Electronic Journal of Differential Equations, Vol. 2006(2006), No. 130, pp. 1-18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

WEAK SOLUTIONS FOR A STRONGLY-COUPLED NONLINEAR SYSTEM

OSMUNDO A. LIMA, ALDO T. LOURÊDO, ALEXANDRO O. MARINHO

Abstract. In this paper the authors study the existence of local weak solutions of the strongly nonlinear system

$$
\begin{aligned}
u^{\prime \prime}+\mathcal{A} u+f(u, v) u & =h_{1} \\
v^{\prime \prime}+\mathcal{A} v+g(u, v) v & =h_{2}
\end{aligned}
$$

where \mathcal{A} is the pseudo-Laplacian operator and f, g, h_{1} and h_{2} are given functions.

1. Introduction

Let Ω be an open and bounded subset in \mathbb{R}^{n} with smooth boundary Γ and let T be a positive real number. In the cylinder $Q=\Omega \times] 0, T$, with lateral boundary $\left.\sum=\Gamma \times\right] 0, T[$, we consider the nonlinear system

$$
\begin{gather*}
u^{\prime \prime}+\mathcal{A} u+f(u, v) u=h_{1} \\
v^{\prime \prime}+\mathcal{A} v+g(u, v) v=h_{2} \\
u(0)=u_{0}, \quad v(0)=v_{0}, \quad u^{\prime}(0)=u_{1}, \quad v^{\prime}(0)=v_{1} \tag{1.1}\\
u=v=0 \quad \text { on } \Sigma=\Gamma \times] 0, T[
\end{gather*}
$$

where

$$
\mathcal{A} u=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right), \quad p>2
$$

is the pseudo-Laplacian operator, f is a continuous function in the first variable and Lipschitz in the second variable and g is a Lipschitz's function in the first variable and continuous in the second variable, with $f(0,0)=g(0,0)=0$ and $u_{0}, v_{0}, u_{1}, v_{1}$, h_{1} and h_{2} are given functions.

When $p \geq 2$, many authors studied the system 1.1). For instance, we can mention: Segal [11, where the physical meaning of (1.1) is presented, Medeiros and Menzala [9, Medeiros and M. Miranda [10, Castro [3, Biazutti [1] and more recently, Clark and Lima [6] showed the existence, a local solution and its uniqueness for the system

$$
u^{\prime \prime}-\Delta u+f(u, v) u=h_{1} \quad \text { in } Q=\Omega \times(0, T)
$$

[^0]\[

$$
\begin{gathered}
v^{\prime \prime}-\Delta u+g(u, v) v=h_{2} \quad \text { in } Q \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \quad \text { in } \Omega \\
v(0)=v_{0}, \quad v^{\prime}(0)=v_{1} \quad \text { in } \Omega \\
u=0, \quad v=0 \quad \text { on } \Sigma=\Gamma \times(0, T),
\end{gathered}
$$
\]

where the functions f and g satisfying the same conditions of the problem (1.1). Castro [3] showed the existence of solution for the system

$$
\begin{gathered}
u^{\prime \prime}+\mathcal{A} u-\Delta u^{\prime}+|v|^{\rho+2}|u|^{\rho} u=f_{1} \quad \text { in } Q \\
v^{\prime \prime}+\mathcal{A} v-\Delta v^{\prime}+|u|^{\rho+2}|v|^{\rho} v=f_{2} \quad \text { in } Q \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \quad \text { in } \Omega \\
v(0)=v_{0}, \quad v^{\prime}(0)=v_{1} \quad \text { in } \Omega \\
u=0, \quad v=0 \quad \text { on } \Sigma,
\end{gathered}
$$

where \mathcal{A} is the pseudo-Laplacian operator. We can show that the functions $f(u, v)=$ $|u|^{\rho+2}|v|^{\rho}$ and $g(u, v)=|v|^{\rho+2}|u|^{\rho}, \rho \geq-1$, satisfy the conditions of the system (1.1). Consequently the above system, without the dissipations Δu^{\prime} and Δv^{\prime}, is a particular case of $(*)$. Thus, we see that (1.1) generalizes the above mentioned problems.

