Electronic Journal of Differential Equations, Vol. 2005(2005), No. 13, pp. 1-6.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR
BOUNDARY-VALUE PROBLEMS

DANG DINH HAI

ABSTRACT. This paper concerns the existence and multiplicity of positive so-
lutions for Sturm-Liouville boundary-value problems. We use fixed point the-
orems and the sub-super solutions method to two solutions to the problem
studied.

Introduction
Consider the boundary-value problem

Lu=Mf(t,u), 0<t<1
au(0) — Bu’(0) =0, ~yu(l)+du'(1) =0,

where Lu = —(ru/) + qu, r,q € C[0,1] with » > 0, ¢ > 0 on [0,1], o, 3,7,9 > 0
with ad + ay+ By >0, f:(0,1) x [0,00) — [0,00), and A is a positive parameter.
The existence and nonexistence of positive solutions of problem (0.1) with f
possibly singular have been established by Choi [1], Dalmasso [2], Wong [7], and
recently by Erbe and Mathsen [4]. In this paper, we shall obtain positive solutions
to (0.1) under assumptions less stringent than in [4]. In particular, we do not need
the condition that f(¢,u) be nondecreasing in u, which is essential in [1, 2, 4, 7].
Our approach depends on fixed point theorems and sub-super solutions method.

(0.1)

1. MAIN RESULTS

Let G(t, s) be the Green’s function for (0.1). Then w is a solution of (0.1) if and
only if
1
u(t) = )\/ G(t,s)f(s,u(s))ds.
0
Recall that
_1 . <
G(t,s) = 0_1¢(t>w(s) ife<s
clo(s)Y(t) ift>s,
where ¢ and v satisfy
Lo=0, ¢(0)=8, ¢0)=a

1.1)
/ (
L =0, ¢(1)=46, ¢'(1)=—y
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and ¢ = —r(t)(o(t)Y'(t) — ¢'(t)(t)) > 0. Note that ¢’ > 0 on (0,1], ¥' < 0 on
[0,1).
We shall make the following assumptions:
(H1) f:(0,1) x [0,00) — [0, 00) is continuous
(H2) For each M > 0, there exists a continuous function gp; on (0, 1) such that
flt,u) < gum(t) fort € (0,1), 0 <u < M, and

/01 G(s,s)gm(s)ds < oo.
(H3) There exist an interval I C (0,1) and a function m € L'(I) with m > 0,
m # 0 such that for every a > 0, there exists r, > 0 such that
flt,u) > am(t)u fortel, ue (0,ry)
(H4) There exist an interval J C (0,1) and a positive number d such that
ft,u) >du forteJ, u>0.

(H5) There exist an interval I; C (0,1) and a function m; € L'(I;) with m; >
0,my Z 0 such that for every b > 0, there exists Ry > 0 such that

flt,u) = bmi(t)u fort eIy, u> Ry.
Our main results are stated as follows.
Theorem 1.1. Let (H1)-(H3) hold. Then there exists Ao > 0 such that (0.1) has

a positive solution for 0 < A < Xo. If, in addition, (H5) holds, then (0.1) has at
least two positive solutions for 0 < A < Ag.

Theorem 1.2. Let (H1)-(H/) hold. Then there exists \* > 0 such that (0.1) has
a positive solution for 0 < A < X* and no positive solution for X > \*.

Remark 1.3. Let f(¢,u) = m(t)g(u), where g : [0, 00) — [0, 00) be continuous with
lim,, g+ %u) = 00, limy_, o % = o0, and m € L'(0,1) with m > 0, m # 0. Then
f satisfies (H1)—(H3) and (H5) and therefore Theorem 1.1 applies. If we take m(t) =
1/Vt, g(u) = uP + u? + h(u), where p < 1 < ¢ and h is a nonnegative continuous
function, then it is easily seen that f(¢,u) satisfies (H1)—(H5) and Theorem 1.2
applies. However, the results in [1, 2, 4, 7] may not apply since g may not be

nondecreasing.
To prove our main results, we first establish the following results.
Lemma 1.4. Let h € L'(0,1) be such that h > 0 and let u satisfy
Lu=h 1in(0,1)
au(0) — Bu’(0) =0, ~u(l)+du'(1) =0.
Then
u(t) = |ulop(t),

(1) w(t)), and || - ||o denotes the supremum norm.

