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CONVEXITY OF LEVEL SETS FOR SOLUTIONS TO
NONLINEAR ELLIPTIC PROBLEMS IN CONVEX RINGS

PAOLA CUOGHI, PAOLO SALANI

Abstract. We find suitable assumptions for the quasi-concave envelope u∗

of a solution (or a subsolution) u of an elliptic equation F (x, u,∇u, D2u) = 0

(possibly fully nonlinear) to be a viscosity subsolution of the same equation.

We apply this result to study the convexity of level sets of solutions to elliptic
Dirichlet problems in a convex ring Ω = Ω0 \ Ω1.

1. Introduction

The main purpose of this paper is to investigate on conditions which guarantee
that, in a Dirichlet problem of elliptic type, relevant geometric properties of the
domain are inherited by the level sets of its solutions.

In particular, let Ω = Ω0\Ω1 be a convex ring, i.e. Ω0 and Ω1 are convex,
bounded and open subsets of Rn such that Ω1 ⊂ Ω0; we consider the Dirichlet
problem

F (x, u,∇u, D2u) = 0 in Ω
u = 0 on ∂Ω0

u = 1 on ∂Ω1 ,

(1.1)

where F (x, t, p, A) is a real operator acting on Rn×R×Rn×Sn, of elliptic type. Here
∇u and D2u are the gradient and the Hessian matrix of the function u, respectively,
and Sn is the set of real symmetric n× n matrices.

We prove that, under suitable assumptions on F , every classical solution of
problem (1.1) has convex level sets. This problem has been studied in many papers;
we recall, for instance, [1, 4, 5, 7, 8, 12, 15, 16] and the monograph [11] by Kawohl.

The method adopted here is a generalization of the one introduced in [5] and
it follows an idea suggested by Kawohl in [11]. It makes use of the quasi-concave
envelope u∗ of a function u: roughly speaking, u∗ is the function whose superlevel
sets are the convex hulls of the corresponding superlevel sets of u (we systematically
extend u ≡ 1 in Ω1). We look for conditions that imply u = u∗. Notice that u∗ ≥ u
holds by definition (to obtain u∗ we enlarge the superlevel sets of u), then it suffices
to prove the reverse inequality; the latter can be obtained by a suitable comparison
principle, if we prove that u∗ is a viscosity subsolution of problem (1.1). In this
way we reduce ourselves to the following question, which has its own interest:
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Can we find suitable assumptions on F that force u∗ to be a viscosity subsolution
of (1.1)?

A positive answer is contained in Theorem 3.1, which is the main result of the
present paper. An immediate consequence is Proposition 3.3, which directly applies
to operators of the form

F
(
x, u(x),∇u(x), D2u(x)

)
= L

(
∇u(x), D2u(x)

)
− f(x, u(x),∇u(x)). (1.2)

This paper supplements the results of [5], in which the authors considered only
operators whose principal part can be decomposed in a tangential and a normal part
(with respect to the level sets of the solution), like the Laplacian, the p-Laplacian
and the mean curvature operator. Here we treat more general operators, including,
for instance, Pucci’s extremal operators. Moreover, let us mention that the method
presented here could be suitable to prove more than the mere convexity of level
sets of a solution u; indeed, under appropriate boundary behaviour of u (which we
do not determine explicitely in this paper), the same proof of Theorem 3.1 may be
used to obtain the p-concavity of u for some p < 0 (i.e. the convexity of up); see
Remark 5.1.

Notice that we assume |∇u| > 0 in Ω, which is a typical assumption for this
kind of investigations . Finding geometric properties of level sets of u without this
assumption is partly an open problem; contributions to this question can be found
in [11] and [12].

Finally, let us remind that an analogous technique was developed by one of the
author in [18] to investigate the starshapedness of level sets of solutions to problem
(1.1) when Ω is a starshaped ring.

The paper is organized as follows: in §2 we introduce notation and we briefly
recall some notions from viscosity theory; in §3 we state the principal result of
the paper, Theorem 3.1, and we provide some examples and applications; in §4
we collect some tools which will be used in the proof of Theorem 3.1, which is
developed in §5.

2. Preliminaries

Let n ≥ 2, for x, y ∈ Rn (n-dimensional euclidean space) and r > 0, B(x, r) is
the euclidean ball of radius r centered at x, i.e.

B(x, r) = {z ∈ Rn : |z − x| < r}.

