Electronic Journal of Differential Equations, Vol. 2006(2006), No. 123, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A NOTE ON ALMOST PERIODIC SOLUTIONS OF SEMILINEAR EQUATIONS IN BANACH SPACES

LAN NGUYEN

ABSTRACT. In this article, we generalize the main result obtained by Bahaj [1]. Also our proof is shorter than the original proof.

1. INTRODUCTION

This article concerns the semilinear equation

$$u'(t) + Au(t) = f(t, u(t)), \quad t \in \mathbb{R},$$
(1.1)

where -A generates a C_0 -semigroup on a Banach space E and f is a continuous function from $\mathbb{R} \times E$ to E. In [1, Theorem 3.1], the existence and uniqueness of almost periodic solutions to (1.1) was established under the following conditions:

- (i) -A generates an analytic semigroup $(S(t))_{t\geq 0}$ on X satisfying $||T(t)|| \leq e^{-\beta t}$ for some $\beta > 0$;
- (ii) $f(t, x) : \mathbb{R} \times D(A^{\alpha}) \mapsto E$ satisfying
 - (A1) f is uniformly almost periodic;
 - (A2) There are numbers L > 0 (sufficiently small) and $0 \le \theta \le 1$ such that

$$||f(t_1, x_1) - f(t_2, x_2)|| \le L(|t_1 - t_2|^{\theta} + ||x_1 - x_2||_{\alpha})$$

for t_1, t_2 in \mathbb{R} and x_1, x_2 in $D(A^{\alpha})$, where $D(A^{\alpha})$ ($\alpha \ge 0$) is the domain of the fractional power A^{α} with the norm $||x||_{\alpha} = ||A^{\alpha}x||$.

In this note we generalize that result to an operator -A, which generates a C_0 semigroup admitting an exponential dichotomy and to some subspaces of $BC(\mathbb{R})$, the Banach space of bounded, continuous function from \mathbb{R} to E with the sup-norm. Namely, we consider the following subspaces:

 $BUC(\mathbb{R})$, the space of bounded, uniformly continuous functions on \mathbb{R} ;

 $AP(\mathbb{R})$, the space of almost periodic functions on \mathbb{R} ;

 $P(\omega)$, the space of ω -periodic functions;

 $C_1 := \{ f \in BC(\mathbb{R}) : \lim_{t \to \pm \infty} f(t) \text{ exists } \};$

 $C_0 := \{ f \in BC(\mathbb{R}) : \lim_{t \to \pm\infty} f(t) = 0.$

Recall, that a function $f(t) : \mathbb{R} \mapsto E$ is called almost periodic if the set $\{f_s : s \in \mathbb{R}\}$ is relatively compact in $BC(\mathbb{R})$, where $f_s(\cdot) := f(s + \cdot)$ is the s-translation of f.

²⁰⁰⁰ Mathematics Subject Classification. 34G10, 34K06, 47D06.

Key words and phrases. Abstract semilinear differential equations; C_0 -semigroups. (c)2006 Texas State University - San Marcos.

Submitted December 28, 2005. Published October 6, 2006.

Note that all above subspaces are Banach spaces with the sup-norm. In this note we prove the following theorem.

Theorem 1.1. Let -A generate an analytic C_0 -semigroup T(t) satisfying $\{i\lambda : \lambda \in \mathbb{R}\} \subset \varrho(-A)$, let \mathcal{M} be one of the above mentioned subspaces of $BC(\mathbb{R})$, and let $f(t, x) : \mathbb{R} \times D(A^{\alpha}) \mapsto E$, where $0 \leq \alpha < 1$, satisfy the following conditions

(B1) For each $u \in \mathcal{M}$, the function $t \mapsto f(t, u(t))$ is in \mathcal{M} ;

(B2) For u and v in $D(A^{\alpha})$ we have

$$||f(t,u) - f(t,v)|| \le L ||A^{\alpha}u - A^{\alpha}v||.$$
(1.2)

Then Equation (1.1) has a unique mild solution (defined below) in \mathcal{M} for a sufficiently small L. Moreover, if f(t, x) satisfies condition (B1) and (A2), then this solution is a classical solution.

