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DISSIPATIVITY OF NEURAL NETWORKS WITH
CONTINUOUSLY DISTRIBUTED DELAYS

BING LI, DAOYI XU

Abstract. In this paper, we study the dissipativity and existence of a global
attracting set for neural networks models with continuously distributed delays.

We use nonnegative matrix and differential inequality techniques to obtain

results under general conditions. Also, we give an example to illustrate our
results.

1. Introduction

In recent years, the neural networks models have received much attention in the
literature and have been applied in many fields such as control, image processing
and optimization because of its good properties of controlling. Many results about
dynamical behavior of neural networks systems without delays had been produced.
As is well known, from a practical point of view, both in biological and man-
made neural networks, the delays arise because of the processing of information.
More specifically, in the electronic implementation of analog neural networks, the
delays occur in the communication and response of the neurons owing to the finite
switching speed of amplifiers. Thus, studying of neural networks dynamics with
consideration of the delayed problem becomes very important to manufacture high
quality neural networks models. In practice, although the use of constant discrete
delays in the models serve as a good approximation in simple circuits consisting of
a small number of neurons, neural networks usually have a spatial extent due to the
presences of a multitude of parallel pathway with a variety of axon sizes and lengths.
Therefore there will be a distribution of conduction velocities along these pathways
and a distribution of propagation be designed with discrete delays and a more
appropriate way is to incorporate continuously distributed delays. Then the study
for dynamical behaviors of neural networks models with continuously distributed
delays is more important and appropriate. In general application, people pay much
attention to the stability of those neural networks models. But at the same time,
the dissipativity is also an important concept which is more general than stability
in chaos, synchronization, system norm estimation and robust control. There are
some results about stability of neural networks models with continuously distributed
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delay and some results about dissipativity of those with or without discrete delays
[6, 10]. To the best of my knowledge, few authors have discussed disspativity of
the neural networks models with continuously distributed delays. We establish a
method for dissipativity of neural networks models with continuously distributed
delays. This method based on the properties of nonnegative matrix [4, 5] and
differential inequality technique [9, 10], yields some new criterions for dissipativity
and global attracting set. Moreover, these criterions are easy to check and apply
in practice.

2. Preliminaries

Throughout this paper, Rn denotes the n-dimensional Euclidean space, R+
n =

[0,+∞) × · · · × [0,+∞) and C[X, Y ] is the class of continuous mapping from the
topological space X to the topological space Y .

Consider the neural networks system with continuously distributed delays as
follows:

ẋi(t) = −µixi(t) +
n∑

j=1

aijfj(xj)

+
n∑

j=1

bij

∫ t

−∞
Kij(t− s)gj(xj(s))ds + Pi(t), t ≥ 0

xi(t) = φi(t), −∞ < t ≤ 0, i = 1, . . . , n

(2.1)

where n denotes the number of neurons in the neural network, xi(t) corresponds
to the state of the ith neuron. fj and gj denote the activation functions of the jth
neuron. aij and bij represent the constant connection weight of the jth neuron to
the ith neuron. Pi(t) is the external input bias on the ith neuron. µi > 0 represents
the rate with which the ith neuron will reset its potential to the resting state in
isolation when disconnected from the network and external inputs. Kij denotes
the refractoriness of the i, jth neuron after it has fired or responded. The initial
functions φi ∈ C[(−∞, 0], Rn] (i = 1, . . . , n) are bounded. The delay kernels Kij

with
∫∞
0

Kij(s)ds = 1 are real valued nonnegative continuous functions defined on
[0,∞). fj , gj and Pi are continuous functions.

Clearly, the system above is a basic frame of neural networks. For example,
we can obtain models with discrete delays in [2,3,5-7] when function Kij is δ-
function. In addition, we can obtain Hopfield neural networks [3] when bij = 0, for
i, j = 1, . . . , n. Meanwhile, if Pi(t) is constant, we will obtain the system in [2].

For convenience, in the following we shall rewrite (2.1) in the form

ẋ(t) = −µx(t) + Af(x) +
∫ t

−∞
K0(t− s)g(x(s))ds + P (t), t ≥ 0

x0(s) = φ(s), −∞ < s ≤ 0,

(2.2)

in which x(t) = col{x1(t), . . . , xn(t)}, µ = diag{µ1, . . . , µn},
f(x) = col{f1(x1), . . . , fn(xn)}, g(x) = col{g1(x1), . . . , gn(xn)};

P (t) = col{P1(t), . . . , Pn(t)}, A = (aij)n×n, K0(·) = (bijKij(·))n×n.

