Electronic Journal of Differential Equations, Vol. 2005(2005), No. 13, pp. 1-6. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR BOUNDARY-VALUE PROBLEMS

DANG DINH HAI

Abstract

This paper concerns the existence and multiplicity of positive solutions for Sturm-Liouville boundary-value problems. We use fixed point theorems and the sub-super solutions method to two solutions to the problem studied.

Introduction

Consider the boundary-value problem

$$
\begin{gather*}
L u=\lambda f(t, u), \quad 0<t<1 \\
\alpha u(0)-\beta u^{\prime}(0)=0, \quad \gamma u(1)+\delta u^{\prime}(1)=0, \tag{0.1}
\end{gather*}
$$

where $L u=-\left(r u^{\prime}\right)^{\prime}+q u, r, q \in C[0,1]$ with $r>0, q \geq 0$ on $[0,1], \alpha, \beta, \gamma, \delta \geq 0$ with $\alpha \delta+\alpha \gamma+\beta \gamma>0, f:(0,1) \times[0, \infty) \rightarrow[0, \infty)$, and λ is a positive parameter.

The existence and nonexistence of positive solutions of problem (0.1) with f possibly singular have been established by Choi [1], Dalmasso [2], Wong [7], and recently by Erbe and Mathsen [4]. In this paper, we shall obtain positive solutions to (0.1) under assumptions less stringent than in [4]. In particular, we do not need the condition that $f(t, u)$ be nondecreasing in u, which is essential in $[1,2,4,7]$. Our approach depends on fixed point theorems and sub-super solutions method.

1. Main results

Let $G(t, s)$ be the Green's function for (0.1). Then u is a solution of (0.1) if and only if

$$
u(t)=\lambda \int_{0}^{1} G(t, s) f(s, u(s)) d s
$$

Recall that

$$
G(t, s)= \begin{cases}c^{-1} \phi(t) \psi(s) & \text { if } t \leq s \\ c^{-1} \phi(s) \psi(t) & \text { if } t>s,\end{cases}
$$

where ϕ and ψ satisfy

$$
\begin{array}{ccc}
L \phi=0, & \phi(0)=\beta, & \phi^{\prime}(0)=\alpha \\
L \psi=0, & \psi(1)=\delta, & \psi^{\prime}(1)=-\gamma \tag{1.1}
\end{array}
$$

[^0]and $c=-r(t)\left(\phi(t) \psi^{\prime}(t)-\phi^{\prime}(t) \psi(t)\right)>0$. Note that $\phi^{\prime}>0$ on $(0,1], \psi^{\prime}<0$ on $[0,1)$.

We shall make the following assumptions:
(H1) $f:(0,1) \times[0, \infty) \rightarrow[0, \infty)$ is continuous
(H2) For each $M>0$, there exists a continuous function g_{M} on $(0,1)$ such that $f(t, u) \leq g_{M}(t)$ for $t \in(0,1), 0 \leq u \leq M$, and

$$
\int_{0}^{1} G(s, s) g_{M}(s) d s<\infty
$$

(H3) There exist an interval $I \subset(0,1)$ and a function $m \in L^{1}(I)$ with $m \geq 0$, $m \not \equiv 0$ such that for every $a>0$, there exists $r_{a}>0$ such that

$$
f(t, u) \geq a m(t) u \quad \text { for } t \in I, u \in\left(0, r_{a}\right)
$$

(H4) There exist an interval $J \subset(0,1)$ and a positive number d such that

$$
f(t, u) \geq d u \quad \text { for } t \in J, u \geq 0
$$

(H5) There exist an interval $I_{1} \subset(0,1)$ and a function $m_{1} \in L^{1}\left(I_{1}\right)$ with $m_{1} \geq$ $0, m_{1} \not \equiv 0$ such that for every $b>0$, there exists $R_{b}>0$ such that

$$
f(t, u) \geq b m_{1}(t) u \quad \text { for } t \in I_{1}, u \geq R_{b} .
$$

Our main results are stated as follows.
Theorem 1.1. Let (H1)-(H3) hold. Then there exists $\lambda_{0}>0$ such that (0.1) has a positive solution for $0<\lambda<\lambda_{0}$. If, in addition, (H5) holds, then (0.1) has at least two positive solutions for $0<\lambda<\lambda_{0}$.