With the symbol ⊗ we denote the direct product between vectors in Rn, that is,
for x, y ∈ Rn, x⊗ y is the n× n matrix with entries (xiyj) for i, j = 1, . . . , n.

For a natural number m and a ∈ Rm, by a ≥ 0 (> 0) we mean ai ≥ 0 (> 0) for
i = 1, . . . ,m; moreover we set

Λm =
{
(λ1, . . . , λm) ∈ [0, 1]m :

m∑
i=1

λi = 1
}

.

For A ⊂ Rn, we denote by A its closure and by ∂A its boundary.
Throughout the paper Ω0 and Ω1 will be non-empty, open, convex, bounded

subsets of Rn, such that Ω1 ⊂ Ω0, Ω will denote the convex ring Ω0 \ Ω1 and
u ∈ C2(Ω)∩C(Ω) will be a function such that u = 0 on ∂Ω0 and u = 1 on ∂Ω1; we
sistematically extend u ≡ 1 in Ω1. The gradient and the Hessian matrix of u are
written as ∇u and D2u, respectively.
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Finally, Sn is the set of real symmetric n× n matrices, S+
n (S++

n ) is the subset
of Sn of positive semidefinite (definite) matrices.

Next we recall few notions from viscosity theory and we refer the reader to [6]
for more details.

An operator F : Ω× R× Rn × Sn → R is said proper if

F (x, s, p, A) ≤ F (x, t, p, A) whenever s ≥ t , (2.1)

and it is said strictly proper if the inequality sign in (2.1) is strict whenever s > t.
Let Γ be a convex cone in Sn with vertex at the origin and containing S++

n , then
F is said degenerate elliptic in Γ if

F (x, t, p, A) ≤ F (x, t, p, B), for every A,B ∈ Γ such that A ≤ B, (2.2)

where A ≤ B means that B −A ∈ S+
n .

We put ΓF = ∪Γ, where the union is extended to every cone Γ such that F is
degenerate elliptic in Γ; when we say that F is degenerate elliptic, we mean that F
is degenerate elliptic in ΓF 6= ∅.

If F is a degenerate elliptic operator, we say that a function u ∈ C2(Ω) is
admissible for F if D2u(x) ∈ ΓF for every x ∈ Ω. For instance, if F is the Laplacian,
then every C2 function is admissible for F ; if F is the Monge-Ampère operator
det(D2u), then convex functions only are admissible for F .

Let u be an upper semicontinuous function and φ a continuous function in Ω
and consider x0 ∈ Ω: we say that φ touches u from above at x0 if

φ(x0) = u(x0) and φ(x) ≥ u(x) in a neighbourhood of x0 .

Analogously, if u is lower semicontinuous, we say that φ touches u from below at
x0 if

φ(x0) = u(x0) and φ(x) ≤ u(x) in a neighbourhood of x0 .

An upper semicontinuous function u is a viscosity subsolution of the equation F = 0
if, for every C2 function φ touching u from above at any point x ∈ Ω, it holds

F (x, u(x),∇φ(x), D2φ(x)) ≥ 0 .

A lower semicontinuous function u is a viscosity supersolution of F = 0 if, for every
admissible C2 function φ touching u from below at any point x ∈ Ω, it holds

F (x, u(x),∇φ(x), D2φ(x)) ≤ 0 .

A viscosity solution is a continuous function which is, at the same time, subsolution
and supersolution of F = 0. In our hypoteses, a classical solution is always
a viscosity solution and a viscosity solution is a classical solution if it is regular
enough.

The technique we use to prove our main result requires the use of the comparison
principle for viscosity solutions. We say that an operator F satisfies the comparison
principle if the following statement holds:

Let u ∈ C(Ω) and v ∈ C(Ω) be, respectively, a viscosity supersolution and a

viscosity subsolution of F = 0 such that u ≥ v on ∂Ω; then u ≥ v in Ω.
(2.3)

The research of conditions which force F to satisfy a comparison principle is a
difficult and current field of investigation (see, for instance, [10, 13, 14]); we consider
only operators that satisfy the comparison principle.
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3. The main result and some applications

To state our main result, we recall the notion of quasi-concave envelope of a
function u (refer to [5]). Given a convex ring Ω and a function u ∈ C(Ω), the
quasi-concave envelope of u is defined by

u∗(x) = max
{

min{u(x1), . . . , u(xn+1)} : x1, . . . , xn+1 ∈ Ω,

x =
n+1∑
i=1

λixi, for some λ ∈ Λn+1

}
.

