where Γk = {A ⊆ X : catΩ A ≥ k}.
At last, in order to estimate the Ljusternik-Schnirelmann category of Ω1(x0, x1),

we need the following result (see [6]).

Proposition 2.9 (Fadell-Husseini). If M0 is a manifold not contractible in itself,
then for all x0, x1 ∈M0 the manifold of curves Ω1(x0, x1) has infinite category and
possesses compact subsets of arbitrarily high category.

3. Proof of the main theorem

Obviously, functional F is bounded from below as it is

F (x) ≥ 0 for all x ∈ Ω1(x0, x1).

Anyway, in order to prove the Palais-Smale condition, a stronger property is needed.
For this aim, we recall a technical lemma (for more details on the proof, see [2,
Proposition 4.1] or also [1, Lemma 2.4]).

Lemma 3.1. Let β satisfy assumption (H2). If (xk)k ⊂ Ω1(x0, x1) is such that
‖ẋk‖ → +∞, then ∫ 1

0

‖ẋk‖2

β(xk)
ds → +∞ as k → +∞,

where ‖ẋk‖2 =
∫ 1

0
〈ẋk, ẋk〉ds.
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An easy consequence of Lemma 3.1 is the following result.

Lemma 3.2. Functional F is coercive in Ω1(x0, x1), i.e.

F (x) → +∞ if ‖ẋ‖ → +∞.

Proposition 3.3. Assume that M0 is complete and β has a quadratic growth as
in (1.2). Then functional F satisfies the Palais-Smale condition in Ω1(x0, x1).

Proof. Let (xk)k ⊂ Ω1(x0, x1) be such that

(F (xk))k is bounded and lim
k→+∞

F ′(xk) = 0. (3.1)

From Lemma 3.2 and (3.1) we have that (‖ẋk‖)k is bounded. Furthermore, it is
also easy to see that

sup{d(xk(s), x0) | s ∈ I, k ∈ N} < +∞.

Thus, there exists R > 0 such that the family {xk(s) : s ∈ I, k ∈ R} is contained in
BR(0) = {x ∈ M0 : d(x, x0) ≤ R} which is compact, so there exist M,ν > 0 such
that

ν ≤ β(xk(s)) ≤ M for all s ∈ I, k ∈ N. (3.2)
Furthermore, (xk)k is bounded in H1(I, RN ). Hence, there exists x ∈ H1(I, RN )
such that, up to subsequences, it is xk ⇀ x weakly in H1(I, RN ) and xk → x
uniformly in I. Since M0 is complete, x ∈ Ω1(x0, x1). What remains to prove
is that this convergence is also strong in Ω1(x0, x1). For simplicity, consider zk =
(xk, tk) and Tk = F (xk) with tk = ΦTk

(xk). Hence, by (2.6) and (3.2) sequence
(tk)k is bounded in H1(I, R).

On the other hand, by [4, Lemma 2.1] there exist two sequences (ξk)k, (νk)k ⊂
H1(I, RN ) such that

ξk ∈ Txk
Ω1(x0, x1), xk − x = ξk + νk for all k ∈ R,

ξk ⇀ 0 weakly in H1(I, RN ) and νk → 0 strongly in H1(I, RN ). (3.3)

By (3.1) it is
F ′(xk)[ξk] = o(1), (3.4)

while by Remark 2.2 it follows
∂H

∂x
(xk, Tk) +

∂H

∂T
(xk, Tk)F ′(xk) = 0,

where (∂H
∂T (xk, Tk))k is bounded. Evaluating this operator on ξk ∈ Txk

Ω1(x0, x1),
we obtain

∂H

∂x
(xk, Tk)[ξk] +

∂H

∂T
(xk, Tk)F ′(xk)[ξk] = 0,

so, by (3.4) it is
∂H

∂x
(xk, Tk)[ξk] = o(1).

Hence, being
∂H

∂x
(xk, Tk)[ξk] = 2J ′Tk

(xk)[ξk],

it follows
J ′Tk

(xk)[ξk] = o(1).
So, reasoning as in [8, Lemma 3.4.1], since

J ′Tk
(xk)[ξk] = f ′Tk

(xk, tk)[(ξk, 0)],
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we have that

o(1) = f ′Tk
(xk, tk)[(ξk, 0)] =

∫ 1

0

〈ẋk, ξ̇k〉ds− 1
2

∫ 1

0

β′(xk)[ξk]ṫ2kds.

Whence, being the sequence (‖ṫk‖)k bounded, (3.3) implies∫ 1

0

β′(xk)[ξk]ṫ2kds = o(1),

so it is ∫ 1

0

〈ẋk, ξ̇k〉ds = o(1),

and, by applying again (3.3), we obtain∫ 1

0

〈ξ̇k, ξ̇k〉ds = o(1),

so ξk → 0 strongly in H1(I, RN ) . Hence, sequence (xk)k converges strongly to
x. �

Proof of Theorem 1.3. By Lemma 3.2 and Proposition 3.3 we can apply Theorem
2.7 to functional F in the complete Riemannian manifold Ω1(x0, x1) obtaining that
F has at least a critical point. Moreover, if M0 is non contractible in itself, then for
Proposition 2.9, functional F has infinitely many critical points (xk)k ⊂ Ω1(x0, x1)
such that

lim
k→+∞

F (xk) = +∞;

whence, by Theorem 2.1 there exists a sequence of geodesics (zn = (xn, tn))n such
that tn(1) ↗ +∞ as n ↗ +∞. Furthermore, by reasoning in the same way,
Remark 2.4 allows us to complete the proof by finding geodesics with negative
arrival time. �

Remark 3.4. The existence of lightlike geodesics joining a point to a line, in a static
spacetime satisfying assumptions (H1)and (H2), has already been proved by means
of geometrical tools. In fact, by using a correspondence between the trajectories of
particles under a potential and the geodesics on a static spacetime, in [11, Section
4], Sánchez proved that a point and a line can be joined by a lightlike geodesic if and
only if the conformal Riemannian metric g∗ = β−1〈·, ·〉 is geodesically connected.
On the other hand, by Hopf-Rinow Theorem, g∗ is geodesically connected if and
only if it is complete. But, by [12, Theorem 3.1], the metric g∗ is complete when
〈·, ·〉 is complete and β grows at most quadratically, as in our hypotheses.
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