Let xt(s) = x(t + s), −∞ < s ≤ 0, then x0(s) = x(s) = φ(s), −∞ < s ≤ 0.
We always assume that system (2.2) has a continuous solution denoted by

x(t, 0, φ) or simply by x(t) if no confusion should occur. The inequalities between
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matrices or vectors such as A ≤ B (A > B) means that each pair of corresponding
elements of A and B satisfies the inequality. Especially, A is called a nonnegative
matrix if A ≥ 0.

Let C be the set of all functions φ ∈ C[(−∞, 0], Rn], in which each φ(s) =
col{φ1(s), . . . , φn(s)} satisfies that sup−∞<s≤0 |φi(s)| always exists as a finite num-
ber. For x ∈ Rn, we define [x]+ = col{|x1|, . . . , |xn|}. For φ(s) ∈ C, [φ(s)]+∞ =
col{‖φ1(s)‖∞, . . . , ‖φn(s)‖∞}, where ‖φi(s)‖∞ = sup−∞<s≤0 |φi(s)|.

In the following, we shall give the same definitions as those for the networks with
discrete delays given in [1, 6, 7, 8].

Definition 2.1. A set S ⊂ C is called a positive invariant set of (2.2), if for
any initial value φ ∈ S, we have the solution of (2.2) xt(s, 0, φ) ∈ S, for t ≥ 0,
−∞ < s ≤ 0.

Definition 2.2. The system (2.2) is called dissipativity, if there exists a constant
vector L > 0, such that for any initial value φ ∈ C, there is a T (0, φ), when
t > T (0, φ), the solution x(t, 0, φ) of system (2.2) satisfies [x(t, 0, φ)]+ ≤ L. In this
case, the set Ω = {φ ∈ C|[φ(s)]+∞ ≤ L} is said to be the global attracting set of
(2.2).

Before we discuss the system (2.2) in detail, we need two Lemmas as follows.

Lemma 2.3 ([5]). If M ≥ 0 and ρ(M) < 1, then (I −M)−1 ≥ 0.

Lemma 2.4 ([4]). Let M ≥ 0 and M̃ is any principal sub-matrix of M , then
ρ(M̃) ≤ ρ(M).

The symbol ρ(M) and the matrix I denote the spectral radius of a square matrix
M and a unit matrix, respectively. In our analysis, we always suppose that:

(A1) There are matrices α = diag{α1, . . . , αn} and β = diag{β1, . . . , βn} with
αj > 0 and βj > 0, such that for any x ∈ Rn

[f(x)]+ ≤ α[x]+, [g(x)]+ ≤ β[x]+.

(A2) ρ(M) < 1, where M = µ−1A+α + µ−1B+β, µ = diag{µ1, . . . , µn}, A+ =
(|aij |)n×n, B+ = (|bij |)n×n.

(A3) [R(t)]+ ≤ R, where R(t) = µ−1P (t) and R = col{R1, . . . , Rn} with Ri ≥ 0.

3. Dissipativity analysis

In this section, combining the inequality technique [9, 10] with properties of
nonnegative matrices [4, 5], we introduce some new results for the dissipativity of
system (2.2).

Theorem 3.1. If (A1)–(A3) hold, then the set Ω = {φ ∈ C|[φ]+∞ ≤ L} is a positive
invariant set of system (2.2), where L = (I −M)−1R = col{L1, . . . , Ln}.

Proof. According to Definition 2.1, we need to prove that for any φ ∈ C and
[φ]+∞ ≤ L, the solution x(t) ∆= x(t, 0, φ) of system (2.2) satisfies

[x(t)]+ ≤ L, for t ≥ 0. (3.1)

For the proof of this inequality, we first prove, for any given γ > 1, when [φ]+∞ < γL,
the solution x(t) satisfies

[x(t)]+ < γL, for t ≥ 0. (3.2)
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Otherwise, there must be some i, and t1 > 0, such that

|xi(t1)| = γLi, |xi(t)| < γLi for 0 ≤ t < t1; (3.3)

[x(t)]+ < γL, for 0 ≤ t < t1. (3.4)

where Li is the ith component of vector L.
Note that L = (I−M)−1R, i.e., L = LM +R. Then, it follows from (2.2), (3.3),

(3.4) that

[x(t1)]+ ≤ e−µt1 [φ]+∞ +
∫ t1

0

e−µ(t1−s)[Af(x(s))]+ds

+
∫ t1

0

e−µ(t1−s){
∫ s

−∞
[K0(s− θ)]+[g(x(θ))]+dθ + [P (s)]+}ds

≤ e−µt1 [φ]+∞ +
∫ t1

0

e−µ(t1−s)(A+α[x(s)]+)ds

+
∫ t1

0

e−µ(t1−s){
∫ s

−∞
[K0(s− θ)]+(β[x(θ)]+)dθ + [P (s)]+}ds

< e−µt1 [φ]+∞ + (I − e−µt1)[µ−1(A+α + B+β)γL + R]

≤ e−µt1γL + (I − e−µt1)(MγL + R) < γL

This inequality implies |xi(t1)| < γLi (i = 1, . . . , n), which contradicts with (3.3).
Therefore, (3.2) holds. Let γ → 1+, we obtain that

[x(t)]+ ≤ L, for t ≥ 0.