(3.1)

It is almost straightforward that the superlevel sets of u∗ are the convex hulls of the
corresponding superlevel sets of u; hence u∗ is the smallest quasi-concave function
greater or equal than u (we recall that the convex hull of a set A ⊆ Rn is the
intersection of all convex subsets of Rn containing A and that a real function u is
said quasi-concave if its superlevel sets are all convex).

Theorem 3.1. Let Ω = Ω0\Ω1 be a convex ring and let F (x, u, θ, A) be a proper,
continuous and degenerate elliptic operator in Ω × (0, 1) × Rn × ΓF . Assume that
there exists p̃ < 0 such that, for every p ≤ p̃ and for every θ ∈ Rn, the application

(x, t, A) → F
(
x, t

1
p , t

1
p−1θ, t

1
p−3A

)
is concave in Ω× (1,+∞)× ΓF . (3.2)

If u ∈ C2(Ω)∩C(Ω) is an admissible classical solution of (1.1) such that |∇u| > 0
in Ω, then u∗ is a viscosity subsolution of (1.1).

The proof of the above theorem is contained in§5.
A direct consequence of Theorem 3.1 is the following criterion which immediately

applies to problem (1.1).

Proposition 3.2. Under the hypothesis of Theorem 3.1, if a viscosity comparison
principle holds for F , then all the superlevel sets of u are convex (once we extend
u ≡ 1 in Ω1).

Proof. Indeed, Theorem 3.1 and the comparison principle ensure that

u∗ ≤ u in Ω.

The reverse inequality follows from the definition of u∗, hence u = u∗. �

In the following proposition we rewrite explicitly a particular case of Theorem
3.1, which directly applies to some interesting problems.

Proposition 3.3. Assume that f(x, u, θ) is a continuous function in Ω×(0, 1)×Rn,
non-decreasing in u, and that L(θ, A) is a continuous elliptic operator, concave with
respect to A. Moreover, assume that there exist α, β ∈ R such that

L(rθ, A) ≥ rαL(θ, A), (3.3)

L(θ, sA) ≥ sβL(θ, A), (3.4)

for every r, s > 0 and (θ, A) ∈ Rn × ΓL.
Let u ∈ C2(Ω) ∩ C(Ω) be an admissible classical solution of

L(∇u(x), D2u(x)) = f(x, u(x),∇u(x)) in Ω
u = 0 on ∂Ω0

u = 1 on ∂Ω1,

(3.5)
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such that |∇u| > 0 in Ω.
If there exists p̃ < 0 such that, for every p ≤ p̃ and for every fixed θ ∈ Rn, the

application

t(1−
1
p )α+(3− 1

p )βf
(
x, t

1
p , t

1
p−1θ

)
(3.6)

is convex with respect to (x, t) ∈ Ω× (1,+∞), then u∗ is a viscosity subsolution of
(3.5).

The above proposition is only a particular case of Theorem 3.1.
Examples of this kind are the Laplace operator (α = 0, β = 1), the q-Laplace

operator (α = q − 2, β = 1) and the mean curvature operator (α = 0, β = 1).
These operators, whose principal part can be naturally decomposed in a tangential
and normal part with respect to the level sets of the solution, have been already
treated in [5]. There, convexity for superlevel sets of solutions of (3.5), in the just
mentioned cases, is proved under the assumption tα+3βf

(
x, u, θ

t

)
is convex with

respect to (x, t) for every (u, θ) ∈ (0, 1)× Rn.
Notice that letting p → −∞, (3.6) yields tα+3βf

(
x, 1, θ

t

)
being convex with

respect to (x, t).
Other examples of operators, which our results apply to, are for instance Pucci’s

extremal operators. For sake of completeness, we briefly recall the definitions and
main properties of these operators.

Pucci’s extremal operators were introduced by Pucci in [17] and they are pertur-
bations of the usual Laplacian. Given two numbers 0 < λ ≤ Λ and a real symmetric
n × n matrix M , whose eigenvalues are ei = ei(M), for i = 1, . . . , n, the Pucci’s
extremal operators are

M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei (3.7)

and
M−

λ,Λ(M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei. (3.8)

We observe that M+ and M− are uniformly elliptic, with ellipticity constant λ
and nΛ and they are positively homogeneous of degree 1; moreover M− is concave
and M+ is convex with respect to M (see [3], for instance).