It is easy to see that the main result in [1] is a particular case of Theorem 1.1, when $\mathcal{M} = AP(\mathbb{R})$ and $\sigma(-A) \subset \{\lambda \in \mathbb{C} : Re\lambda < -\beta\}$ for some $\beta > 0$.

2. Preparation and Proof of Theorem 1.1

To prove Theorem 1.1, we first consider the linear equation

$$u'(t) + Au(t) = f(t), \quad t \in \mathbb{R},$$

$$(2.1)$$

where -A generates a semigroup $(T(t))_{t\geq 0}$. A continuous function u is called a mild solution to (2.1) if it satisfies

$$u(t) = T(t-s)u(s) + \int_s^t T(t-\tau)f(\tau)d\tau, \quad t \ge s.$$

Similarly, a mild solution to (1.1) is of the form

$$u(t) = T(t-s)u(s) + \int_s^t T(t-\tau)f(\tau, u(\tau))d\tau, \quad t \ge s.$$

Suppose \mathcal{M} is a closed subspace of $BC(\mathbb{R})$. We say that \mathcal{M} is admissible with respect to (w.r.t. for short) Equation (2.1) if for each function $f \in \mathcal{M}$, Equation (2.1) has a unique mild solution $u \in \mathcal{M}$. Over the last two decades, the study of the admissibility of $BC(\mathbb{R})$ and the above mentioned subspaces w.r.t. Equation (2.1) has been of increasing interest (see e.g. [7] and [8]). Recently, to the nonautonomous equation

$$u'(t) + A(t)u(t) = f(t), \quad t \in \mathbb{R},$$
(2.2)

the admissibility of several spaces, such as $BUC(\mathbb{R})$, $L_p(\mathbb{R})$ and $AP(\mathbb{R})$ has also been intensively investigated (see e.g. [2, 3, 5] and references therein). In both cases, it is involved with the concept so-called *exponential dichotomy* of a C_0 -semigroup (or of an evolution family, in nonautonomous case). Recall, a C_0 -semigroup T(t)has an exponential dichotomy if there exist a projection operator $P \in B(E)$ and two numbers M > 0, $\delta > 0$ such that

- (i) PT(t) = T(t)P for all $t \ge 0$;
- (ii) $||T(t)Px|| \le Me^{-\delta t} ||Px||$ for all $x \in E$ and $t \ge 0$;
- (iii) T(t)(I P) extends to a C_0 -group on N(P), the nullspace of P, and $||T(t)(I P)x|| \le Me^{\delta t} ||(I P)x||$ for all $x \in E$ and $t \le 0$.

We have the following result ([7, Theorem 4]).

Theorem 2.1. The following three statements are equivalent.

EJDE-2006/123

- (i) Operator -A generates a C₀-semigroup, which admits an exponential dichotomy.
- (ii) For each function $f \in BC(\mathbb{R})$, Equation (2.1) has a unique mild solution in $BC(\mathbb{R})$.
- (iii) $S = \{\mu \in \mathbb{C} : |\mu| = 1\} \subset \varrho(T(t)) \text{ for one (all) } t > 0.$

In this case, the mild solution of Equation (2.1) has the form

$$u(t) := \int_{-\infty}^{\infty} G(t-s)f(s)ds, \quad \text{where } G(t) := \begin{cases} T(t)P & \text{for } t > 0, \\ -T(t)(I-P) & \text{for } t < 0 \end{cases}$$

which is the Green's kernel. Moreover, $u \in \mathcal{M}$ whenever $f \in \mathcal{M}$, where \mathcal{M} is one of the above mentioned subspaces of $BC(\mathbb{R})$ ([7, Theorem 5]). If A now generates an analytic semigroup, then A^{α} is given by

$$A^{\alpha}x = A^{\alpha}Px + e^{\alpha\pi i}(-A)^{\alpha}(I-P)x.$$

We have the following lemma.