The proof is complete. �

Theorem 3.2. If (A1)–(A3) hold, then the system (2.2) is dissipativity and the
set Ω = {φ ∈ C|[φ(s)]+∞ ≤ L} is the global attracting set of (2.2).

Proof. Without losing generality, we assume L > 0. First, we prove that for any
initial value φ ∈ C, there exists a number Γ > 0, large enough, such that the
solution x(t) satisfies

[x(t)]+ < ΓL, for t ≥ 0. (3.5)
For a given φ ∈ C, there must be a large enough positive number Γ, such that
[φ(t)]+∞ < ΓL.

If (3.5) is not true, then there must be some i and t2 > 0, such that

|xi(t2)| = ΓLi, |xi(t)| < ΓLi for 0 ≤ t < t2; (3.6)

[x(t)]+ < ΓL, for 0 ≤ t < t2. (3.7)

From (2.2), (3.6), (3.7), and L = LM + R, we obtain

[x(t2)]+ ≤ e−µt2 [φ]+∞ +
∫ t2

0

e−µ(t2−s)[Af(x(s))]+ds

+
∫ t2

0

e−µ(t2−s){
∫ s

−∞
[K0(s− θ)]+[g(x(θ))]+dθ + [P (s)]+}ds

≤ e−µt2 [φ]+∞ +
∫ t2

0

e−µ(t2−s)(A+α[x(s)]+)ds

+
∫ t2

0

e−µ(t2−s){
∫ s

−∞
[K0(s− θ)]+(β[x(θ)]+)dθ + [P (s)]+}ds
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< e−µt2 [φ]+∞ + (I − e−µt2)[µ−1(A+α + B+β)ΓL + R]

≤ e−µt2ΓL + (I − e−µt2)(MΓL + R) < ΓL

From the above inequality, it follows that |xi(t2)| < ΓLi (i = 1, . . . , n), which
contradicts with (3.6), and so (3.5) is true.

In view of Definition 2.2, for the proof of Theorem 3.2, we need to prove that
for the above positive vector L, any solution x(t) of the system (2.2) satisfies

[x(t)]+ ≤ L, as t → +∞. (3.8)

To prove (3.8), we first verify that

lim sup
t→+∞

[x(t)]+ ≤ L. (3.9)

It is equivalent to prove that

lim sup
t→+∞

([x(t)]+ − L) = σ ≤ 0. (3.10)

If (3.10) is false, then there must exist some σi > 0. Without losing generality, we
denote such components of σ by σi1 , σi2 , . . . , σim

, where σij
> 0, j = 1, . . . ,m. By

the definition of superior limit and (3.10), for sufficient small constant ε > 0, there
is t3 > 0, such that

[x(t)]+ ≤ L + σ + ε, for t ≥ t3. (3.11)
where ε = col{ε, . . . , ε}. Meanwhile, since

∫∞
0

Kijds = 1 (i, j = 1, . . . , n), then for
the above ε and ΓL in (3.5), there must be a T > 0, such that, for any t > T ,∫ ∞

T

K0(t)βΓLdt ≤ ε (3.12)

When t > t∗
∆= t3 + T , combining (2.2) (3.11) with (3.12), we can obtain

D+[x(t)]+ + µ[x(t)]+

≤ A+[f(x(t))]+ +
∫ t

−∞
K0(t− s)[g(x(s))]+ds + [P (t)]+

= A+[f(x(t))]+ +
∫ t−T

−∞
K0(t− s)[g(x(s))]+ds

+
∫ t

t−T

K0(t− s)[g(x(s))]+ds + [P (t)]+

≤ A+[f(x(t))]+ +
∫ +∞

T

K0(s)βΓLds +
∫ t

t−T

K0(t− s)β(L + σ + ε)ds + [P (t)]+

≤ A+(α[x(t)]+) + ε + B+β(L + σ + ε) + [P (t)]+

(3.13)
in which D+[x(t)]+ denotes the Dini derivative of the positive vector [x(t)]+.