Theorem 1.2. Let (H1)-(H4) hold. Then there exists $\lambda^{*}>0$ such that (0.1) has a positive solution for $0<\lambda<\lambda^{*}$ and no positive solution for $\lambda>\lambda^{*}$.

Remark 1.3. Let $f(t, u)=m(t) g(u)$, where $g:[0, \infty) \rightarrow[0, \infty)$ be continuous with $\lim _{u \rightarrow 0^{+}} \frac{g(u)}{u}=\infty, \lim _{u \rightarrow \infty} \frac{g(u)}{u}=\infty$, and $m \in L^{1}(0,1)$ with $m \geq 0, m \not \equiv 0$. Then f satisfies (H1)-(H3) and (H5) and therefore Theorem 1.1 applies. If we take $m(t)=$ $1 / \sqrt{t}, g(u)=u^{p}+u^{q}+h(u)$, where $p<1 \leq q$ and h is a nonnegative continuous function, then it is easily seen that $f(t, u)$ satisfies (H1)-(H5) and Theorem 1.2 applies. However, the results in $[1,2,4,7]$ may not apply since g may not be nondecreasing.

To prove our main results, we first establish the following results.
Lemma 1.4. Let $h \in L^{1}(0,1)$ be such that $h \geq 0$ and let u satisfy

$$
\begin{aligned}
L u & =h \quad \text { in }(0,1) \\
\alpha u(0)-\beta u^{\prime}(0) & =0, \quad \gamma u(1)+\delta u^{\prime}(1)=0 .
\end{aligned}
$$

Then

$$
u(t) \geq|u|_{o} p(t)
$$

where $p(t)=\min \left(\frac{\phi(t)}{|\phi|_{0}}, \frac{\psi(t)}{|\psi|_{0}}\right)$, and $\|\cdot\|_{0}$ denotes the supremum norm.
Proof. We proceed as in [3]. It is easy to see that

$$
u(t)=\int_{0}^{1} G(t, s) h(s) d s
$$

Let $|u|_{0}=u\left(t_{0}\right)$ for some $t_{0} \in(0,1)$. We verify that

$$
\frac{G(t, s)}{G\left(t_{0}, s\right)} \geq p(t)
$$

If $t, t_{0} \leq s$ then

$$
\frac{G(t, s)}{G\left(t_{0}, s\right)}=\frac{\phi(t)}{\phi\left(t_{0}\right)} \geq \frac{\phi(t)}{|\phi|_{0}}
$$

and if $t_{0} \leq s \leq t$ then

$$
\frac{G(t, s)}{G\left(t_{0}, s\right)}=\frac{\phi(s) \psi(t)}{\phi\left(t_{0}\right) \psi(s)} \geq \frac{\psi(t)}{\psi(s)} \geq \frac{\psi(t)}{|\psi|_{0}}
$$

since $\phi(s) \geq \phi\left(t_{0}\right)$. The other two cases are treated in a similar manner. Hence

$$
u(t) \geq p(t) u\left(t_{0}\right)=|u|_{o} p(t)
$$

Lemma 1.5. Let (H1)-(H3) hold. Then for each $\lambda>0$, there exists $c_{\lambda}>0$ such that if u is a nonzero solution of (0.1) then $|u|_{0} \geq c_{\lambda}$. Furthermore, $\left(c_{\lambda}\right)$ is nondecreasing in λ.

Proof. Let $p_{0}=\min _{t \in I} p(t)$, where p is defined in Lemma 1.4, and

$$
K=\int_{I} G\left(\frac{1}{2}, s\right) m(s) d s
$$

By (H3), there exists $r_{\lambda} \in(0,1)$ such that

$$
\frac{f(t, u)}{u} \geq \frac{2 m(t)}{\lambda p_{0} K} \quad \text { for } t \in I, 0<u<r_{\lambda}
$$

Define

$$
c_{\lambda}=\sup \left\{r \in(0,1): \frac{f(t, u)}{u} \geq \frac{2 m(t)}{\lambda p_{0} K} \text { for } t \in I, 0<u<r\right\}
$$