To show the existence of a local solution for (1.1), we encounter following technical difficulties:
(i) The choices of the functional spaces;
(ii) In the a priori estimate for $u_{m}^{\prime \prime}$, we had that to use the projection operator, since, to derive the approximated equation we will have much technical difficulties because of the pseudo-Laplacian operator in the equation;
(iii) In the passage to the limit, we use strongly the fact that \mathcal{A} is a monotonic and hemicontinuous operator.
We remark that these difficulties do not appear in 6].
Notation. We represent the Sobolev space of order m in Ω by

$$
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega): D^{\alpha} u \in L^{p}(\Omega) \forall|\alpha| \leq m\right\}
$$

with the norm

$$
\|u\|_{m, p}=\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|_{L^{p}(\Omega)}^{p}\right)^{1 / p}, u \in W^{m, p}(\Omega), 1 \leq p<\infty
$$

Let $\mathcal{D}(\Omega)$ be the space of test functions in Ω and by $W_{0}^{m, p}(\Omega)$ we represent the closure of $\mathcal{D}(\Omega)$ in $W^{m, p}(\Omega)$. The dual space of $W_{0}^{m, p}(\Omega)$ is denoted by $W^{-m, p^{\prime}}(\Omega)$ with p^{\prime} is such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. We use the symbols (\cdot, \cdot) and $|\cdot|$, to indicate the inner product and the norm in $L^{2}(\Omega)$. We use $\langle\cdot, \cdot\rangle_{W^{-1, p}(\Omega), W_{0}^{1, p}(\Omega)}$ to indicate the duality between $W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$ and $\|\cdot\|_{0}$ to indicate the norm $W_{0}^{1, p}(\Omega)$. The pseudo-Laplacian operator \mathcal{A} is such that

$$
\begin{array}{cccc}
\mathcal{A}: \quad W_{0}^{1, p}(\Omega) & \rightarrow & W^{-1, p^{\prime}}(\Omega) \\
u & \mapsto & \mathcal{A} u
\end{array}
$$

and it satisfies the following properties:

- \mathcal{A} is monotonic, that is, $\langle\mathcal{A} u-\mathcal{A} v, u-v\rangle \geq 0, \forall u, v \in W_{0}^{1, p}(\Omega)$;
- \mathcal{A} is hemicontinuous, that is, for each $u, v, w \in W_{0}^{1, p}(\Omega)$ the function $\lambda \mapsto$ $\langle\mathcal{A}(u+\lambda v), w\rangle$ is continuous in \mathbb{R};
- $\langle\mathcal{A} u(t), u(t)\rangle_{W^{-1, p^{\prime}}(\Omega) \times W_{0}^{1, p}(\Omega)}=\|u\|_{0}^{p}$;
- $\left\langle\mathcal{A} u(t), u^{\prime}(t)\right\rangle_{W^{-1, p^{\prime}}(\Omega) \times W_{0}^{1, p}(\Omega)}=\frac{1}{p} \frac{d}{d t}\|u\|_{0}^{p}, \frac{d}{d t}=^{\prime}$;
- $\|\mathcal{A} u(t)\|_{W^{-1, p^{\prime}}(\Omega)} \leq C\|u\|_{0}^{p-1}$, where C is a constant;

We will use the same notation for the operator P and its restrictions, as well as for the operator P^{*}.

The next lemma plays a central role in the proof of the Existence Theorem. Its proof can be found in [6].

Lemma 1.1. Let ϕ be a positive real function, α, β and γ, positive real constants, with $\gamma>1$, such that

$$
\phi(t) \leq \alpha+\beta \int_{0}^{t}\left\{\phi(s)+\phi^{\gamma}(s)\right\} d s
$$