Let both sides of (3.13) integrate from t∗ to t after they multiply e−µ(t−s). Thus,

[x(t)]+ ≤ e−µ(t−t∗)[x(t∗)]+ +
(
I − e−µ(t−t∗)

)
×

[
µ−1A+α(L + σ + ε) + µ−1B+β(L + σ + ε) + R + µ−1ε

] (3.14)

Since M = µ−1A+α + µ−1B+β, it follows from (3.5) and (3.14) that

[x(t)]+ ≤ e−µ(t−t∗)ΓL +
(
I − e−µ(t−t∗)

)[
ML + Mε + Mσ + R + µ−1ε

]
(3.15)
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By the definition of superior limit and (3.10), there are tk → +∞, such that

lim
tk→+∞

[x(tk)]+ = L + σ. (3.16)

In (3.15), let t = tk → ∞, ε → 0+. Then, from L = (I − M)−1R and (3.16), it
follows that

σ ≤ Mσ (3.17)
Let σ̃ = col{σi1 , . . . , σim

}, then from (3.17) follows that

σ̃ ≤ M̃σ̃ (3.18)

where M̃ is the m-by-m principal sub-matrix of M corresponding to the positive
vector σ̃, i.e., M̃=(mij ,iu), j, u = 1, . . . ,m.

By Lemma 2.3, we obtain that ρ(M̃) ≥ 1. According to Lemma 2.4, ρ(M) ≥ 1
which contradict ρ(M) < 1 in (A2). Then, for any i, σi ≤ 0, (3.9) holds. Farther,
(3.8) holds. The proof is complete. �

corollary 3.3. If (A1)–(A3) hold and R = 0 in (A3), then the system (2.2) has
an unique equilibrium point x∗ = 0 which is global asymptotically stable.

By comparing this Corollary with [11, Theorem 4], we obtain the following re-
mark.

Remark 3.4. When f = g, Pi(t) = Ii, the system (2.2) becomes the model studied
by Zhao [11]. To obtain the global asymptotically stability, Zhao assumed (A2),
that fj satisfies xfj(x) > 0(x 6= 0), and that there exist a positive constant λj ,
such that λj = supx6=0

fj(x)
x . These assumptions imply (A1); so that [11, Theorem

4] is a special case of the Corollary in this paper.

4. Illustrative example

We consider the neural networks model, for t ≥ 0,

ẋ1(t) = −2x1(t) +
1
2

sinx1 +
1
2

∫ t

−∞

2
π[1 + (t− s)2]

|x1(s)|ds + r cos t

ẋ2(t) = −2x2(t) +
1
2

sinx2 +
1
2

∫ t

−∞

2
π[1 + (t− s)2]

|x2(s)|ds + r sin t,

(4.1)

It can be obtained easily that µ = diag{2, 2}, A = diag{ 1
2 , 1

2}, B = diag{ 1
2 , 1

2}.
The delay kernels functions Kij(s) = 2

π[1+s2] (i, j = 1, 2) satisfy
∫∞
0

Kij(s)ds = 1.
Meanwhile, since f1(x1) = sinx1, f2(x2) = sinx2, g1(x1) = |x1|, g2(x2) = |x2|,
the condition (A1) holds. With the P (t) = col{r cos t, r sin t}, we can get R =
col{ 1

2 |r|,
1
2 |r|}. By calculating, ρ(M) = 1

2 < 1, then (A2) holds.
By Theorem 3.2, when r 6= 0, the system (4.1) is dissipative and the set {(x1, x2) :

|x1| ≤ |r|, |x2| ≤ |r|} is the global attracting set of (4.1). When r = 0, in view
of the Corollary, the system (4.1) has a equilibrium point x∗ = col{0, 0} which is
global asymptotically stable.

Remark 4.1. In this Example, when r 6= 0, we can not solve the problem on
global attracting set with those results in [1, 6, 7, 8, 10] because of the continuously
distributed delays. When r = 0, the delay kernels Kij do not possess properties
such as

∫∞
0

sKij(s)ds < ∞ in [2]. Then it can not be considered with the methods
in [2].
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Conclusions. In this paper, we research the dissipativity and global attracting
set of neural networks models with continuously distributed delays which is the
basic frame of neural networks. Combining the differential inequality technique
with properties of nonnegative matrices, we introduce some sufficient criterions
for dissipativity and a method to calculate the global attracting set of a general
class of neural networks models with continuously distributed delays. Through the
comparison and illustration of an example, we can see that the model studied in this
paper is more general and our method can apply in more general neural networks
models than those in the references.
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