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WEAK SOLUTIONS FOR A STRONGLY-COUPLED NONLINEAR
SYSTEM

OSMUNDO A. LIMA, ALDO T. LOURÊDO, ALEXANDRO O. MARINHO

Abstract. In this paper the authors study the existence of local weak solu-

tions of the strongly nonlinear system

u′′ +Au + f(u, v)u = h1

v′′ +Av + g(u, v)v = h2

where A is the pseudo-Laplacian operator and f , g, h1 and h2 are given

functions.

1. Introduction

Let Ω be an open and bounded subset in Rn with smooth boundary Γ and let
T be a positive real number. In the cylinder Q = Ω×]0, T [, with lateral boundary∑

= Γ×]0, T [, we consider the nonlinear system

u′′ +Au+ f(u, v)u = h1

v′′ +Av + g(u, v)v = h2

u(0) = u0, v(0) = v0, u′(0) = u1, v′(0) = v1

u = v = 0 on Σ = Γ×]0, T [

(1.1)

where

Au = −
n∑

i=1

∂

∂xi

(∣∣ ∂u
∂xi

|p−2 ∂u

∂xi

)
, p > 2,

is the pseudo-Laplacian operator, f is a continuous function in the first variable and
Lipschitz in the second variable and g is a Lipschitz’s function in the first variable
and continuous in the second variable, with f(0, 0) = g(0, 0) = 0 and u0, v0, u1, v1,
h1 and h2 are given functions.

When p ≥ 2, many authors studied the system (1.1). For instance, we can
mention: Segal [11], where the physical meaning of (1.1) is presented, Medeiros
and Menzala [9], Medeiros and M. Miranda [10], Castro [3], Biazutti [1] and more
recently, Clark and Lima [6] showed the existence, a local solution and its uniqueness
for the system

u′′ −∆u+ f(u, v)u = h1 in Q = Ω× (0, T )
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v′′ −∆u+ g(u, v)v = h2 in Q

u(0) = u0, u′(0) = u1 in Ω

v(0) = v0, v′(0) = v1 in Ω

u = 0, v = 0 on Σ = Γ× (0, T ),

where the functions f and g satisfying the same conditions of the problem (1.1).
Castro [3] showed the existence of solution for the system

u′′ +Au−∆u′ + |v|ρ+2|u|ρu = f1 in Q

v′′ +Av −∆v′ + |u|ρ+2|v|ρv = f2 in Q

u(0) = u0, u′(0) = u1 in Ω

v(0) = v0, v′(0) = v1 in Ω
u = 0, v = 0 on Σ,

whereA is the pseudo-Laplacian operator. We can show that the functions f(u, v) =
|u|ρ+2|v|ρ and g(u, v) = |v|ρ+2|u|ρ, ρ ≥ −1, satisfy the conditions of the system
(1.1). Consequently the above system, without the dissipations ∆u′ and ∆v′, is
a particular case of (∗). Thus, we see that (1.1) generalizes the above mentioned
problems.

To show the existence of a local solution for (1.1), we encounter following tech-
nical difficulties:

(i) The choices of the functional spaces;
(ii) In the a priori estimate for u′′m, we had that to use the projection operator,

since, to derive the approximated equation we will have much technical
difficulties because of the pseudo-Laplacian operator in the equation;

(iii) In the passage to the limit, we use strongly the fact that A is a monotonic
and hemicontinuous operator.

We remark that these difficulties do not appear in [6].

Notation. We represent the Sobolev space of order m in Ω by

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)∀|α| ≤ m},

with the norm

‖u‖m,p =
( ∑
|α|≤m

|Dαu|pLp(Ω)

)1/p

, u ∈Wm,p(Ω), 1 ≤ p <∞.

Let D(Ω) be the space of test functions in Ω and by Wm,p
0 (Ω) we represent the

closure of D(Ω) in Wm,p(Ω). The dual space of Wm,p
0 (Ω) is denoted by W−m,p′(Ω)

with p′ is such that 1
p + 1

p′ = 1. We use the symbols (·, ·) and | · |, to indicate the
inner product and the norm in L2(Ω). We use 〈·, ·〉W−1,p(Ω),W 1,p

0 (Ω) to indicate the

duality between W−1,p′(Ω) and W 1,p
0 (Ω) and ‖ · ‖0 to indicate the norm W 1,p

0 (Ω).
The pseudo-Laplacian operator A is such that

A : W 1,p
0 (Ω) → W−1,p′(Ω)
u 7→ Au

and it satisfies the following properties:
• A is monotonic, that is, 〈Au−Av, u− v〉 ≥ 0,∀u, v ∈W 1,p

0 (Ω);
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• A is hemicontinuous, that is, for each u, v, w ∈ W 1,p
0 (Ω) the function λ 7→

〈A(u+ λv), w〉 is continuous in R;
• 〈Au(t), u(t)〉W−1,p′ (Ω)×W 1,p

0 (Ω) = ‖u‖p
0;

• 〈Au(t), u′(t)〉W−1,p′ (Ω)×W 1,p
0 (Ω) = 1

p
d
dt‖u‖

p
0,

d
dt =′;

• ‖Au(t)‖W−1,p′ (Ω) ≤ C‖u‖p−1
0 , where C is a constant;

We will use the same notation for the operator P and its restrictions, as well as for
the operator P ∗.

The next lemma plays a central role in the proof of the Existence Theorem. Its
proof can be found in [6].

Lemma 1.1. Let φ be a positive real function, α, β and γ, positive real constants,
with γ > 1, such that

φ(t) ≤ α+ β

∫ t

0

{
φ(s) + φγ(s)

}
ds.

Then, there exists T0 ∈ R, with 0 < T0 < T , such that φ is bounded in [0, T0[.

Definition. A local weak solution of the problem (1.1) is a pair of functions
u = u(x, t), v = v(x, t) defined for all (x, t) ∈ QT0 = Ω× (0, T0), and T0 > 0 fixed,
satisfying

u, v ∈ L∞(0, T0;W
1,p
0 (Ω));

u′, v′ ∈ L∞(0, T0;L2(Ω));
d

dt
(u′, w) + 〈Au,w〉+ 〈f(u, v)u,w〉 =

(
h1, w

)
,∀w ∈W 1,p

0 (Ω)in D′(0, T0);

d

dt
(v′, w) + 〈Av, w〉+ 〈g(u, v)v, w〉 =

(
h2, w

)
, ∀w ∈W 1,p

0 (Ω) in D′(0, T0);

u(0) = u0, u′(0) = u1, v(0) = v0, v′(0) = v1.