Then $0<c_{\lambda} \leq 1$ and

$$
\begin{equation*}
\frac{f(t, u)}{u} \geq \frac{2 m(t)}{\lambda p_{0} K} \quad \text { for } t \in I, 0<u \leq c_{\lambda} . \tag{1.2}
\end{equation*}
$$

Clearly $\left(c_{\lambda}\right)$ is nondecreasing in λ. Let u be a nonzero solution of (0.1) and suppose that $|u|_{0}<c_{\lambda}$. Using Lemma 1.4 and (1.2), we obtain

$$
\begin{aligned}
u(t) & =\lambda \int_{0}^{1} G(t, s) f(s, u(s)) d s \\
& \geq \lambda \int_{I} \frac{2 m(s)}{\lambda p_{0} K} G(t, s) u(s) d s \\
& \geq 2 K^{-1}|u|_{0} \int_{I} G(t, s) m(s) d s
\end{aligned}
$$

which implies

$$
\left.|u|_{0} \geq u\left(\frac{1}{2}\right) \geq 2 K^{-1}\left(\int_{I} G\left(\frac{1}{2}, s\right) m(s) d s\right)\right)|u|_{0}=2|u|_{0}
$$

a contradiction. This completes the proof.
Lemma 1.6. Let (H1), (H2), (H4) hold. Then (0.1) has no positive solution for λ large.

Proof. Let u be a positive solution of (0.1). Using (H4) and Lemma 1.4, we obtain

$$
u\left(\frac{1}{2}\right)=\lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) f(s, u(s)) d s \geq \lambda d \int_{J} G\left(\frac{1}{2}, s\right) u(s) d s \geq \lambda d C|u|_{0}
$$

where $C=\left(\min _{s \in J} p(s)\right)\left(\int_{J} G\left(\frac{1}{2}, s\right) d s\right)$, which implies $\lambda \leq(d C)^{-1}$.
The next Lemma establishes the existence of a solution once a pair of ordered sub- and supersolution are known, without assuming monotonicity of $f(t, u)$ in u.
Lemma 1.7. Let (H1), (H2) hold. Suppose that \underline{u} and \bar{u} in $C[0,1] \cap C^{1}(0,1)$ are sub- and supersolutions of (0.1) respectively with $0 \leq \underline{u} \leq \bar{u}$, i.e.,

$$
\begin{aligned}
L \underline{u}(t) & \leq \lambda f(t, \underline{u}) \quad \text { in }(0,1) \\
\alpha \underline{u}(0)-\beta \underline{u}^{\prime}(0) & \leq 0, \quad \gamma \underline{u}(1)+\delta \underline{u}^{\prime}(1) \leq 0
\end{aligned}
$$

and

$$
\begin{gathered}
L \bar{u}(t) \geq \lambda f(t, \bar{u}(t)) \quad \text { in }(0,1) \\
\alpha \bar{u}(0)-\beta \bar{u}^{\prime}(0) \geq 0, \quad \gamma \bar{u}(1)+\delta \bar{u}^{\prime}(1) \geq 0 .
\end{gathered}
$$

Then (0.1) has a solution u with $\underline{u} \leq u \leq \bar{u}$.
Proof. The proof is essentially given in [6], where nonsingular problems were considered. For convenience, we give a proof. Without loss of generality, we assume that $\lambda=1$. Define

$$
\bar{f}(t, v)= \begin{cases}f(t, \bar{u}(t))+\frac{\bar{u}(t)-v}{1+v^{2}} & \text { if } v>\bar{u}(t) \\ f(t, v) & \text { if } \underline{u}(t) \leq v \leq \bar{u}(t) \\ f(t, \underline{u}(t))+\frac{u(t)-v}{1+v^{2}} & \text { if } v \leq \underline{u}(t)\end{cases}
$$

For each $v \in C[0,1]$, let $u=T v$ be the solution of

$$
\begin{gathered}
L u=\bar{f}(t, v), \quad 0<t<1 \\
\alpha u(0)-\beta u^{\prime}(0)=0, \quad \gamma u(1)+\delta u^{\prime}(1)=0 .
\end{gathered}
$$