[¢lo? [¥lo

where p(t) = min (

Proof. We proceed as in [3]. It is easy to see that

u(t):/o G(t, s)h(s)ds.
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Let |u|o = u(to) for some tg € (0,1). We verify that
G(t,s)
G(to, S)

> p(t).

If t,ty < s then

and if tg < s <t then

Glt.s) _ S)0(t) () _ (1)

G(to,s)  o(to)v(s) — ¥(s) — [¥lo

since ¢(s) > ¢(tg). The other two cases are treated in a similar manner. Hence
u(t) = p(t)ulto) = |ulop(t)-
(]

Lemma 1.5. Let (H1)-(H3) hold. Then for each A > 0, there exists ¢y > 0
such that if u is a nonzero solution of (0.1) then |ulo > cx. Furthermore, (cy) is
nondecreasing in .

Proof. Let pg = minseg p(t), where p is defined in Lemma 1.4, and

K:/G(l,s)m(s)ds.
7 2
By (H3), there exists ry € (0, 1) such that

flt,u) _ 2m(t)

fortel, 0<u<ry

Define
ftu) _ 2m(t)

cx =sup{r € (0,1): ” Z)\poK fortel, 0<u<r}.
Then 0 < ¢y <1 and
f(tu) _ 2m(2)
> fortel, 0 < cy. 1.2
v ortel, 0<u<cy (1.2)

Clearly (cy) is nondecreasing in A. Let u be a nonzero solution of (0.1) and suppose
that |ulgp < cx. Using Lemma 1.4 and (1.2), we obtain

u(t) = A /0 G(t, 5) (s, u(s))ds

2m(s)
> /\/I ok G(t, s)u(s)ds

> 2K*1|u|0/G(t,s)m(s)ds,
which implies '
o > u(z) = 2K ( [ GGG o)m(s)as))ulo = 2l
a contradiction. This completes the proof. [

Lemma 1.6. Let (H1), (H2), (H4) hold. Then (0.1) has no positive solution for
A large.
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Proof. Let u be a positive solution of (0.1). Using (H4) and Lemma 1.4, we obtain

1
(}) )\/ G(},s)f(s,u(s))ds > )\d/ G(l,s)u(s)ds > AdC|ulo,
2 . 79 Y
where C' = (minses p(s)) ([, G(3,5)ds), which implies A < (dC)~*. O

The next Lemma establishes the existence of a solution once a pair of ordered
sub- and supersolution are known, without assuming monotonicity of f(¢, ) in w.

Lemma 1.7. Let (H1), (H2) hold. Suppose that u and u in C[0,1] N C*(0,1) are
sub- and supersolutions of (0.1) respectively with 0 < u < @, i.e.,

Lu(t) < Af(t,u) in (0,1)
au(0) — u'(0) <0, ~u(l) +du'(1) <0
and
Lu(t) > Af(t,u(t)) n (0,1)
at(0) — Bu’'(0) >0, ~u(l)+6u'(1) > 0.
Then (0.1) has a solution u with u < u < 4.

Proof. The proof is essentially given in [6], where nonsingular problems were con-
sidered. For convenience, we give a proof. Without loss of generality, we assume
that A = 1. Define

(1) + 592 if v > a(t)

Ql

f(t,

1+ 02
f(t,v)z f(t,v) if u(t) <wv <a(t)
Ft () + 2920 if v < u(t).

For each v € C]0,1], let w = Tv be the solution of

Lu= f(t,v), 0<t<1
au(0) — Bu’'(0) =0, ~yu(l)+ du/(1) = 0.
Then T : C[0,1] — C]0,1] is completely continuous. Since T' is bounded, T has
a fixed point u by the Schauder fixed point Theorem. We verify that u < u < .
Suppose to the contrary that there exists ¢ty € (0, 1) such that u(tg) > u(to). Let
w=wu—u and t; € [0,1] be such that w(t;) = maxg<i<; w(t) > 0. If 1 € (0,1)
then w'(t1) = 0 and (rw’)’(¢1) < 0, which implies that Lw(t1) > 0. On the other
hand,
Luw(ty) = Lu(ty) — Lu(t;) < —% <0,

a contradiction. Suppose that t; = 0. Then w’(0) < 0, and since aw(0) — fw’(0) <
0, we have a contradiction if & > 0. If & = 0 then 8 > 0 and therefore w’(0) = 0.
Since —(rw’)’(t) + qw(t) = Lw(t) < 0 for small ¢ > 0, it follows by integrating that
(rw’)(t) > 0 and so w’(t) > 0 for small ¢ > 0, a contradiction. Similarly, we reach a
contradiction if ¢; = 1. Hence u < @ on (0,1). The lower inequality can be derived
in a similar manner. g