2. Existence Results

Theorem 2.1. Let f and g be functions of two variables such that f is continuous
in the first variable and Lipschitz in the second variable and g is Lipschitz in the
first and continuous in the second variable, with f(0, 0) = g(0, 0) = 0.

h1, h2 ∈ L2(0, T ;L2(Ω)); (2.1)

u0, v0 ∈W 1,p
0 (Ω); (2.2)

u1, v1 ∈ L2(Ω). (2.3)

Then it exists T0 > 0, T0 ∈ R and functions u : QT0 → R and v : QT0 → R
satisfying

u, v ∈ L∞(0, T0;W
1,p
0 (Ω)); (2.4)

u′, v′ ∈ L∞(0, T0;L2(Ω)); (2.5)
d

dt
(u′, w) + 〈Au,w〉+ 〈f(u, v)u,w〉 =

(
h1, w

)
, ∀w ∈W 1,p

0 (Ω), in D′(0, T0);

(2.6)
d

dt
(v′, w) + 〈Av, w〉+〉g(u, v)v, w〉 =

(
h2, w

)
, ∀w ∈W 1,p

0 (Ω), in D′(0, T0); (2.7)

u(0) = u0, v(0) = v0; (2.8)
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u′(0) = u1, v′(0) = v1. (2.9)

The main tools in the proof of this theorem are the Faedo-Galerkin method and
compactness arguments. Let Hs

0(Ω), with s > m = n
(

1
2 −

1
p

)
+ 1 a separable

Hilbert space such that Hs
0(Ω) ↪→ W 1,p

0 (Ω), is a continuous and dense immersion.
In Hs

0(Ω), there exists a complete orthonormal hilbertian base {wj}j∈N in L2(Ω).
We consider Vm = [w1, . . . , wm] the subspace of Hs

0(Ω) generated by the m first
vectors of the base {wj}j∈N. Also, we have the following chain of continuous and
dense immersions.

Hs
0(Ω) ↪→W 1,p

0 (Ω) ↪→ L2(Ω) ↪→W−1,p′(Ω) ↪→ H−s(Ω). (2.10)

We will divide the proof in three steps: (i) Approximated Problem, (ii) A Priori
Estimates I and (iii) A Priori Estimates II.

Approximated Problem. We want to find um(t), vm(t) in Vm satisfying the ap-
proximated problem.

(u′′m(t), w) + 〈Aum(t), w〉+ 〈f(um(t), vm(t))um(t), w〉 = (h1(t), w), (2.11)

(v′′m(t), w) + 〈Avm(t), w〉+ 〈g(um(t), vm(t))vm(t), w〉 = (h2(t), w), (2.12)

for all w ∈ Vm; and
um(0) = u0m, u′m(0) = u1m,

vm(0) = v0m, v′m(0) = v1m;
(2.13)

So that

u0m → u0, v0m → v0, in W 1,p
0 (Ω);

u1m → u1, v1m → v1, in L2(Ω).

It can be shown that the above system satisfies the Caracthodory’s conditions;
therefore there exists solutions um(t), vm(t) in [0, tm), tm < T satisfying (2.11)–
(2.13).

A priori estimates I. Let us consider w = 2u′m(t) in (2.11). It follows that

2(u′′m(t), u′m(t)) + 2〈Aum(t), u′m(t)〉+ 2〈f(um(t), vm(t))um(t), u′m(t)〉
= (h1(t), u′m(t)).

Thus
d

dt
|u′m(t)|2 +

2
p

d

dt
‖um(t)‖p

0 = 2(h1(t), u′m(t))− 2〈f(um(t), vm(t))um(t), u′m(t)〉.

Similarly, setting w = 2v′m(t) in (2.12) it follows that
d

dt
|v′m(t)|2 +

2
p

d

dt
‖vm(t)‖p

0 = 2(h2(t), v′m(t))− 2〈g(um(t), vm(t))um(t), v′m(t)〉.

Summing the two equalities above, then integrating from 0 to t, t < tm, and using
the Cauchy-Schwarz’s inequality and ab ≤ a2+b2

2 , we obtain

|u′m(t)|2 + |v′m(t)|2 +
2
p
‖um(t)‖p

0 +
2
p
‖vm(t)‖p

0

≤ |u′m(0)|2 + |v′m(0)|2 +
2
p
‖um(0)‖p

0 +
2
p
‖vm(0)‖p

0

+ 2
∫ t

0

∫
Ω

|f(um(s), vm(s))||um(s)||u′m(s)|ds
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+ 2
∫ t

0

∫
Ω

|g(um(s), vm(s))||vm(s)||v′m(s)|ds

+
∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds+

∫ T

0

(
|h1(t)|2 + |h2(t)|2

)
dt.

From (2.1), (2), and (2), it follows that

|u′m(t)|2 + |v′m(t)|2 +
2
p
‖um(t)‖p

0 +
2
p
‖vm(t)‖p

0

≤ C +
∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds

+ 2
∫ t

0

|f(um(s), vm(s))||um(s)||u′m(s)|ds

+ 2
∫ t

0

|g(um(s), vm(s))||vm(s)||v′m(s)|ds.

(2.14)

From the Sobolev immersions it is well known that

W 1,p
0 (Ω) ↪→ Lq(Ω), ∀1 ≤ q ≤ np

n− p
.

Let α, β > 0, such that 1
α + 1

β + 1
2 = 1, with 1 ≤ α, β ≤ np

n−p .