4. The (p, λ)–envelope of a function

Before proving Theorem 3.1, we need some preliminary definitions and results.
First of all we recall the notion of p-means; for more details we refer to [9].

Given a = (a1, . . . , am) > 0, λ ∈ Λm and p ∈ [−∞,+∞], the quantity

Mp(a, λ) =


[λ1a

p
1 + λ2a

p
2 + · · ·+ λmap

m]1/p for p 6= −∞, 0,+∞
max{a1, . . . , am} p = +∞
aλ1
1 . . . aλm

m p = 0
min{a1, a2, . . . , am} p = −∞

(4.1)

is the p-(weighted) mean of a.
For a ≥ 0, we define Mp(a, λ) as above if p ≥ 0 and we set Mp(a, λ) = 0 if p < 0
and ai = 0, for some i ∈ {1, . . . ,m}.
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A simple consequence of Jensen’s inequality is that, for a fixed 0 ≤ a ∈ Rm and
λ ∈ Λm,

Mp(a, λ) ≤ Mq(a, λ) if p ≤ q. (4.2)
Moreover, it is easily seen that

lim
p→+∞

Mp(a, λ) = max{a1, . . . , am} (4.3)

and
lim

p→−∞
Mp(a, λ) = min{a1, . . . , am}. (4.4)

Let us fix λ ∈ Λn+1 and consider p ∈ [−∞,+∞].

Definition 4.1. Given a convex ring Ω = Ω0\Ω1 and u ∈ C(Ω), the (p, λ)–envelope
of u is the function up,λ : Ω → R+ defined as follows

up,λ(x)

= sup{Mp (u(x1), . . . , u(xn+1), λ) : xi ∈ Ω, i = 1, . . . , n + 1, x =
n+1∑
i=1

λixi}.
(4.5)

For convenience, we will refer to u−∞,λ as u∗λ.
Notice that, since Ω is compact and Mp is continuous, the supremum of the defi-

nition is in fact a maximum. Hence, for every x ∈ Ω, there exist (x1,p, . . . , xn+1,p) ∈
Ω

n+1
such that

x =
n+1∑
i=1

λixi,p, up,λ(x) =
( n+1∑

i=1

λiu(xi,p)p
)1/p

. (4.6)

An immediate consequence of the definition is that

up,λ(x) ≥ u(x), ∀x ∈ Ω, p ∈ [−∞, , +∞]; (4.7)

moreover, from (4.2), we have

up,λ(x) ≤ uq,λ(x), for p ≤ q, x ∈ Ω. (4.8)

For the rest of this article, we restrict ourselves to the case p ∈ [−∞, 0) and we
collect in the following lemmas some helpful properties of up,λ and u∗λ.

Lemma 4.1. Let p ∈ (−∞, 0) and λ ∈ Λn+1; given a convex ring Ω = Ω0\Ω1 and
a function u ∈ C(Ω) such that u = 0 on ∂Ω0, u = 1 on ∂Ω1 and u ∈ (0, 1) in Ω,
then up,λ ∈ C(Ω) and

up,λ ∈ (0, 1) in Ω, up,λ = 0 on ∂Ω0, up,λ = 1 on ∂Ω1. (4.9)

Proof. The proof of (4.9) is almost straightforward. For the continuity of up,λ in
Ω,

up
p,λ(x)

= min
{
λ1u(x1)p + · · ·+ λn+1u(xn+1)p : xi ∈ Ω, i = 1, . . . , n + 1, x =

n+1∑
i=1

λixi

}
is the infimal convolution of up with itself for (n + 1) times; then refer to [19,
Corollary 2.1] to conclude that up

p,λ ∈ C(Ω). Hence up,λ ∈ C(Ω), since up,λ > 0 in
Ω; then (4.1) and (4.9) easily yield continuity up to the boundary of Ω. �
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Remark 4.1. If u is a function satisfying the hypotheses of the previous lemma
and if we consider x ∈ Ω, by (4.6) and (4.7), we get

xi,p /∈ ∂Ω0, for i = 1, . . . , n + 1 ,

otherwise it should be up,λ(x) = 0 by definition of p-means.

Lemma 4.2. Let λ ∈ λn+1; given a convex ring Ω = Ω0\Ω1 and a function
u ∈ C1(Ω) ∩C(Ω) such that u = 0 on ∂Ω0, u = 1 on ∂Ω1 and |∇u| > 0 in Ω, then
u∗λ ∈ C(Ω),

u∗λ = 0 on ∂Ω0, u∗λ = 1 on ∂Ω1, u∗λ ∈ (0, 1) in Ω.