In view of Lemmas 1.4 and 1.5, we see that u is a positive solution of (0.1) if
and only if u is a solution of

Lu=\f(t,u), 0<t<1

au(0) — Bu/(0) =0, ~u(l) +du'(1) =0, (1:3)
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where f(t,u(t)) = f(t, max(u(t),cxp(t)), or equivalently, u is a fixed point of Ay,
where

1
Ayut) = A / G(t, 5)f (s, uls))ds
0
Note that Ay : C[0,1] — C]0, 1] is completely continuous (see [3]).

We are now in a position to prove our main result.

Proof of Theorem 1.1. Let
1 -1
qo= ([ G m(is)
0

and suppose that 0 < A < Ag, where ¢ is defined in (H2). Let u be a solution of
u=0A\u for some 6 € [0,1].

We claim that |u[o # 1. Indeed, if [ulp = 1 then since cx[plo < ex < 1, it follows
from (H2) that f(s,u(s)) < g1(s), which implies

1
1=ulp < /\/ G(s,s)q1(s)ds < 1
0

for A < Ap, a contradiction, and the claim is proved. Hence the Leray-Schauder
fixed point Theorem gives the existence of a fixed point u of Ay with |ulp < 1.

Next, suppose that (H5) holds. We shall employ fixed point theorems in a cone to
show the existence of a second solution. Let K be the cone of nonnegative functions
in C[0,1]. By the above arguments, we have

ueKand u < Ayu = |ulp # 1.
Let

where p; = mingey, p(s). By (H5), there exists Ry > p; such that

f(s,u) >bmy(s)u for s € I1, u> Ry.
We claim that

u€eKand u> Ayu = |ulp # Rbpl_1
Suppose that u € K and u > Ayu. If |ulp = Rbpfl then it follows from Lemma 1.4
that

u(s) > Rbpflp(s) > Ry, forsel.

Hence

1
Rypy ' = Julo > u(§)

1
1 -
> )\/ G(i,s)f(s,u(s))ds
0
1 -1
> bRb)\( G(f,s))ml(s)ds) =2Rpp;
n o2
a contradiction, and the claim is proved. By Krasnoselskii’s fixed point Theorem,

[5], Ay has a fixed point @ in K with 1 < |@|o < Ryp;'. This completes the
proof |
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Proof of Theorem 1.2. Let A be the set of all A > 0 such that (0.1) has a positive
solution and let A* = sup A. By Theorem 1.1 and Lemma 1.6, 0 < \* < co. Let
0 < A < A*. Then there exists Ag > 0 such that A < A¢ and (0.1), has a positive
solution uy,. Then uy, satisfies

ux, () = ex,p(t) = exp(t),
and therefore
Lu/\o (t) = )‘Of(ta Uxg (t))
= Aof(t, max(ux, (t), exp(t))
> Af(t, max(uy, (£), cap(t))
= Af(t,un, (1)),
i.e., uy, is a supersolution of (1.3). Since 0 is a subsolution of (1.3), it follows from

Lemma 1.7 that (1.3) has a solution uy with 0 < uy < wy,. Thus wu) is a positive
solution of (0.1), completing the proof of Theorem 1.2. O

REFERENCES

[1] Y. S. Choi, A singular boundary value problem arising from near-ignition analysis of flame
structures, Diff. Integral Eqns. 4 (1991), 891-895.

[2] R. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Anal. 27
(1996), 645-652.

[3] H. Dang and K. Schmitt, Ezistence of positive solutions for semilinear elliptic equations in
annular domains, Diff. Integral Eqns 7 (1994), 747-758.

[4] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value
problems, Nonlinear Anal.46 (2001), 979-986.

[5] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen (1964).

[6] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations, Nonlinear
Anal. 3 (1978), 263-309.

[7] F. H. Wong, Ezistence of positive solutions of singular boundary value problems, Nonlinear
Anal. 16 (1993), 397-406.

DANG DiNH HAI
DEPARTMENT OF MATHEMATICS, MISSISSIPPI STATE UNIVERSITY, MISSISSIPPI STATE, MS 39762,
USA

E-mail address: dang@math.msstate.edu