Now, using Holder and Young inequalities, the inequality ab ≤ a2+b2

2 and the
hypothesis over f , we have

2
∫ t

0

∫
Ω

|f(um(s), vm(s))||um(s)||u′m(s)|ds

≤ C

∫ t

0

∫
Ω

|vm(s)||um(s)||u′m(s)|ds

≤ C

∫ t

0

( ∫
Ω

|vm(s)|α
) 1

α
( ∫

Ω

|um(s)|β
) 1

β
( ∫

Ω

|u′m(s)|2
)2

= C

∫ t

0

|vm(s)|Lα(Ω)|um(s)|Lβ(Ω)|u′m(s)|L2(Ω)ds

≤ C

∫ t

0

{1
p
|vm(s)|pLα(Ω) +

p− 1
p

|um(s)|
p

p−1

Lβ(Ω)

}
|u′m(s)|L2(Ω)ds

≤ C

∫ t

0

{1
p
|vm(s)|pLα(Ω) +

1
p
|um(s)|

p
p−1 (p−1)

Lβ(Ω)
+
p− 2
p− 1

}
|u′m(s)|L2(Ω)ds

= C

∫ t

0

{1
p
|vm(s)|pLα(Ω) +

1
p
|um(s)|p

Lβ(Ω)
+
p− 2
p− 1

}
|u′m(s)|L2(Ω)ds

≤ C

∫ t

0

{1
p
|vm(s)|pLα(Ω) +

1
p
|um(s)|p

Lβ(Ω)
+
p− 2
p− 1

}2

+ |u′m(s)|2L2(Ω)ds

≤ C

∫ t

0

{ 1
p2
|vm(s)|2p

Lα(Ω) +
1
p2
|um(s)|2p

Lβ(Ω)
+

(p− 2
p− 1

)2 + |u′m(s)|2L2(Ω)

}
ds

≤ C

∫ t

0

{ 1
p2
|vm(s)|2p

Lα(Ω) +
1
p2
|um(s)|2p

Lβ(Ω)
+ 1 + |u′m(s)|2L2(Ω)

}
ds.
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Since W 1,p
0 (Ω) ↪→ Lα(Ω) and W 1,p

0 (Ω) ↪→ Lβ(Ω), it follows that

2
∫ t

0

∫
Ω

|f(um(s), vm(s))||um(s)||u′m(s)|ds

≤ C

∫ t

0

{ 1
p2
‖vm(s)‖2p

0 +
1
p2
‖um(s)‖2p

0 + 1 + |u′m(s)|2L2(Ω)

}
ds.

(2.15)

Similarly, we have

2
∫ t

0

∫
Ω

|g(um(s), vm(s))||vm(s)||v′m(s)|ds

≤ C

∫ t

0

{ 1
p2
‖um(s)‖2p

0 +
1
p2
‖vm(s)‖2p

0 + 1 + |v′m(s)|2L2(Ω)

}
ds.

(2.16)

Substituting, (2.15) and (2.16) in (2.14),

|u′m(t)|2 + |v′m(t)|2 +
2
p
‖um(t)‖p

0 +
2
p
‖vm(t)‖p

0

≤ C + C

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds+ C

∫ t

0

{
‖um(s)‖2p

0 + ‖vm(s)‖2p
0

}
+ C

∫ t

0

2 ds

≤ C + C

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds+ C

∫ t

0

{
‖um(s)‖2p

0 + ‖vm(s)‖2p
0

}
+ C

∫ T

0

2 ds

≤ C + C

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds+ C

∫ t

0

{
‖um(s)‖2p

0 + ‖vm(s)‖2p
0

}
.

(2.17)

Note that
2
p
|u′m(t)|2 +

2
p
|v′m(t)|2 +

2
p
‖um(t)‖p

0 +
2
p
‖vm(t)‖p

0

≤ |u′m(t)|2 + |v′m(t)|2 +
2
p
‖um(t)‖p

0 +
2
p
‖vm(t)‖p

0,

with p > 2, It follows that

|u′m(t)|2 + |v′m(t)|2 + ‖um(t)‖p
0 + ‖vm(t)‖p

0

≤ C + C

∫ t

0

(
|u′m(s)|2 + |v′m(s)|2

)
ds+ C

∫ t

0

{
‖um(s)‖2p

0 + ‖vm(s)‖2p
0

}
≤ C + C

∫ t

0

{(
|u′m(s)|2 + |v′m(s)|2

)2 +
(
‖um(s)‖p

0 + ‖vm(s)‖p
0

)2

+ 2
(
|u′m(s)|2 + |v′m(s)|2

)(
‖um(s)‖p

0 + ‖vm(s)‖p
0

)}
ds

+ C

∫ t

0

{
|u′m(s)|2 + |v′m(s)|2 + ‖um(s)‖p

0 + ‖vm(s)‖p
0

}
ds

= C + C

∫ t

0

{
|u′m(s)|2 + |v′m(s)|2 + ‖um(s)‖p

0 + ‖vm(s)‖p
0

}2
ds
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+ C

∫ t

0

{
|u′m(s)|2 + |v′m(s)|2 + ‖um(s)‖p

0 + ‖vm(s)‖p
0

}
ds.

By setting
φ(t) = |u′m(t)|2 + |v′m(t)|2 + ‖um(t)‖p

0 + ‖vm(t)‖p
0,

the above inequality can be rewritten as

φ(t) ≤ C + C

∫ t

0

{
φ(s) + φ2(s)

}
ds. (2.18)

Then, by Lemma 1.1, there exists T0 ∈ R, with 0 < T0 < T , such that φ is bounded
in [0, T0). From this, we have

|u′m(t)|2 + |v′m(t)|2 + ‖um(t)‖p
0 + ‖vm(t)‖p

0 ≤ C ∀t ∈ [0, T0), ∀m ∈ N. (2.19)

Therefore, by prolongation results, we can extend the solutions um(t), vm(t), to the
interval [0, T0].

We will estimate, now, the second derivatives u′′m(t), v′′m(t). Since the procedure,
to estimates u′′m(t) and v′′m(t) are similar, we will fix our attention only on bounding
u′′m(t).

2.1. A priori Estimates II. Let Pm : L2(Ω) → Vm ⊂ L2(Ω) be

Pm(h) =
m∑

j=1

(h,wj)wj ,

the projection operator on L2(Ω). Observe that Pm = P ∗m and Pm ∈ L(Hs
0(Ω)).

