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POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR
BOUNDARY-VALUE PROBLEMS

DANG DINH HAI

Abstract. This paper concerns the existence and multiplicity of positive so-
lutions for Sturm-Liouville boundary-value problems. We use fixed point the-

orems and the sub-super solutions method to two solutions to the problem

studied.

Introduction
Consider the boundary-value problem

Lu = λf(t, u), 0 < t < 1

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
(0.1)

where Lu = −(ru′)′ + qu, r, q ∈ C[0, 1] with r > 0, q ≥ 0 on [0, 1], α, β, γ, δ ≥ 0
with αδ + αγ + βγ > 0, f : (0, 1)× [0,∞) → [0,∞), and λ is a positive parameter.

The existence and nonexistence of positive solutions of problem (0.1) with f
possibly singular have been established by Choi [1], Dalmasso [2], Wong [7], and
recently by Erbe and Mathsen [4]. In this paper, we shall obtain positive solutions
to (0.1) under assumptions less stringent than in [4]. In particular, we do not need
the condition that f(t, u) be nondecreasing in u, which is essential in [1, 2, 4, 7].
Our approach depends on fixed point theorems and sub-super solutions method.

1. Main results

Let G(t, s) be the Green’s function for (0.1). Then u is a solution of (0.1) if and
only if

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds.

Recall that

G(t, s) =

{
c−1φ(t)ψ(s) if t ≤ s

c−1φ(s)ψ(t) if t > s,

where φ and ψ satisfy

Lφ = 0, φ(0) = β, φ′(0) = α

Lψ = 0, ψ(1) = δ, ψ′(1) = −γ
(1.1)
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and c = −r(t)(φ(t)ψ′(t) − φ′(t)ψ(t)) > 0. Note that φ′ > 0 on (0, 1], ψ′ < 0 on
[0, 1).

We shall make the following assumptions:
(H1) f : (0, 1)× [0,∞) → [0,∞) is continuous
(H2) For each M > 0, there exists a continuous function gM on (0, 1) such that

f(t, u) ≤ gM (t) for t ∈ (0, 1), 0 ≤ u ≤M , and∫ 1

0

G(s, s)gM (s)ds <∞.

(H3) There exist an interval I ⊂ (0, 1) and a function m ∈ L1(I) with m ≥ 0,
m 6≡ 0 such that for every a > 0, there exists ra > 0 such that

f(t, u) ≥ am(t)u for t ∈ I, u ∈ (0, ra)

(H4) There exist an interval J ⊂ (0, 1) and a positive number d such that

f(t, u) ≥ du for t ∈ J, u ≥ 0.

(H5) There exist an interval I1 ⊂ (0, 1) and a function m1 ∈ L1(I1) with m1 ≥
0,m1 6≡ 0 such that for every b > 0, there exists Rb > 0 such that

f(t, u) ≥ bm1(t)u for t ∈ I1, u ≥ Rb.

Our main results are stated as follows.

Theorem 1.1. Let (H1)–(H3) hold. Then there exists λ0 > 0 such that (0.1) has
a positive solution for 0 < λ < λ0. If, in addition, (H5) holds, then (0.1) has at
least two positive solutions for 0 < λ < λ0.

Theorem 1.2. Let (H1)–(H4) hold. Then there exists λ∗ > 0 such that (0.1) has
a positive solution for 0 < λ < λ∗ and no positive solution for λ > λ∗.

Remark 1.3. Let f(t, u) = m(t)g(u), where g : [0,∞) → [0,∞) be continuous with
limu→0+

g(u)
u = ∞, limu→∞

g(u)
u = ∞, and m ∈ L1(0, 1) with m ≥ 0, m 6≡ 0. Then

f satisfies (H1)–(H3) and (H5) and therefore Theorem 1.1 applies. If we takem(t) =
1/
√
t, g(u) = up + uq + h(u), where p < 1 ≤ q and h is a nonnegative continuous

function, then it is easily seen that f(t, u) satisfies (H1)–(H5) and Theorem 1.2
applies. However, the results in [1, 2, 4, 7] may not apply since g may not be
nondecreasing.

To prove our main results, we first establish the following results.

Lemma 1.4. Let h ∈ L1(0, 1) be such that h ≥ 0 and let u satisfy

Lu = h in (0, 1)

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0.

Then
u(t) ≥ |u|0p(t),

where p(t) = min
(φ(t)
|φ|0 ,

ψ(t)
|ψ|0

)
, and ‖ · ‖0 denotes the supremum norm.