Moreover, for every x ∈ Ω, there exist x1, . . . , xn+1 ∈ Ω such that

x =
n+1∑
i=1

λixi , u∗λ(x) = u(x1) = · · · = u(xn+1). (4.10)

Proof. The hypothesis |∇u| > 0 in Ω guarantees that u ∈ (0, 1) in Ω; then we notice
that the superlevel sets Ω∗t,λ = {x ∈ Ω : u∗λ(x) ≥ t} of u∗λ are characterized by

Ω∗t,λ =
{ n+1∑

i=1

λixi : xi ∈ Ωt, i = 1, . . . , n + 1
}
,

where Ωt = {u ≥ t}. Then, we can argue exactly as in [5, Section 2 and 3] where
the same is proved for the quasi-concave envelope u∗ of u (see also [2] and [16]). �

Remark 4.2. It is not hard to see that (4.10) holds for every (x1, . . . , xn+1) real-
izing the maximum in (4.5), for p = −∞.

Remark 4.3. It holds

u∗(x) = sup {u∗λ(x) : λ ∈ Λn+1} . (4.11)

and the sup above is in fact a maximum as Λn+1 is compact.

For further convenience, we also set

up(x) = sup {up,λ(x) : λ ∈ Λn+1}

and we notice that the above supremum is in fact a maximum and that up is the
smallest p-concave function greater or equal to u. We recall that, for p 6= 0, a
non-negative function u is said p-concave if p

|p|u
p is concave (u is called log-concave

if log u is concave, which corresponds to the case p = 0).

Theorem 4.3. Under the assumptions of Lemma 4.1, we have

up,λ → u∗λ uniformly in Ω. (4.12)

Proof. The function up,λ − u∗λ ≥ 0 in Ω, since it is continuous in Ω, then it admits
maximum in Ω. Let x̄p ∈ Ω such that

up,λ(x̄p)− u∗λ(x̄p) = max
x∈Ω

|up,λ(x)− u∗λ(x)|.

To get (4.12) it suffices to prove that

up,λ(x̄p)− u∗λ(x̄p) → 0, for p → −∞.
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For every p < 0, let us consider the points x1,p, . . . , xn+1,p ∈ Ω, given by (4.6), such
that

x̄p =
n+1∑
i=1

λixi,p, up,λ(x̄p) =
[ n+1∑

i=1

λiu(xi,p)p
]1/p

. (4.13)

For every negative number q > p, by (4.2) and the definition of u∗λ, we have

up,λ(x̄p)− u∗λ(x̄p) =
[ n+1∑

i=1

λiu(xi,p)p
]1/p

− u∗λ(x̄p)

≤
[ n+1∑

i=1

λiu(xi,p)q
]1/q

−min {u(x1,p), . . . , u(xn+1,p)} .

Since Ω is closed, it follows that xi,p → xi ∈ Ω (up to subsequences), for i =
1, . . . , n + 1. Then, letting p → −∞ we get

lim
p→−∞

(up,λ(x̄p)− u∗λ(x̄p)) ≤
[ n+1∑

i=1

λiu(xi)q
]1/q

−min {u(x1), . . . , u(xn+1)} . (4.14)

The thesis follows passing to the limit for q → −∞ and by (4.4). �

5. Proof of Main Theorem

Let u and Ω be as in the statement of Theorem 3.1. First, we fix λ ∈ Λn+1 and
p < 0 and we prove that, for every x̄ ∈ Ω, there exists a C2 function ϕp,λ which
touches the (p, λ)-envelope up,λ of u from below at x̄ and such that

F
(
x̄, up,λ(x̄),∇ϕp,λ(x̄), D2ϕp,λ(x̄)

)
≥ 0 . (5.1)

Clearly this implies that up,λ is a viscosity subsolution of (1.1); then, by Theo-
rem 4.3 and the fact that viscosity subsolutions pass to the limit under uniform
convergence on compact sets, it follows that u∗λ is a viscosity subsolution of (1.1)
too.

Then, as u∗(x) is the supremum (with respect to λ ∈ Λn+1) of u∗λ(x), by [6,
Lemma 4.2] we conclude that also u∗ is a viscosity subsolution of (1.1).