Now, by the approximate equation (2.12),

(u′′m(t), w) + 〈Aum(t), w〉+ 〈f(um(t), vm(t))um(t), w〉 = (h1(t), w) (2.20)

for all w ∈ Vm. By the chain of immersions (2.10) we have

〈u′′m(t) +Aum(t) + f(um(t), vm(t))um(t)− h1(t), w〉H−s(Ω),Hs
0 (Ω) = 0,

for all w ∈ Vm. From this equality and the fact that Pmw = w,∀w ∈ Vm, we have

P ∗m(u′′m(t) +Aum(t) + f(um(t), vm(t))um(t)− h1(t)) = 0

in Vm. From this, by the linearity of P ∗m, the fact that u′′m ∈ Vm, and by the
continuous and dense immersions, we have

u′′m(t) = −P ∗m(Aum(t))− P ∗m(f(um(t), vm(t))um(t)) + P ∗m(h1(t))

in H−s(Ω). Thus

‖u′′m(t)‖H−s(Ω) ≤ ‖P ∗m(f(um(t), vm(t))um(t))‖H−s(Ω)

+ ‖P ∗m(Aum(t))‖H−s(Ω) + ‖P ∗m(h1(t))‖H−s(Ω)

With Pm ∈ L(Hs
0(Ω)) which implies P ∗m ∈ L(H−s(Ω)). Since W−1,p′(Ω) ↪→

H−s(Ω), it follows that P ∗m ∈ L(W−1,p′(Ω),H−s(Ω)), Then

‖P ∗m(Aum(t))‖H−s(Ω) ≤ C‖(Aum(t))‖W−1,p′ (Ω) ≤ C‖um(t)‖p−1
0 . (2.21)

Since, L2(Ω) ↪→ H−s(Ω), we have P ∗m ∈ L(L2(Ω),H−s(Ω). Furthermore,

‖P ∗m(h1(t))‖H−s(Ω) ≤ C|h1(t)|L2(Ω). (2.22)

Now, to bound the term ‖P ∗m(f(um(t), vm(t))um(t))‖H−s(Ω), it is necessary to place
f(um(t), vm(t))um(t) in some space contained in H−s(Ω). Let γ, θ ∈ [1, np

n−p ], such
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that 1
γ + 1

θ = 1. Since W 1,p
0 (Ω) ↪→ Lq(Ω) for 1 ≤ q ≤ np

n−p , we have, in particular
W 1,p

0 (Ω) ↪→ Lγ(Ω). Therefore,(
Lγ(Ω)

)′
↪→W−1,p′(Ω).

From the chain of immersions (2.10), we have W−1,p′(Ω) ↪→ H−s(Ω), from where

Lθ(Ω) =
(
Lγ(Ω)

)′
↪→ H−s(Ω) (2.23)

Now, it is sufficient to show that f(um(t), vm(t))um(t) ∈ Lθ(Ω). From the Hölder
inequality and the hypothesis on f we have∫

Ω

|f(um(s), vm(s))um(s)|θdx =
∫

Ω

|f(um(s), vm(s))|θ|um(s)|θdx

≤ Cθ
f

∫
Ω

|vm(s))|θ|um(s)|θdx

≤ Cθ
f

( ∫
Ω

|vm(s))|α
′θ

)1/α′( ∫
Ω

|um(s))|β
′θ

) 1
β′
,

(2.24)
where Cf is the Lipschitz constant, associated f and 1

α′ + 1
β′ = 1.

If θα′ ≤ np
n−p and θβ′ ≤ np

n−p , then

θ ≤ 1
α′

np

(n− p)
, and θ ≤ 1

β′
np

(n− p)
,

from which,

2θ ≤
( 1
α′

+
1
β′

) np

n− p
.

Then, we have
1 ≤ θ ≤ np

2(n− p)
<

np

n− p
.

Noticing that W 1,p
0 (Ω) ↪→ Lθα′(Ω) and W 1,p

0 (Ω) ↪→ Lθβ′(Ω), we have∫
Ω

|f(um(s), vm(s))um(s)|θdx ≤ Cθ
f |vm(t)|θ

Lα′θ |um(t)|θ
Lβ′θ ≤ C‖um(t)‖θ

0‖vm(t)‖θ
0.

From this estimate and (2.19), it follows∫
Ω

|f(um(s), vm(s))um(s)|θdx <∞; (2.25)

that is,

f(um(t), vm(t))um(t) ∈ Lθ(Ω) =
(
Lγ(Ω)

)′
, for 1 ≤ θ ≤ np

2(n− p)
, (2.26)

and
‖f(um(t), vm(t))um(t)‖Lθ(Ω) ≤ C, ∀m, t ∈ [0, T0] (2.27)

Similarly, we have

‖g(um(t), vm(t))vm(t)‖Lθ(Ω) ≤ C, ∀m, t ∈ [0, T0] (2.28)

We will also need that f(um(t), vm(t))u2
m(t) ∈ Lθ(Ω). In fact, by Hölder inequal-

ity, ∫
Ω

|f(um(s), vm(s))u2
m(s)|θdx
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=
∫

Ω

|f(um(s), vm(s))|θ|u2
m(s)|θdx

≤ Cθ
f

∫
Ω

|vm(s))|θ|um(s)|θ|um(s)|θdx

≤ Cθ
f

( ∫
Ω

|vm(s))|ξθ
) 1

ξ
( ∫

Ω

|um(s))|δθ
)1/δ( ∫

Ω

|um(s))|ωθ
)1/ω

,

where Cf is the Lipschitz constant, associated to f and 1
δ + 1

ω + 1
ξ = 1. If θξ ≤ np

n−p ,
θδ ≤ np

n−p and θω ≤ np
n−p then

θ ≤ 1
ξ

np

n− p
, θ ≤ 1

δ

np

n− p
, θ ≤ 1

ω

np

n− p

which implies

3θ ≤
(1
ξ

+
1
δ

+
1
ω

) np

n− p
.

Then
1 ≤ θ ≤ np

3(n− p)
<

np

n− p
.

Observing that W 1,p
0 (Ω) ↪→ Lθξ(Ω) , W 1,p

0 (Ω) ↪→ Lθδ(Ω) and W 1,p
0 (Ω) ↪→ Lθω(Ω),

it follows that∫
Ω

|f(um(s), vm(s))u2
m(s)|θdx ≤ Cθ

f |vm(t)|θLξθ |um(t)|θLωθ |um(t)|θLδθ

≤ C‖um(t)‖2θ
0 ‖vm(t)‖θ

0.