Proof. We proceed as in [3]. It is easy to see that

u(t) =
∫ 1

0

G(t, s)h(s)ds.
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Let |u|0 = u(t0) for some t0 ∈ (0, 1). We verify that

G(t, s)
G(t0, s)

≥ p(t).

If t, t0 ≤ s then
G(t, s)
G(t0, s)

=
φ(t)
φ(t0)

≥ φ(t)
|φ|0

,

and if t0 ≤ s ≤ t then
G(t, s)
G(t0, s)

=
φ(s)ψ(t)
φ(t0)ψ(s)

≥ ψ(t)
ψ(s)

≥ ψ(t)
|ψ|0

since φ(s) ≥ φ(t0). The other two cases are treated in a similar manner. Hence

u(t) ≥ p(t)u(t0) = |u|0p(t).
�

Lemma 1.5. Let (H1)–(H3) hold. Then for each λ > 0, there exists cλ > 0
such that if u is a nonzero solution of (0.1) then |u|0 ≥ cλ. Furthermore, (cλ) is
nondecreasing in λ.

Proof. Let p0 = mint∈I p(t), where p is defined in Lemma 1.4, and

K =
∫
I

G(
1
2
, s)m(s)ds.

By (H3), there exists rλ ∈ (0, 1) such that

f(t, u)
u

≥ 2m(t)
λp0K

for t ∈ I, 0 < u < rλ

Define

cλ = sup
{
r ∈ (0, 1) :

f(t, u)
u

≥ 2m(t)
λp0K

for t ∈ I, 0 < u < r
}
.

Then 0 < cλ ≤ 1 and
f(t, u)
u

≥ 2m(t)
λp0K

for t ∈ I, 0 < u ≤ cλ. (1.2)

Clearly (cλ) is nondecreasing in λ. Let u be a nonzero solution of (0.1) and suppose
that |u|0 < cλ. Using Lemma 1.4 and (1.2), we obtain

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≥ λ

∫
I

2m(s)
λp0K

G(t, s)u(s)ds

≥ 2K−1|u|0
∫
I

G(t, s)m(s)ds,

which implies

|u|0 ≥ u(
1
2
) ≥ 2K−1

( ∫
I

G(
1
2
, s)m(s)ds)

)
|u|0 = 2|u|0,

a contradiction. This completes the proof. �

Lemma 1.6. Let (H1), (H2), (H4) hold. Then (0.1) has no positive solution for
λ large.
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Proof. Let u be a positive solution of (0.1). Using (H4) and Lemma 1.4, we obtain

u
(1
2
)

= λ

∫ 1

0

G(
1
2
, s)f(s, u(s))ds ≥ λd

∫
J

G(
1
2
, s)u(s)ds ≥ λdC|u|0,

where C =
(
mins∈J p(s)

)( ∫
J
G( 1

2 , s)ds
)
, which implies λ ≤ (dC)−1. �

The next Lemma establishes the existence of a solution once a pair of ordered
sub- and supersolution are known, without assuming monotonicity of f(t, u) in u.

Lemma 1.7. Let (H1), (H2) hold. Suppose that u and ū in C[0, 1] ∩ C1(0, 1) are
sub- and supersolutions of (0.1) respectively with 0 ≤ u ≤ ū, i.e.,

Lu(t) ≤ λf(t, u) in (0, 1)

αu(0)− βu′(0) ≤ 0, γu(1) + δu′(1) ≤ 0

and

Lū(t) ≥ λf(t, ū(t)) in (0, 1)

αū(0)− βū′(0) ≥ 0, γū(1) + δū′(1) ≥ 0.

Then (0.1) has a solution u with u ≤ u ≤ ū.

Proof. The proof is essentially given in [6], where nonsingular problems were con-
sidered. For convenience, we give a proof. Without loss of generality, we assume
that λ = 1. Define

f̄(t, v) =


f(t, ū(t)) + ū(t)−v

1+ v2 if v > ū(t)
f(t, v) if u(t) ≤ v ≤ ū(t)
f(t, u(t)) + u(t)−v

1+v2 if v ≤ u(t).

For each v ∈ C[0, 1], let u = Tv be the solution of

Lu = f̄(t, v), 0 < t < 1

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0.