Then $T: C[0,1] \rightarrow C[0,1]$ is completely continuous. Since T is bounded, T has a fixed point u by the Schauder fixed point Theorem. We verify that $\underline{u} \leq u \leq \bar{u}$. Suppose to the contrary that there exists $t_{0} \in(0,1)$ such that $u\left(t_{0}\right)>\bar{u}\left(t_{0}\right)$. Let $w=u-\bar{u}$ and $t_{1} \in[0,1]$ be such that $w\left(t_{1}\right)=\max _{0 \leq t \leq 1} w(t)>0$. If $t_{1} \in(0,1)$ then $w^{\prime}\left(t_{1}\right)=0$ and $\left(r w^{\prime}\right)^{\prime}\left(t_{1}\right) \leq 0$, which implies that $\bar{L} w\left(t_{1}\right) \geq 0$. On the other hand,

$$
L w\left(t_{1}\right)=L u\left(t_{1}\right)-L \bar{u}\left(t_{1}\right) \leq-\frac{w\left(t_{1}\right)}{1+u^{2}\left(t_{1}\right)}<0
$$

a contradiction. Suppose that $t_{1}=0$. Then $w^{\prime}(0) \leq 0$, and since $\alpha w(0)-\beta w^{\prime}(0) \leq$ 0 , we have a contradiction if $\alpha>0$. If $\alpha=0$ then $\beta>0$ and therefore $w^{\prime}(0)=0$. Since $-\left(r w^{\prime}\right)^{\prime}(t)+q w(t) \equiv L w(t)<0$ for small $t>0$, it follows by integrating that $\left(r w^{\prime}\right)(t)>0$ and so $w^{\prime}(t)>0$ for small $t>0$, a contradiction. Similarly, we reach a contradiction if $t_{1}=1$. Hence $u \leq \bar{u}$ on $(0,1)$. The lower inequality can be derived in a similar manner.

In view of Lemmas 1.4 and 1.5, we see that u is a positive solution of (0.1) if and only if u is a solution of

$$
\begin{gather*}
L u=\lambda \tilde{f}(t, u), \quad 0<t<1 \\
\alpha u(0)-\beta u^{\prime}(0)=0, \quad \gamma u(1)+\delta u^{\prime}(1)=0 \tag{1.3}
\end{gather*}
$$

where $\tilde{f}(t, u(t))=f\left(t, \max \left(u(t), c_{\lambda} p(t)\right)\right.$, or equivalently, u is a fixed point of A_{λ}, where

$$
A_{\lambda} u(t)=\lambda \int_{0}^{1} G(t, s) \tilde{f}(s, u(s)) d s
$$

Note that $A_{\lambda}: C[0,1] \rightarrow C[0,1]$ is completely continuous (see [3]).
We are now in a position to prove our main result.
Proof of Theorem 1.1. Let

$$
\lambda_{0}=\left(\int_{0}^{1} G(s, s) g_{1}(s) d s\right)^{-1}
$$

and suppose that $0<\lambda<\lambda_{0}$, where g_{1} is defined in (H2). Let u be a solution of

$$
u=\theta A_{\lambda} u \quad \text { for some } \theta \in[0,1]
$$

We claim that $|u|_{0} \neq 1$. Indeed, if $|u|_{0}=1$ then since $c_{\lambda}|p|_{0} \leq c_{\lambda} \leq 1$, it follows from (H2) that $\tilde{f}(s, u(s)) \leq g_{1}(s)$, which implies

$$
1=|u|_{0} \leq \lambda \int_{0}^{1} G(s, s) g_{1}(s) d s<1
$$

for $\lambda<\lambda_{0}$, a contradiction, and the claim is proved. Hence the Leray-Schauder fixed point Theorem gives the existence of a fixed point u of A_{λ} with $|u|_{0}<1$.