(2.29)

This estimate and (2.19) lead us to∫
Ω

|f(um(s), vm(s))u2
m(s)|θdx <∞;

that is,

f(um(t), vm(t))u2
m(t) ∈ Lθ(Ω) =

(
Lγ(Ω)

)′
, for 1 ≤ θ ≤ np

3(n− p)
, (2.30)

‖f(um(t), vm(t))u2
m(t)‖Lθ(Ω) ≤ C, ∀m, t ∈ [0, T0] (2.31)

Similarly, we have

‖g(um(t), vm(t))v2
m(t)‖Lθ(Ω) ≤ C, ∀m, t ∈ [0, T0] (2.32)

Note that if θ ≤ np
3(n−p) , we still have (2.26) and (2.30), because np

3(n−p) <
np

2(n−p) .
Thus, as Lθ(Ω) ↪→ H−s(Ω), we have that P ∗m ∈ L(Lθ(Ω),H−s(Ω)). Therefore

‖P ∗m(f(um(t), vm(t))um(t))‖H−s(Ω) ≤ C‖f(um(t), vm(t))um(t)‖Lθ(Ω). (2.33)

Hence, from the estimates (2.21), (2.22) and (2.33). we have

‖u′′m(t)‖H−s(Ω) ≤ C
{
‖um(t)‖p−1

0 + ‖f(um(t), vm(t))um(t)‖Lθ(Ω) + |h1(t)|
}
.

From this inequality, it results∫ T0

0

‖u′′m(t)‖2
H−s(Ω)dt ≤ C

{ ∫ T0

0

‖um(t)‖2(p−1)
0 dt+

∫ T0

0

|h1(t)|2dt

+
∫ T0

0

‖f(um(t), vm(t))um(t)‖2
Lθ(Ω)dt

}
.
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Therefore, from (2.17), (2.25) and (2.1), we conclude that

‖u′′m(t)‖L2(0,T0;H−s(Ω) ≤ C, ∀m ∈ N. (2.34)

Arguing in a similar way, one can deduce that

‖v′′m(t)‖L2(0,T0;H−s(Ω) ≤ C,∀m ∈ N. (2.35)

From (2.19), we have

‖um(t)‖0 ≤ C and ‖vm(t)‖0 ≤ C, ∀m, t ∈ [0, T0].

|u′m(t)| ≤ C and |v′m(t)| ≤ C, ∀m, t ∈ [0, T0].

From where, it follows that ess supt∈[0,T0] ‖um(t)‖0 ≤ C; that is

‖um‖L∞(0,T0;W
1,p
0 (Ω)) ≤ C, ∀m ∈ N. (2.36)

Similarly, we have

‖vm‖L∞(0,T0;W
1,p
0 (Ω)) ≤ C, ∀m ∈ N; (2.37)

‖u′m‖L∞(0,T0;L2(Ω)) ≤ C, ∀m ∈ N; (2.38)

‖v′m‖L∞(0,T0;L2(Ω)) ≤ C, ∀m ∈ N; (2.39)

Therefore, from (2.27), (2.28), (2.31), (2.32), (2.34), (2.35), (2.36), (2.37), (2.38),
(2.39), we have

(um)m, (vm)m are bounded in L∞(0, T0;W
1,p
0 (Ω)); (2.40)

(u′m)m, (v′m)m are bounded in L∞(0, T0;L2(Ω)); (2.41)

(u′′m)m, (v′′m)m are bounded in L2(0, T0;H−s(Ω)); (2.42)

(f(um, vm)um)m, (g(um, vm)vm)m are bounded in L∞(0, T0;Lθ(Ω)); (2.43)

(f(um, vm)u2
m)m, (g(um, vm)v2

m)m are bounded in L∞(0, T0;Lθ(Ω)); (2.44)

Furthermore, since A is bounded, we have

(Aum)m, (Avm)m are bounded in L∞(0, T0;W−1,p′(Ω)).

Taking Limits. From the estimates and Banach-Alaoglu-Boubarki theorem guar-
antee the existence of subsequences (uν)ν , (vν)ν of (um)m, (vm)m, respectively, such
that

uν
∗
⇀ u, vν

∗
⇀ v in L∞(0, T0;W

1,p
0 (Ω)). (2.45)

u′ν
∗
⇀ u′, v′ν

∗
⇀ v′ in L∞(0, T0;L2(Ω)). (2.46)

u′′ν
∗
⇀ u′′, v′′ν

∗
⇀ v′′ in L2(0, T0;H−s(Ω)). (2.47)

Auν
∗
⇀ χ, Avν

∗
⇀ η in L∞(0, T0;W−1,p′(Ω)). (2.48)

As L2(0, T0;H−s(Ω)) is reflexive, the convergence (2.47) becomes

u′′ν ⇀ u′′, v′′ν ⇀ v′′ in L2(0, T0;H−s(Ω)). (2.49)

Let us consider the approximate equation (2.11) in the form

(u′′ν(t), w) + 〈Auν(t), w〉+ 〈f(uν,(t), vν,(t))uν(t), w〉 = (h1(t), w) ∀w ∈ Vm, ν ≥ m
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Now, multiplying the above equality by ϕ ∈ D(0, T0) and integrating from 0 for T0

we obtain∫ T0

0

(u′′ν(t), w)ϕdt+
∫ T0

0

〈Auν(t), w〉ϕdt+
∫ T0

0

〈f(uν,(t), vν,(t))uν(t), w〉ϕdt

=
∫ T0

0

(h1(t), w)ϕdt ∀w ∈ Vm, ν ≥ m.

Integrating by parts, we obtain

−
∫ T0

0

(u′ν(t), w)ϕ′dt+
∫ T0

0

〈Auν(t), w〉ϕdt+
∫ T0

0

〈f(uν,(t), vν,(t))uν(t), w〉ϕdt

=
∫ T0

0

(h1(t), w)ϕdt ∀w ∈ Vm, ν ≥ m.

(2.50)
With u′ν

∗
⇀ u′ in L∞(0, T0;L2(Ω)) =

(
L1(0, T0;L2(Ω))

)′ then

〈u′ν , φ〉 → 〈u′, φ〉, ∀φ ∈ L1(0, T0;L2(Ω)). (2.51)

Convergence (2.51) with
〈
u′ν , φ

〉
=

∫ T0

0
(u′ν(t), φ(t))dt, and assuming φ(x, t) =

w(x)ψ(t) imply hat∫ T0

0

(u′ν(t), φ(t))dt =
∫ T0

0

(u′ν(t), w(x))ψ(t)dt,∀w ∈ L2(Ω), ∀ψ ∈ L1(0, T0).

Consequently, for all w ∈ L2(Ω) and all ψ ∈ L1(0, T0),∫ T0

0

(u′ν(t), w(x))ψ(t)dt→
∫ T0

0

(u′(t), w(x))ψ(t)dt .