Let us consider x̄ ∈ Ω. By (4.6) and Remark 4.1, there exist x1,p, . . . , xn+1,p ∈
Ω\∂Ω0 such that

x̄ = λ1x1,p+· · ·+λn+1xn+1,p, up,λ(x̄)p = λ1u(x1,p)p+· · ·+λn+1u(xn+1,p)p. (5.2)

We suppose, for the moment, that xi,p ∈ Ω, for i = 1, . . . , n + 1. In this case, by
the Lagrange Multipliers Theorem, we have

∇[u(x1,p)p] = · · · = ∇[u(xn+1,p)p]. (5.3)

We introduce a new function ϕp,λ : B(x̄, r) → R, for a small enough r > 0, defined
as follows:

ϕp,λ(x) = [λ1u (x1,p + a1,p(x− x̄))p + · · ·+ λn+1u (xn+1,p + an+1,p(x− x̄))p]1/p
,

(5.4)
where

ai,p =
u(xi,p)p

up,λ(x̄)p
, for i = 1, . . . , n + 1. (5.5)

The following facts trivially hold:
(1)

∑n+1
i=1 λiai = 1;
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(2) x =
∑n+1

i=1 λi (xi,p + ai,p(x− x̄)), for every x ∈ B(x̄, r);
(3) ϕp,λ(x̄) = up,λ(x̄);
(4) ϕp,λ(x) ≤ up,λ(x) in B(x̄, r) (this follows from 2 and from the definition of

up,λ).

In particular, 3 and 4 mean that ϕp,λ touches from below up,λ at x̄. A straightfor-
ward calculation yields

∇ϕp,λ(x̄) = ϕp,λ(x̄)1−p
[
λ1u(x1,p)p−1a1,p∇u(x1,p) + . . .

+ λn+1u(xn+1,p)p−1an+1,p∇u(xn+1,p)
]

= ϕp,λ(x̄)1−p
n+1∑
i=1

λiu(xi,p)p−1 u(xi,p)p

ϕp,λ(x̄)p
∇u(xi,p).

Then, by (5.3) and the definition of ϕp,λ, we have

∇ϕp,λ(x̄) = ϕp,λ(x̄)1−pu(xi,p)p−1∇u(xi,p)
n+1∑
i=1

λi
u(xi,p)p

ϕp,λ(x̄)p

= ϕp,λ(x̄)1−pu(xi,p)p−1∇u(xi,p) i = 1, . . . , n + 1.

(5.6)

Moreover,

D2ϕp,λ(x̄) = (1− p)ϕp,λ(x̄)−1∇ϕp,λ(x̄)⊗∇ϕp,λ(x̄)

− (1− p)ϕp,λ(x̄)1−p
n+1∑
i=1

λiu(xi,p)p−2a2
i,p∇u(xi,p)⊗∇u(xi,p)

+ ϕp,λ(x̄)1−p
n+1∑
i=1

λiu(xi,p)p−1a2
i,pD

2u(xi,p).

(5.7)

Taking in to account (5.6) and (5.5), we obtain

D2ϕp,λ(x̄) =
n+1∑
i=1

λi
u(xi,p)3p−1

ϕp,λ(x̄)3p−1
D2u(xi,p) + (1− p)ϕp,λ(x̄)−1∇ϕp,λ(x̄)

⊗∇ϕp,λ(x̄)
[
1− ϕp,λ(x̄)−p

n+1∑
i=1

λiu(xi,p)p
]
.

The quantity in square brackets is equal to 0 by the definition of ϕp,λ. Then

D2ϕp,λ(x̄) =
n+1∑
i=1

λi
u(xi,p)3p−1

ϕp,λ(x̄)3p−1
D2u(xi,p). (5.8)
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Thanks to (5.6) and (5.8), for p ≤ p̃, applying assumption (3.2), we get

F
(
x̄, up,λ(x̄),∇ϕp,λ(x̄), D2(ϕp,λ(x̄))

)
= F

(
x̄, [up,λ(x̄)p]

1
p , [ϕp,λ(x̄)p]

1
p−1

ϕp,λ(x̄)p−1∇ϕp,λ(x̄),

[ϕp,λ(x̄)p]
1
p−3

ϕp,λ(x̄)3p−1D2(ϕp,λ(x̄))
)

≥
n∑

i=1

λiF
(
xi,p, [u(xi,p)p]

1
p , [u(xi,p)p]

1
p−1

ϕp,λ(x̄)p−1∇ϕp,λ(x̄), D2u(xi,p)
)

=
n∑

i=1

λiF
(
xi,p, u(xi,p),∇u(xi,p), D2u(xi,p)

)
= 0

since u is a classical solution of F = 0. Then (5.1) is proved for every x̄ ∈ Ω such
that the points x1,p, x2,p, . . . xn+1,p determined by (5.2) are contained in Ω.