Then, there exists $T_{0} \in \mathbb{R}$, with $0<T_{0}<T$, such that ϕ is bounded in $\left[0, T_{0}[\right.$.
Definition. A local weak solution of the problem 1.1) is a pair of functions $u=u(x, t), v=v(x, t)$ defined for all $(x, t) \in Q_{T_{0}}=\Omega \times\left(0, T_{0}\right)$, and $T_{0}>0$ fixed, satisfying

$$
\begin{gathered}
u, v \in L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) ; \\
u^{\prime}, v^{\prime} \in L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) ; \\
\frac{d}{d t}\left(u^{\prime}, w\right)+\langle\mathcal{A} u, w\rangle+\langle f(u, v) u, w\rangle=\left(h_{1}, w\right), \forall w \in W_{0}^{1, p}(\Omega) \text { in } D^{\prime}\left(0, T_{0}\right) ; \\
\frac{d}{d t}\left(v^{\prime}, w\right)+\langle\mathcal{A} v, w\rangle+\langle g(u, v) v, w\rangle=\left(h_{2}, w\right), \quad \forall w \in W_{0}^{1, p}(\Omega) \text { in } D^{\prime}\left(0, T_{0}\right) ; \\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1}, \quad v(0)=v_{0}, \quad v^{\prime}(0)=v_{1} .
\end{gathered}
$$

2. Existence Results

Theorem 2.1. Let f and g be functions of two variables such that f is continuous in the first variable and Lipschitz in the second variable and g is Lipschitz in the first and continuous in the second variable, with $f(0,0)=g(0,0)=0$.

$$
\begin{gather*}
h_{1}, h_{2} \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{2.1}\\
u_{0}, v_{0} \in W_{0}^{1, p}(\Omega) \tag{2.2}\\
u_{1}, v_{1} \in L^{2}(\Omega) \tag{2.3}
\end{gather*}
$$

Then it exists $T_{0}>0, T_{0} \in \mathbb{R}$ and functions $u: Q_{T_{0}} \rightarrow \mathbb{R}$ and $v: Q_{T_{0}} \rightarrow \mathbb{R}$ satisfying

$$
\begin{gather*}
u, v \in L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) ; \tag{2.4}\\
u^{\prime}, v^{\prime} \in L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) ; \tag{2.5}\\
\frac{d}{d t}\left(u^{\prime}, w\right)+\langle\mathcal{A} u, w\rangle+\langle f(u, v) u, w\rangle=\left(h_{1}, w\right), \quad \forall w \in W_{0}^{1, p}(\Omega), \text { in } D^{\prime}\left(0, T_{0}\right) ; \tag{2.6}\\
\left.\left.\frac{d}{d t}\left(v^{\prime}, w\right)+\langle\mathcal{A} v, w\rangle+\right\rangle g(u, v) v, w\right\rangle=\left(h_{2}, w\right), \quad \forall w \in W_{0}^{1, p}(\Omega), \text { in } D^{\prime}\left(0, T_{0}\right) ; \tag{2.7}\\
u(0)=u_{0}, \quad v(0)=v_{0} ; \tag{2.8}
\end{gather*}
$$

$$
\begin{equation*}
u^{\prime}(0)=u_{1}, \quad v^{\prime}(0)=v_{1} . \tag{2.9}
\end{equation*}
$$

The main tools in the proof of this theorem are the Faedo-Galerkin method and compactness arguments. Let $H_{0}^{s}(\Omega)$, with $s>m=n\left(\frac{1}{2}-\frac{1}{p}\right)+1$ a separable Hilbert space such that $H_{0}^{s}(\Omega) \hookrightarrow W_{0}^{1, p}(\Omega)$, is a continuous and dense immersion. In $H_{0}^{s}(\Omega)$, there exists a complete orthonormal hilbertian base $\left\{w_{j}\right\}_{j \in N}$ in $L^{2}(\Omega)$. We consider $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ the subspace of $H_{0}^{s}(\Omega)$ generated by the m first vectors of the base $\left\{w_{j}\right\}_{j \in \mathbb{N}}$. Also, we have the following chain of continuous and dense immersions.

$$
\begin{equation*}
H_{0}^{s}(\Omega) \hookrightarrow W_{0}^{1, p}(\Omega) \hookrightarrow L^{2}(\Omega) \hookrightarrow W^{-1, p^{\prime}}(\Omega) \hookrightarrow H^{-s}(\Omega) \tag{2.10}
\end{equation*}
$$

We will divide the proof in three steps: (i) Approximated Problem, (ii) A Priori Estimates I and (iii) A Priori Estimates $I I$.