In fact, ∫ T0

0

(u′ν(t), w(x))ϕ′(t)dt→
∫ T0

0

(u′(t), w(x))ϕ′(t)dt,

for all w ∈ Vm ⊂ W 1,p
0 (Ω) ⊂ L2(Ω) and all ψ = ϕ′, ϕ ∈ D(0, T0) ⊂ L1(0, T0). In a

similar way,∫ T0

0

< Auν(t), w(x) > ψ(t)dt→
∫ T0

0

< χ(t), w(x) > ψ(t)dt,

for all w ∈W 1,p
0 (Ω) and all ψ ∈ L1(0, T0). In fact,∫ T0

0

(Auν(t), w(x))ϕ(t)dt→
∫ T0

0

(χ(t), w(x))ϕ(t)dt,

for all w ∈ Vm ⊂W 1,p
0 (Ω) and all ϕ ∈ D(0, T0) ⊂ L1(0, T0).

From (2.24), we have the existence of a subsequence (f(uν,, vν,)uν)ν such that

f(uν,, vν,)uν
∗
⇀ λ, in L∞(0, T0;Lθ(Ω)). (2.52)

Since L∞(0, T0;Lθ(Ω)) ↪→ Lθ(0, T0;Lθ(Ω)), we have from (2.29) that

(f(um(t), vm(t))um(t))m, (g(um(t), vm(t))vm(t))m

are bounded in Lθ(0, T0;Lθ(Ω)); Thus we guarantee the existence of a subsequence,
denoted as above, such that

f(uν,, vν,)uν ⇀ λ, in Lθ(0, T0;Lθ(Ω)). (2.53)
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Since

(u′m)m, is bounded in L∞(0, T0;L2(Ω)),

(um)m, is bounded in L∞(0, T0;W
1,p
0 (Ω))W 1,p

0 (Ω)
c
↪→ L2(Ω),

we have by Aubin-Lions theorem, the existence of a subsequence (uν)ν such that

uν → u, inL2(0, T0;L2(Ω)) ≡ L2(QT0) (2.54)

uν → u, a.e. in QT0 (2.55)

Since, the sequences (vm)m, (v′m)m satisfy the same conditions, it follows that, there
exists a subsequence (vν)ν such that

vν → v, inL2(0, T0;L2(Ω)) ≡ L2(QT0) (2.56)

vν → v, a.e, inQT0 (2.57)

From (2.55), (2.57), and of the hypothesis on f, g, we have

f(uν,, vν,)uν → f(u, v)u, a.e. in QT0 . (2.58)

g(uν,, vν,)vν → g(u, v)v, a.e. in QT0 . (2.59)

From (2.27), we have

‖f(um, vm)um‖Lθ(QT0 ) ≤ C, ∀m,

where Lθ(QT0) ≡ Lθ(0, T0;Lθ(Ω)). From this and (2.58), by means of Lion’s
Lemma, it follows that

f(uν,, vν,)uν ⇀ f(u, v)u, in Lθ(QT0),

for 1 ≤ θ ≤ np
3(n−p) . Therefore, from (2.53), we have λ = f(u, v)u and from (2.52).

This implies

f(uν,, vν,)uν
∗
⇀ f(u, v)u, in L∞(0, T0;Lθ(Ω)). (2.60)

Similarly,

g(uν,, vν,)vν
∗
⇀ g(u, v)v, in L∞(0, T0;Lθ(Ω)).

The convergence in (2.60) implies∫ T0

0

〈
f(uν(t), vν(t))uν(t), w(x)

〉
ψ(t)dt→

∫ T0

0

〈
f(u(t), v(t))u(t), w(x)

〉
ψ(t)dt,

for all w ∈W 1,p
0 (Ω) ⊂ Lγ(Ω), for all ψ ∈ L1(0, T0). In fact,∫ T0

0

〈
f(uν(t), vν(t))uν(t), w(x)

〉
ϕ(t)dt→

∫ T0

0

〈
f(u(t), v(t))u(t), w(x)

〉
ϕ(t)dt,

for all w ∈ Vm ⊂ W 1,p
0 (Ω) ⊂ Lγ(Ω), for all ϕ ∈ D(0, T0) ⊂ L1(0, T0). Taking the

limit, as ν →∞, in (2.50) and using the convergences obtained above, we have

−
∫ T0

0

(u′(t), w)ϕ′dt+
∫ T0

0

〈χ(t), w〉ϕdt+
∫ T0

0

〈f(u(t), v(t))u(t), w〉ϕdt

=
∫ T0

0

(h1(t), w)ϕdt, ∀w ∈ Vm, ϕ ∈ D(0, T0).

(2.61)
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Note that, with a similar reasoning for the approximate equation (2.12) we obtain

−
∫ T0

0

(v′(t), w)ϕ′dt+
∫ T0

0

〈η(t), w〉ϕdt+
∫ T0

0

〈g(u(t), v(t))v(t), w〉ϕdt

=
∫ T0

0

(h2(t), w)ϕdt, ∀w ∈ Vm, ϕ ∈ D(0, T0).

(2.62)

Now, using the basis definition and the fact that Vm is dense inW 1,p
0 (Ω), expressions

(2.61) and (2.62) take the form

−
∫ T0

0

(u′(t), w)ϕ′dt+
∫ T0

0

< χ(t), w > ϕdt+
∫ T0

0

〈f(u(t), v(t))u(t), w〉ϕdt

=
∫ T0

0

(h1(t), w)ϕdt, ∀w ∈W 1,p
0 (Ω), ϕ ∈ D(0, T0),

(2.63)
and

−
∫ T0

0

(v′(t), w)ϕ′dt+
∫ T0

0

〈η(t), w〉ϕdt+
∫ T0

0

〈g(u(t), v(t))v(t), w〈ϕdt

=
∫ T0

0

(h2(t), w)ϕdt, ∀w ∈W 1,p
0 (Ω), ϕ ∈ D(0, T0).