In order to conclude our proof, we prove the following lemma.

Lemma 5.1. Under the assumptions of Theorem 3.1, for every compact K ⊂ Ω,
there exists p = p(K) < 0 such that, if p ≤ p and x ∈ K, the points xi,p, i =
1, . . . , n + 1, given by (5.2) are all contained in Ω.

Proof. Let x ∈ K: the points xi,p, i = 1, . . . , n + 1, determined by (5.2) are in
Ω\∂Ω0, by Remark 4.1. Hence we have only to prove that no one of them belongs
to ∂Ω1.

We argue by contradiction. We suppose that there exist two sequences {pm} ⊆
(−∞, 0) and {ξm} ⊆ K such that pm → −∞ and

upm,λ(ξm) > Mpm
(u(y1), . . . , u(yn+1), λ)

for every (y1, . . . , yn+1) ∈ Ωn+1 such that ξm =
∑n+1

i=1 λiyi. Then

upm,λ(ξm) = Mpm (u(x̄1,pm), . . . , u(x̄n+1,pm), λ) ,

with x̄i,pm ∈ ∂Ω1, for some i = 1, . . . , n + 1 and ξm =
∑n+1

i=1 λix̄i,pm . Without
leading the generality of the proof, we may suppose that

x̄1,pm
∈ ∂Ω1, for every m ∈ N.

The following facts hold for m → +∞, up to subsequences:
(1) ξm → x ∈ K,
(2) x̄1,pm → x̄1 ∈ ∂Ω1,
(3) x̄2,pm → x̄2 ∈ Ω, . . . , x̄n+1,pm

→ x̄n+1 ∈ Ω,
(4) x =

∑n+1
i=1 λix̄i.

Collecting all these information, by (4.2), for pm < q < 0 we get

upm,λ(ξm) = Mpm
(u(x̄1,pm

), . . . , u(x̄n+1,pm
), λ)

≤ Mq (u(x̄1,pm
), . . . , u(x̄n+1,pm

), λ) .

If we let m → +∞, by Theorem 4.3 and the continuity of u, up,λ and Mp, we obtain

u∗λ(x) ≤ Mq(u(x̄1), . . . , u(x̄n+1), λ).

Now let q → −∞, then

u∗λ(x) ≤ min{u(x̄1), . . . , u(x̄n+1)} .



EJDE-2006/124 CONVEXITY OF LEVEL SETS 11

In particular, by definition of u∗λ, it has to be

u∗λ(x) = min{u(x̄1), . . . , u(x̄n+1)}, with x̄1 ∈ ∂Ω1.

This contradicts Lemma 4.2 and Remark 4.2. �

Finally, we obtained that up,λ is a viscosity subsolution of (1.1) for every compact
subset K of Ω, for p ≤ min{p̃, p}. The arbitrariness of K ensures that up,λ is a
viscosity subsolution of (1.1) in the whole Ω. Proof is now complete.

Remark 5.1. If, for some p ∈ R, we had that, for every λ ∈ Λn+1 and for every
x ∈ Ω, the points xi,p, i = 1, . . . , n + 1, given by (5.2), are all inside Ω, then
we would obtain that up,λ is a subsolution of (1.1). Hence up(x) is a subsolution
and finally, by the comparison principle, it holds u ≡ up, which means that u is
p-concave (that is more than saying that it is quasi-concave).

Notice that we already know that xi,p /∈ ∂Ω0 for i = 1, . . . , n + 1 (see Remark
4.1); hence, to prove p-concavity of u, one has only to find conditions which rule
out the chance that xi,p ∈ ∂Ω1 for some i ∈ {1, . . . , n + 1}.

References

[1] Acker A. On the Uniqueness, Monotonicity, Starlikeness and Convexity of Solutions for
a Nonlinear Boundary Value Problem in Elliptic PDEs, Nonlinear Anal. Theory Methods

Appl. 22, No.6 (1994), 697–705.

[2] Borell C., Capacitary Inequalities of the Brunn-Minkowski Type, Math. Ann. 263, 179-184
(1983).
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