Approximated Problem. We want to find $u_{m}(t), v_{m}(t)$ in V_{m} satisfying the approximated problem.

$$
\begin{align*}
\left(u_{m}^{\prime \prime}(t), w\right)+\left\langle\mathcal{A} u_{m}(t), w\right\rangle+\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), w\right\rangle & =\left(h_{1}(t), w\right) \tag{2.11}\\
\left(v_{m}^{\prime \prime}(t), w\right)+\left\langle\mathcal{A} v_{m}(t), w\right\rangle+\left\langle g\left(u_{m}(t), v_{m}(t)\right) v_{m}(t), w\right\rangle & =\left(h_{2}(t), w\right) \tag{2.12}
\end{align*}
$$

for all $w \in V_{m}$; and

$$
\begin{gather*}
u_{m}(0)=u_{0 m}, \quad u_{m}^{\prime}(0)=u_{1 m} \\
v_{m}(0)=v_{0 m}, \quad v_{m}^{\prime}(0)=v_{1 m} \tag{2.13}
\end{gather*}
$$

So that

$$
\begin{gathered}
u_{0 m} \rightarrow u_{0}, \quad v_{0 m} \rightarrow v_{0}, \quad \text { in } W_{0}^{1, p}(\Omega) \\
u_{1 m} \rightarrow u_{1}, \quad v_{1 m} \rightarrow v_{1}, \quad \text { in } L^{2}(\Omega)
\end{gathered}
$$

It can be shown that the above system satisfies the Caracthodory's conditions; therefore there exists solutions $u_{m}(t), v_{m}(t)$ in $\left[0, t_{m}\right), t_{m}<T$ satisfying 2.11(2.13).

A priori estimates I. Let us consider $w=2 u_{m}^{\prime}(t)$ in 2.11. It follows that

$$
\begin{aligned}
& 2\left(u_{m}^{\prime \prime}(t), u_{m}^{\prime}(t)\right)+2\left\langle\mathcal{A} u_{m}(t), u_{m}^{\prime}(t)\right\rangle+2\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), u_{m}^{\prime}(t)\right\rangle \\
& =\left(h_{1}(t), u_{m}^{\prime}(t)\right) .
\end{aligned}
$$

Thus

$$
\frac{d}{d t}\left|u_{m}^{\prime}(t)\right|^{2}+\frac{2}{p} \frac{d}{d t}\left\|u_{m}(t)\right\|_{0}^{p}=2\left(h_{1}(t), u_{m}^{\prime}(t)\right)-2\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), u_{m}^{\prime}(t)\right\rangle
$$

Similarly, setting $w=2 v_{m}^{\prime}(t)$ in 2.12 it follows that

$$
\frac{d}{d t}\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p} \frac{d}{d t}\left\|v_{m}(t)\right\|_{0}^{p}=2\left(h_{2}(t), v_{m}^{\prime}(t)\right)-2\left\langle g\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), v_{m}^{\prime}(t)\right\rangle
$$

Summing the two equalities above, then integrating from 0 to $t, t<t_{m}$, and using the Cauchy-Schwarz's inequality and $a b \leq \frac{a^{2}+b^{2}}{2}$, we obtain

$$
\begin{aligned}
& \left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(t)\right\|_{0}^{p} \\
& \leq\left|u_{m}^{\prime}(0)\right|^{2}+\left|v_{m}^{\prime}(0)\right|^{2}+\frac{2}{p}\left\|u_{m}(0)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(0)\right\|_{0}^{p} \\
& \quad+2 \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right)\left\|u_{m}(s)\right\| u_{m}^{\prime}(s)\right| d s
\end{aligned}
$$

$$
\begin{aligned}
& +2 \int_{0}^{t} \int_{\Omega}\left|g\left(u_{m}(s), v_{m}(s)\right)\left\|v_{m}(s)\right\| v_{m}^{\prime}(s)\right| d s \\
& +\int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s+\int_{0}^{T}\left(\left|h_{1}(t)\right|^{2}+\left|h_{2}(t)\right|^{2}\right) d t
\end{aligned}
$$