(2.64)

Note that, the mappings t 7→ (u′(t), w), t 7→ (v′(t), w) being functions in L∞(0, T0),
they define distributions on (0, T0). Therefore, the first integrals of (2.63), (2.64)
are the derivative of these distributions. Thus, from (2.63) we have∫ T0

0

{ d
dt

(u′(t), w) + 〈χ(t), w〉+ 〈f(u(t), v(t))u(t), w〉 − (h1(t), w)
}
ϕdt = 0

for all w ∈W 1,p
0 (Ω) and all ϕ ∈ D(0, T0). Thus,
d

dt
(u′(t), w) + 〈χ(t), w〉+ 〈f(u(t), v(t))u(t), w〉 = (h1(t), w),

for all w ∈W 1,p
0 (Ω), in D′(0, T0). Similarly,
d

dt
(v′(t), w) + 〈η(t), w〉+ 〈g(u(t), v(t))v(t), w〉 = (h2(t), w),

for all w ∈W 1,p
0 (Ω), in D′(0, T0).

If one shows that Au(t) = χ(t) and Av(t) = η(t), the proof of the theorem will be
complete; since the verification of the initial conditions can be done in a standard
way.

The monotonocity of A implies that∫ T0

0

〈Auν(t)−Aw, uν − w〉dt ≥ 0, ∀w ∈W 1,p
0 (Ω);

that is,

0 ≤
∫ T0

0

〈Auν(t), uν〉dt−
∫ T0

0

〈Auν(t), w〉dt−
∫ T0

0

〈Aw, uν(t)− w〉dt,

for all w ∈W 1,p
0 (Ω).

0 ≤ lim sup

∫ T0

0

〈Auν(t), uν〉dt−
∫ T0

0

〈χ(t), w〉dt−
∫ T0

0

〈Aw, u(t)− w〉dt,
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for all w ∈W 1,p
0 (Ω). Considering the approximate equation (2.11) with m = ν and

w = uν(t) we have

(u′′ν(t), uν(t)) + 〈Auν(t), uν(t)〉+ 〈f(uν , vν)uν , uν〉 = (h1(t), uν(t)).

Therefore,
d

dt
(u′ν(t), uν(t))− |u′ν(t)|2 + 〈Auν(t), uν(t)〉+ 〈f(uν , vν)uν , uν〉 = (h1(t), uν)

Integrating from 0 the T0 we have∫ T0

0

〈Auν(t), uν(t)〉dt = (u′ν(0), uν(0))− (u′ν(T0), uν(T0)) +
∫ T0

0

|u′ν(t)|2dt

−
∫ T0

0

〈f(uν , vν)uν , uν〉dt+
∫ T0

0

(h1(t), uν)dt

(2.65)

Recall that W 1,p
0 (Ω) ↪→ L2(Ω). Since uν(0) ⇀ u(0) in W 1,p

0 (Ω) it implies
uν(0) → u(0)inL2(Ω). Since u′ν(0) ⇀ u′(0) in L2(Ω), it implies

(u′ν(0), uν(0)) → (u′(0), u(0)) in R (2.66)

Recall that (um(T0))m is bounded in W 1,p
0 (Ω) and (u′m(T0))m is bounded in

L2(Ω). Thus, there exists subsequences (uν(T0))ν and (u′ν(T0))ν such that

uν(T0) ⇀ u(T0) in W 1,p
0 (Ω)

c
↪→ L2(Ω),

which implies

uν(T0) → u(T0), inL2(Ω),

u′ν(T0) ⇀ u′(T0)inL2(Ω)

Consequently,
(u′ν(0), uν(T0)) → (u′(T0), u(T0)) in R. (2.67)

We have that (u′m) bounded in L∞(0, T0;L2(Ω)). Since

L∞(0, T0;L2(Ω)) ↪→ L2(0, T0;L2(Ω)),

it follows that (u′m) is bounded in L2(0, T0;L2(Ω)). We also have that (u′′m) is
bounded in L2(0, T0;H−s(Ω)). Therefore, by the Aubin-Lions Theorem, there ex-
ists a subsequence (u′ν) such that

u′ν → u′ in L2(0, T0;L2(Ω)) ≡ L2(QT0).

Hence ∫ T0

0

|u′ν(t)|2dt→
∫ T0

0

|u′(t)|2dt (2.68)

Note that

〈f(um(t), vm(t))um(t), um(t)〉Lθ,Lγ = 〈f(um(t), vm(t))u2
m(t), 1〉Lθ,Lγ .

From (2.68) we have u2
ν → u2 a.e. in QT0 . Similarly∫ T0

0

|v′ν(t)|2dt→
∫ T0

0

|v′(t)|2dt

hence, we have v2
ν → v2 a.e. in QT0 , From (2.31), we have

‖f(uν , vν)u2
ν‖Lθ(0,T0;Lθ(Ω))≡Lθ(QT0 ) ≤ C, ∀m. (2.69)
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From this inequality and (2.44), we guarantee the existence of a subsequence such
that

f(uν , vν)u2
ν

∗
⇀ σ in L∞(0, T0;Lθ(Ω)) (2.70)

f(uν , vν)u2
ν⇀σ in Lθ(0, T0;Lθ(Ω)) (2.71)

Thus, from (2.55), (2.57) and the hypotheses on f, g, we have that

f(uν , vν)u2
ν → f(u, v)u2 a.e. in QT0 , (2.72)

g(uν , vν)u2
ν → g(u, v)u2 a.e in QT0 (2.73)

From (2.69), (2.72) and the Lions’ Lemma it follows that

f(uν , vν)u2
ν ⇀ f(u, v)u2inLθ(QT0) ≡ Lθ(0, T0;Lθ(Ω)), for 1 ≤ θ ≤ np

3(n− p)

From this convergence and (2.71), we have σ = f(u, v)u2 and from (2.70),

f(uν , vν)u2
ν

∗
⇀ f(u, v)u2 in L∞(0, T0;Lθ(Ω)). (2.74)

Similarly,
g(uν , vν)v2

ν
∗
⇀ g(u, v)u2inL∞(0, T0;Lθ(Ω)).