Lemma 2.2. If -A generates an analytic semigroup, then $u(t) \in D(A^{\alpha})$ for $0 < \alpha < 1$, and $\|\tilde{u}\| \leq C \|f\|$, where $\tilde{u}(t) := A^{\alpha}u(t)$, for some C > 0.

Proof. First note that for each t > 0, $A^{\alpha}T(t)$ is a bounded operator and $||A^{\alpha}T(t)|| \le Mt^{-\alpha}e^{-\beta t}$ for some positive M and β ([6, Theorem 2.6.13]). Hence, $\int_0^{\infty} ||A^{\alpha}T(t)|| dt \le M_1 < \infty$. Using this fact we have

$$\begin{split} \|A^{\alpha}u(t)\| &= \|\int_{-\infty}^{\infty} A^{\alpha}G(t-s)f(s)ds\| \\ &\leq \|\int_{-\infty}^{t} A^{\alpha}T(t-s)Pf(s)ds\| + \|\int_{t}^{\infty} (-A)^{\alpha}T(t-s)(I-P)f(s)ds\| \\ &= I_{1}+I_{2}, \end{split}$$

where

$$I_1 \le \int_{-\infty}^t \|A^{\alpha} T(t-s)\| \cdot \|f\| ds = \int_0^\infty \|A^{\alpha} T(s)\| ds \cdot \|f\| \le M_1 \|f\|$$

and

$$I_{2} \leq \int_{t}^{\infty} \|(-A)^{\alpha} T(t-s)(I-P)f(s)\| ds$$

= $\int_{0}^{\infty} \|(-A)^{\alpha} T(-s')(I-P)f(s'+t)\| ds'$
 $\leq \int_{0}^{\infty} \|(-A)^{\alpha} T(-s')\| \cdot \|(I-P)f(s'+t)\| ds'$
 $\leq M_{1} \|f\|.$

Hence, $||A^{\alpha}u(t)|| \leq 2M_1||f||$ for each $t \in \mathbb{R}$.

We now turn to (1.1). First, we state a preliminary result.

Lemma 2.3. Let -A generate a C_0 -semigroup and B be an invertible operator on E, and \mathcal{M} be a closed subspace of $BC(\mathbb{R})$ with the property: \mathcal{M} is admissible w.r.t. (2.1) and $\tilde{u}(\cdot) := Bu(\cdot) \in \mathcal{M}$ and $\|\tilde{u}\| \leq C \|f\|$ for each $f \in \mathcal{M}$. Moreover, suppose $f(t, x) : \mathbb{R} \times D(B) \mapsto E$ satisfying

(B1) For every $u \in \mathcal{M}$, the function $t \mapsto f(t, u(t))$ is in \mathcal{M} ;

(B2) For u and v in D(B) we have

$$||f(t,u) - f(t,v)|| \le L ||Bu - Bv||.$$
(2.3)

Then Equation (1.1) has a unique mild solution in \mathcal{M} for L small enough.

Proof. Let $K : \mathcal{M} \mapsto \mathcal{M}$ be the operator defined as follows: For each $f \in \mathcal{M}$, Kf is the unique mild solution to (2.1). Then K is a linear and bounded operator on \mathcal{M} . For each $u \in \mathcal{M}$ put $\tilde{u}(t) := f(t, B^{-1}u(t))$. Define the map $\tilde{K} : \mathcal{M} \mapsto \mathcal{M}$ by

$$(Ku)(t) := B(K\tilde{u})(t).$$

By the assumption, $B(K\tilde{u})(\cdot)$ also belongs to \mathcal{M} . Hence \tilde{K} is well defined. If u and v are in \mathcal{M} , we have

$$\begin{aligned} \| (Ku)(t) - (Kv)(t) \| &= \| B(K\tilde{u})(t) - B(K\tilde{v})(t) \| \\ &= \| B[(K\tilde{u})(t) - (K\tilde{v})(t)] \| \\ &\leq C \cdot \sup_{t \in \mathbb{R}} \| f(t, B^{-1}u(t)) - f(t, B^{-1}v(t)) \| \\ &\leq C \cdot L \| u - v \|. \end{aligned}$$

Hence $\|\tilde{K}u - \tilde{K}v\| \leq C \cdot L \|u - v\|$. So \tilde{K} is a contraction map for sufficiently small L. Let $\phi(t)$ be the unique fixed point of \tilde{K} , then it is easy to see that $u(t) = B^{-1}\phi(t)$ is the unique mild solution of (1.1) in \mathcal{M} .