From (2.1), (22, and (2), it follows that

$$
\begin{align*}
& \left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(t)\right\|_{0}^{p} \\
& \leq \\
& \quad C+\int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s \tag{2.14}\\
& \quad+2 \int_{0}^{t}\left|f\left(u_{m}(s), v_{m}(s)\right)\left\|u_{m}(s)\right\| u_{m}^{\prime}(s)\right| d s \\
& \quad+2 \int_{0}^{t}\left|g\left(u_{m}(s), v_{m}(s)\right)\left\|v_{m}(s)\right\| v_{m}^{\prime}(s)\right| d s
\end{align*}
$$

From the Sobolev immersions it is well known that

$$
W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega), \quad \forall 1 \leq q \leq \frac{n p}{n-p}
$$

Let $\alpha, \beta>0$, such that $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{2}=1$, with $1 \leq \alpha, \beta \leq \frac{n p}{n-p}$.
Now, using Holder and Young inequalities, the inequality $a b \leq \frac{a^{2}+b^{2}}{2}$ and the hypothesis over f, we have

$$
\begin{aligned}
& 2 \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right)\right|\left|u_{m}(s)\right|\left|u_{m}^{\prime}(s)\right| d s \\
& \leq C \int_{0}^{t} \int_{\Omega}\left|v_{m}(s)\right|\left|u_{m}(s)\right|\left|u_{m}^{\prime}(s)\right| d s \\
& \leq C \int_{0}^{t}\left(\int_{\Omega}\left|v_{m}(s)\right|^{\alpha}\right)^{\frac{1}{\alpha}}\left(\int_{\Omega}\left|u_{m}(s)\right|^{\beta}\right)^{\frac{1}{\beta}}\left(\int_{\Omega}\left|u_{m}^{\prime}(s)\right|^{2}\right)^{2} \\
& =C \int_{0}^{t}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)} d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{p}+\frac{p-1}{p}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{\frac{p}{p-1}}\right\}\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)} d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{p}+\frac{1}{p}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{\frac{p}{p-1}(p-1)}+\frac{p-2}{p-1}\right\}\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)} d s \\
& =C \int_{0}^{t}\left\{\frac{1}{p}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{p}+\frac{1}{p}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{p}+\frac{p-2}{p-1}\right\}\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)} d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{p}+\frac{1}{p}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{p}+\frac{p-2}{p-1}\right\}^{2}+\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)}^{2} d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p^{2}}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{2 p}+\frac{1}{p^{2}}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{2 p}+\left(\frac{p-2}{p-1}\right)^{2}+\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)}^{2}\right\} d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p^{2}}\left|v_{m}(s)\right|_{L^{\alpha}(\Omega)}^{2 p}+\frac{1}{p^{2}}\left|u_{m}(s)\right|_{L^{\beta}(\Omega)}^{2 p}+1+\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)}^{2}\right\} d s .
\end{aligned}
$$

Since $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\alpha}(\Omega)$ and $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\beta}(\Omega)$, it follows that

$$
\begin{align*}
& 2 \int_{0}^{t} \int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right)\left\|u_{m}(s)\right\| u_{m}^{\prime}(s)\right| d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p^{2}}\left\|v_{m}(s)\right\|_{0}^{2 p}+\frac{1}{p^{2}}\left\|u_{m}(s)\right\|_{0}^{2 p}+1+\left|u_{m}^{\prime}(s)\right|_{L^{2}(\Omega)}^{2}\right\} d s \tag{2.15}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& 2 \int_{0}^{t} \int_{\Omega}\left|g\left(u_{m}(s), v_{m}(s)\right)\left\|v_{m}(s)\right\| v_{m}^{\prime}(s)\right| d s \\
& \leq C \int_{0}^{t}\left\{\frac{1}{p^{2}}\left\|u_{m}(s)\right\|_{0}^{2 p}+\frac{1}{p^{2}}\left\|v_{m}(s)\right\|_{0}^{2 p}+1+\left|v_{m}^{\prime}(s)\right|_{L^{2}(\Omega)}^{2}\right\} d s \tag{2.16}
\end{align*}
$$