Next, suppose that (H5) holds. We shall employ fixed point theorems in a cone to show the existence of a second solution. Let \mathbb{K} be the cone of nonnegative functions in $C[0,1]$. By the above arguments, we have

$$
u \in \mathbb{K} \text { and } u \leq A_{\lambda} u \Rightarrow|u|_{0} \neq 1
$$

Let

$$
b=2\left(\lambda p_{1} \int_{I_{1}} G\left(\frac{1}{2}, s\right) m_{1}(s) d s\right)^{-1},
$$

where $p_{1}=\min _{s \in I_{1}} p(s)$. By (H5), there exists $R_{b}>p_{1}$ such that

$$
\tilde{f}(s, u) \geq b m_{1}(s) u \quad \text { for } s \in I_{1}, u \geq R_{b} .
$$

We claim that

$$
u \in \mathbb{K} \text { and } u \geq A_{\lambda} u \Rightarrow|u|_{0} \neq R_{b} p_{1}^{-1}
$$

Suppose that $u \in \mathbb{K}$ and $u \geq A_{\lambda} u$. If $|u|_{0}=R_{b} p_{1}^{-1}$ then it follows from Lemma 1.4 that

$$
u(s) \geq R_{b} p_{1}^{-1} p(s) \geq R_{b} \quad \text { for } s \in I_{1}
$$

Hence

$$
\begin{aligned}
R_{b} p_{1}^{-1} & =|u|_{0} \geq u\left(\frac{1}{2}\right) \\
& \geq \lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) \tilde{f}(s, u(s)) d s \\
& \left.\geq b R_{b} \lambda\left(\int_{I_{1}} G\left(\frac{1}{2}, s\right)\right) m_{1}(s) d s\right)=2 R_{b} p_{1}^{-1}
\end{aligned}
$$

a contradiction, and the claim is proved. By Krasnoselskii's fixed point Theorem, [5], A_{λ} has a fixed point \tilde{u} in \mathbb{K} with $1<|\tilde{u}|_{0}<R_{b} p_{1}^{-1}$. This completes the proof

Proof of Theorem 1.2. Let Λ be the set of all $\lambda>0$ such that (0.1) has a positive solution and let $\lambda^{*}=\sup \Lambda$. By Theorem 1.1 and Lemma 1.6, $0<\lambda^{*}<\infty$. Let $0<\lambda<\lambda^{*}$. Then there exists $\lambda_{0}>0$ such that $\lambda<\lambda_{0}$ and $(0.1)_{\lambda_{0}}$ has a positive solution $u_{\lambda_{0}}$. Then $u_{\lambda_{0}}$ satisfies

$$
u_{\lambda_{0}}(t) \geq c_{\lambda_{0}} p(t) \geq c_{\lambda} p(t)
$$

and therefore

$$
\begin{aligned}
L u_{\lambda_{0}}(t) & =\lambda_{0} f\left(t, u_{\lambda_{0}}(t)\right) \\
& =\lambda_{0} f\left(t, \max \left(u_{\lambda_{0}}(t), c_{\lambda} p(t)\right)\right. \\
& \geq \lambda f\left(t, \max \left(u_{\lambda_{0}}(t), c_{\lambda} p(t)\right)\right. \\
& =\lambda \tilde{f}\left(t, u_{\lambda_{0}}(t)\right),
\end{aligned}
$$

i.e., $u_{\lambda_{0}}$ is a supersolution of (1.3). Since 0 is a subsolution of (1.3), it follows from Lemma 1.7 that (1.3) has a solution u_{λ} with $0 \leq u_{\lambda} \leq u_{\lambda_{0}}$. Thus u_{λ} is a positive solution of (0.1), completing the proof of Theorem 1.2.

References

[1] Y. S. Choi, A singular boundary value problem arising from near-ignition analysis of flame structures, Diff. Integral Eqns. 4 (1991), 891-895.
[2] R. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Anal. 27 (1996), 645-652.
[3] H. Dang and K. Schmitt, Existence of positive solutions for semilinear elliptic equations in annular domains, Diff. Integral Eqns 7 (1994), 747-758.
[4] L. H. Erbe and R. M. Mathsen, Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal. 46 (2001), 979-986.
[5] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen (1964).
[6] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations, Nonlinear Anal. 3 (1978), 263-309.
[7] F. H. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear Anal. 16 (1993), 397-406.

Dang Dinh Hai
Department of Mathematics, Mississippi State University, Mississippi State, MS 39762, USA

E-mail address: dang@math.msstate.edu

[^0]: 2000 Mathematics Subject Classification. 34B16, 34B18.
 Key words and phrases. Positive solutions; singular; sub-super solutions. © 2005 Texas State University - San Marcos.
 Submitted August 25, 2005. Published January 26, 2006.