Proof of Theorem 1.1. Since -A generates an analytic semigroup, the spectral mapping theorem holds, i.e., $\sigma(T(t)) = e^{t\sigma(-A)}$ ([4, Corollary III.3.12]). Hence, condition $\{i\lambda : \lambda \in \mathbb{R}\} \subset \varrho(-A)$ implies that (T(t)) admits an exponential dichotomy, and hence, space $BC(\mathbb{R})$ is admissible w.r.t. Equation (2.1).

Define the operator $\overline{K} : BC(\mathbb{R}) \to BC(\mathbb{R})$ by follows: for each $f \in BC(\mathbb{R})$, $(\overline{K}f)(t) := A^{\alpha}u(t)$, where u(t) is the unique solution to (2.1). Then \overline{K} is a linear and, by Lemma 2.2, bounded operator. We now apply Lemma 2.3 with $B = A^{\alpha}$, and it suffices us to complete the proof by showing that \overline{K} leaves all above mentioned subspaces of $BC(\mathbb{R})$ invariant.

Let $f_t(\cdot) := f(\cdot + t)$ be the left translation of a function f. It is easy to see that $K(f_t) = (Kf)_t$, and this yields $\bar{K}(f_t) = (\bar{K}f)_t$. Hence, $P(\omega)$ and $AP(\mathbb{R})$ are invariant w.r.t. \bar{K} . Moreover, $\|(\bar{K}f)_t - \bar{K}f\| = \|\bar{K}f_t - \bar{K}f\| \le \|\bar{K}\| \cdot \|f_t - f\|$, which shows that $BUC(\mathbb{R})$ is also invariant w.r.t. \bar{K} . Finally, since $Kf(\pm \infty) =$ $A^{-1}f(\pm \infty)$, we have $\bar{K}f(\pm \infty) = A^{\alpha-1}f(\pm \infty)$, and this proves that \bar{K} leaves C_1 and C_0 invariant. \Box

References

- M. Bahaj, O. Sidki: Almost periodic solutions of semilinear equations with analytic semigroups in Banach spaces. Electronic Journal of Differential Equations Electronic Vol. 2002 (2002), No. 98, 1–11.
- [2] W. Hutter: Spectral theory and almost periodicity of mild solutions of nonautonomous Cauchy problems. Ph. D. Thesis, University of Tübingen, 1998.
- [3] Y. Latushkin, T. Randolph, R. Schnaubelt: Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces. J. Dynam. Differential Equations 10, No. 3 (1998), 489–510.
- [4] K. Engel, R. Nagel: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, Springer-Verlag 2000.
- [5] L. Maniar, R. Schnaubelt: Almost periodicity of inhomogeneous parabolic evolution equations. in G. Ruiz Goldstein, R. Nagel, S. Romanelli (Eds): "Recent Contributions to Evolution Equations", Marcel Decker, 2003, 299–318.

4

EJDE-2006/123

- [6] Pazy A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, Berlin, 1983.
- [7] J. Pruss: On the spectrum of C_0 -semigroup. Trans. Amer. Math. Soc. 284, 1984, 847–857.
- [8] Vu Quoc Phong, E. Schuler: The operator equation AX XB = C, admissibility and asymptotic behavior of differential equations. J. Differential Equations 145 (1998), 394–419.

Lan Nguyen

Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA

 $E\text{-}mail \ address: \texttt{Lan.Nguyen@wku.edu}$