The convergence (2.74) implies

〈f(uν , vν)u2
ν , ψ〉 → 〈f(u, v)u2, ψ〉, ∀ψ ∈ L1(0, T0;Lγ(Ω))

or better ∫ T0

0

〈f(uν , vν)u2
ν , w(x)〉ϕ(t)dt→

∫ T0

0

〈f(u, v)u2, w(x)〉ϕ(t)dt,

for all w ∈ Lγ(Ω) and all ϕ ∈ L1(0, T0). When fixing w ≡ 1 and ϕ ≡ 1, we have∫ T0

0

〈f(uν(t), vν(t))uν(t), uν(t)〉dt =
∫ T0

0

〈f(uν(t), vν(t))u2
ν(t), 1〉dt

which approaches∫ T0

0

〈f(u(t), v(t))u2(t), 1〉dt =
∫ T0

0

〈f(u(t), v(t))u(t), u(t)〉dt.

hence∫ T0

0

〈f(uν(t), vν(t))uν(t), uν(t)〉dt→
∫ T0

0

〈f(u(t), v(t))u(t), u(t)〉dt, (2.75)

as ν → ∞. Therefore, taking the limit in (2.65), using the convergence (2.66),
(2.67), (2.68) and (2.75), as ν → +∞, we have

lim sup
∫ T0

0

〈Auν(t), uν(t)〉dt = (u′(0), u(0))− (u′(T0), u(T0)) +
∫ T0

0

|u′(t)|2dt

−
∫ T0

0

〈f(u(t), v(t))u(t), u(t)〉dt+
∫ T0

0

(h1(t), u(t))dt

From this equality and (2.75), we have

0 ≤ (u′(0), u(0))− (u′(T0)− u(T0)) +
∫ T0

0

|u′(t)2|dt−
∫ T0

0

〈f(u, v)u, u〉dt

−
∫ T0

0

〈χ(t), w〉dt−
∫ T0

0

〈Aw, u(t)− w〉dt+
∫ T0

0

(h1(t), u(t))dt,

(2.76)
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for all w ∈W 1,p
0 (Ω). From the approximate equation (2.11), we have

(u′′ν(t), w) + 〈Auν(t), w〉+ 〈f(uν(t), vν(t))uν(t), w〉 = (h1(t), w), ∀w ∈ Vm, ν ≥ m.

Now, let ϕ ∈ C1([0, T0]). Then∫ T0

0

(u′′ν(t), w)ϕ+
∫ T0

0

〈Auν(t), w〉ϕ+
∫ T0

0

〈f(uν(t), vν(t))uν(t), w〉ϕ

=
∫ T0

0

(h1(t), w),

for all w ∈ Vm and all ν ≥ m. Setting

(u′ν(t), w)ϕ(T0)− (u′ν(0), w)ϕ(0)−
∫ T0

0

(u′ν(t), w)ϕ′dt

+
∫ T0

0

〈Auν(t), w〉ϕdt+
∫ T0

0

〈f(uν(t), vν(t))uν(t), w〉ϕ(t)dt

=
∫ T0

0

(h1(t), w)ϕ(t)dt, ∀w ∈ Vm, ϕ ∈ C1([0, T0]), ν ≥ m.

Taking into account the previous convergence statements, it follows that

(u′(T0), w)ϕ(T0)− (u′(0), w)ϕ(0)−
∫ T0

0

(u′(t), w)ϕ′dt

+
∫ T0

0

〈χ(t), w〉ϕdt+
∫ T0

0

〈f(u(t), v(t))u(t), w〉ϕ(t)dt

=
∫ T0

0

(h1(t), w)ϕ(t)dt, ∀w ∈ Vm, ϕ ∈ C1([0, T0])

Using a basis argument and the fact that Vm is dense in W 1,p
0 (Ω), it follows that

(u′(T0), w)ϕ(T0)− (u′(0), w)ϕ(0)−
∫ T0

0

(u′(t), w)ϕ′dt

+
∫ T0

0

〈χ(t), w〉ϕdt+
∫ T0

0

〈f(u(t), v(t))u(t), w〉ϕ(t)dt

=
∫ T0

0

(h1(t), w)ϕ(t)dt, ∀w ∈W 1,p
0 (Ω), ϕ ∈ C1([0, T0]).

(2.77)

Observing that the set of the linear combinations of the type wϕ, with w ∈W 1,p
0 (Ω)

and ϕ ∈ C1([0, T0]), is dense in the space

V = {v ∈ L2(0, T0;W
1,p
0 (Ω)), v′ ∈ L2(0, T0;L2(Ω))}.

It follows that (2.77) is true in the space V .
Using the fact that,

u ∈ L∞(0, T0;W
1,p
0 (Ω)) ↪→ L2(0, T0;W

1,p
0 (Ω)),

u′ ∈ L∞(0, T0;L2(Ω)) ↪→ L2(0, T0;L2(Ω)),

we obtain that u ∈ V . So (2.77) takes the form

(u′(T0), w)ϕ(T0)− (u′(0), w)ϕ(0)

−
∫ T0

0

(u′(t), u′(t))dt+
∫ T0

0

〈χ(t), u(t)〉dt+
∫ T0

0

〈f(u, v)u, u〉dt
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=
∫ T0

0

(h1(t), u(t)dt

Substituting this expression in (2.76), it follows that

0 ≤
∫ T0

0

〈χ(t), u(t)− w〉dt−
∫ T0

0

〈Aw, u(t)− w〉dt, ∀w ∈W 1,p
0 (Ω).

Let us take w = u(t) + λv(t), λ > 0. Thus

0 ≤ −
∫ T0

0

〈χ(t), λv(t)〉dt+
∫ T0

0

〈Au(t) + λv(t), λv(t)〉dt,∀w ∈W 1,p
0 (Ω)

which implies

0 ≤ −
∫ T0

0

〈χ(t), λv(t)〉dt+
∫ T0

0

〈A(u(t) + λv(t)), λv(t)〉dt.

Dividing the previous inequality by λ and letting λ → 0+, by the hemicontinuity
of A, we have

0 ≤ −
∫ T0

0

〈χ(t), v(t)〉dt+
∫ T0

0

〈A(u(t)), v(t)〉dt, ∀v ∈W 1,p
0 (Ω).

Hence

0 ≤
∫ T0

0

〈Au(t)− χ(t), v(t)〉dt, ∀v ∈W 1,p
0 (Ω).

Now, for λ < 0 it follows that∫ T0

0

〈Au(t)− χ(t), v(t)〉dt ≤ 0, ∀v ∈W 1,p
0 (Ω).

Therefore,

0 ≤
∫ T0

0

〈Au(t)− χ(t), v(t)〉dt ≤ 0, ∀v ∈W 1,p
0 (Ω).

Thus Au(t) = χ(t). Similarly, Av(t) = η(t). This completes the proof of the
theorem.

References

[1] Biazutti. A; Sobre uma Equação não Linear de Vibrações: Existência de Soluções Fracas e
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