Then T : C[0, 1] → C[0, 1] is completely continuous. Since T is bounded, T has
a fixed point u by the Schauder fixed point Theorem. We verify that u ≤ u ≤ ū.
Suppose to the contrary that there exists t0 ∈ (0, 1) such that u(t0) > ū(t0). Let
w = u − ū and t1 ∈ [0, 1] be such that w(t1) = max0≤t≤1 w(t) > 0. If t1 ∈ (0, 1)
then w′(t1) = 0 and (rw′)′(t1) ≤ 0, which implies that Lw(t1) ≥ 0. On the other
hand,

Lw(t1) = Lu(t1)− Lū(t1) ≤ −
w(t1)

1 + u2(t1)
< 0,

a contradiction. Suppose that t1 = 0. Then w′(0) ≤ 0, and since αw(0)−βw′(0) ≤
0, we have a contradiction if α > 0. If α = 0 then β > 0 and therefore w′(0) = 0.
Since −(rw′)′(t) + qw(t) ≡ Lw(t) < 0 for small t > 0, it follows by integrating that
(rw′)(t) > 0 and so w′(t) > 0 for small t > 0, a contradiction. Similarly, we reach a
contradiction if t1 = 1. Hence u ≤ ū on (0, 1). The lower inequality can be derived
in a similar manner. �

In view of Lemmas 1.4 and 1.5, we see that u is a positive solution of (0.1) if
and only if u is a solution of

Lu = λf̃(t, u), 0 < t < 1

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,
(1.3)
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where f̃(t, u(t)) = f(t,max(u(t), cλp(t)), or equivalently, u is a fixed point of Aλ,
where

Aλu(t) = λ

∫ 1

0

G(t, s)f̃(s, u(s))ds

Note that Aλ : C[0, 1] → C[0, 1] is completely continuous (see [3]).
We are now in a position to prove our main result.

Proof of Theorem 1.1. Let

λ0 =
( ∫ 1

0

G(s, s)g1(s)ds
)−1

and suppose that 0 < λ < λ0, where g1 is defined in (H2). Let u be a solution of

u = θAλu for some θ ∈ [0, 1].

We claim that |u|0 6= 1. Indeed, if |u|0 = 1 then since cλ|p|0 ≤ cλ ≤ 1, it follows
from (H2) that f̃(s, u(s)) ≤ g1(s), which implies

1 = |u|0 ≤ λ

∫ 1

0

G(s, s)g1(s)ds < 1

for λ < λ0, a contradiction, and the claim is proved. Hence the Leray-Schauder
fixed point Theorem gives the existence of a fixed point u of Aλ with |u|0 < 1.

Next, suppose that (H5) holds. We shall employ fixed point theorems in a cone to
show the existence of a second solution. Let K be the cone of nonnegative functions
in C[0, 1]. By the above arguments, we have

u ∈ K and u ≤ Aλu ⇒ |u|0 6= 1.

Let

b = 2
(
λp1

∫
I1

G
(1
2
, s

)
m1(s)ds

)−1

,

where p1 = mins∈I1 p(s). By (H5), there exists Rb > p1 such that

f̃(s, u) ≥ bm1(s)u for s ∈ I1, u ≥ Rb.

We claim that
u ∈ K and u ≥ Aλu ⇒ |u|0 6= Rbp

−1
1

Suppose that u ∈ K and u ≥ Aλu. If |u|0 = Rbp
−1
1 then it follows from Lemma 1.4

that
u(s) ≥ Rbp

−1
1 p(s) ≥ Rb for s ∈ I1.

Hence

Rbp
−1
1 = |u|0 ≥ u

(1
2
)

≥ λ

∫ 1

0

G
(1
2
, s

)
f̃(s, u(s))ds

≥ bRbλ
( ∫

I1

G
(1
2
, s)

)
m1(s)ds

)
= 2Rbp−1

1 ,

a contradiction, and the claim is proved. By Krasnoselskii’s fixed point Theorem,
[5], Aλ has a fixed point ũ in K with 1 < |ũ|0 < Rbp

−1
1 . This completes the

proof �
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Proof of Theorem 1.2. Let Λ be the set of all λ > 0 such that (0.1) has a positive
solution and let λ∗ = supΛ. By Theorem 1.1 and Lemma 1.6, 0 < λ∗ < ∞. Let
0 < λ < λ∗. Then there exists λ0 > 0 such that λ < λ0 and (0.1)λ0

has a positive
solution uλ0 . Then uλ0 satisfies

uλ0(t) ≥ cλ0p(t) ≥ cλp(t),

and therefore

Luλ0(t) = λ0f(t, uλ0(t))

= λ0f(t,max(uλ0(t), cλp(t))

≥ λf(t,max(uλ0(t), cλp(t))

= λf̃(t, uλ0(t)),

i.e., uλ0 is a supersolution of (1.3). Since 0 is a subsolution of (1.3), it follows from
Lemma 1.7 that (1.3) has a solution uλ with 0 ≤ uλ ≤ uλ0 . Thus uλ is a positive
solution of (0.1), completing the proof of Theorem 1.2. �
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