Substituting, 2.15 and 2.16 in 2.14,

$$
\begin{align*}
&\left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(t)\right\|_{0}^{p} \\
& \leq C+C \int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s+C \int_{0}^{t}\left\{\left\|u_{m}(s)\right\|_{0}^{2 p}+\left\|v_{m}(s)\right\|_{0}^{2 p}\right\} \\
&+C \int_{0}^{t} 2 d s \tag{2.17}\\
& \leq C+C \int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s+C \int_{0}^{t}\left\{\left\|u_{m}(s)\right\|_{0}^{2 p}+\left\|v_{m}(s)\right\|_{0}^{2 p}\right\} \\
&+C \int_{0}^{T} 2 d s \\
& \leq C+C \int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s+C \int_{0}^{t}\left\{\left\|u_{m}(s)\right\|_{0}^{2 p}+\left\|v_{m}(s)\right\|_{0}^{2 p}\right\}
\end{align*}
$$

Note that

$$
\begin{aligned}
& \frac{2}{p}\left|u_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(t)\right\|_{0}^{p} \\
& \leq\left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\frac{2}{p}\left\|u_{m}(t)\right\|_{0}^{p}+\frac{2}{p}\left\|v_{m}(t)\right\|_{0}^{p}
\end{aligned}
$$

with $p>2$, It follows that

$$
\begin{aligned}
&\left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|_{0}^{p}+\left\|v_{m}(t)\right\|_{0}^{p} \\
& \leq C+C \int_{0}^{t}\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right) d s+C \int_{0}^{t}\left\{\left\|u_{m}(s)\right\|_{0}^{2 p}+\left\|v_{m}(s)\right\|_{0}^{2 p}\right\} \\
& \leq C+C \int_{0}^{t}\left\{\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right)^{2}+\left(\left\|u_{m}(s)\right\|_{0}^{p}+\left\|v_{m}(s)\right\|_{0}^{p}\right)^{2}\right. \\
&\left.+2\left(\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}\right)\left(\left\|u_{m}(s)\right\|_{0}^{p}+\left\|v_{m}(s)\right\|_{0}^{p}\right)\right\} d s \\
&+C \int_{0}^{t}\left\{\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}+\left\|u_{m}(s)\right\|_{0}^{p}+\left\|v_{m}(s)\right\|_{0}^{p}\right\} d s \\
&= C+C \int_{0}^{t}\left\{\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}+\left\|u_{m}(s)\right\|_{0}^{p}+\left\|v_{m}(s)\right\|_{0}^{p}\right\}^{2} d s
\end{aligned}
$$

$$
+C \int_{0}^{t}\left\{\left|u_{m}^{\prime}(s)\right|^{2}+\left|v_{m}^{\prime}(s)\right|^{2}+\left\|u_{m}(s)\right\|_{0}^{p}+\left\|v_{m}(s)\right\|_{0}^{p}\right\} d s
$$

By setting

$$
\phi(t)=\left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|_{0}^{p}+\left\|v_{m}(t)\right\|_{0}^{p}
$$

the above inequality can be rewritten as

$$
\begin{equation*}
\phi(t) \leq C+C \int_{0}^{t}\left\{\phi(s)+\phi^{2}(s)\right\} d s \tag{2.18}
\end{equation*}
$$

Then, by Lemma 1.1, there exists $T_{0} \in \mathbb{R}$, with $0<T_{0}<T$, such that ϕ is bounded in $\left[0, T_{0}\right)$. From this, we have

$$
\begin{equation*}
\left|u_{m}^{\prime}(t)\right|^{2}+\left|v_{m}^{\prime}(t)\right|^{2}+\left\|u_{m}(t)\right\|_{0}^{p}+\left\|v_{m}(t)\right\|_{0}^{p} \leq C \quad \forall t \in\left[0, T_{0}\right), \quad \forall m \in \mathbb{N} . \tag{2.19}
\end{equation*}
$$

Therefore, by prolongation results, we can extend the solutions $u_{m}(t), v_{m}(t)$, to the interval $\left[0, T_{0}\right.$].

We will estimate, now, the second derivatives $u_{m}^{\prime \prime}(t), v_{m}^{\prime \prime}(t)$. Since the procedure, to estimates $u_{m}^{\prime \prime}(t)$ and $v_{m}^{\prime \prime}(t)$ are similar, we will fix our attention only on bounding $u_{m}^{\prime \prime}(t)$.
2.1. A priori Estimates II. Let $P_{m}: L^{2}(\Omega) \rightarrow V_{m} \subset L^{2}(\Omega)$ be

$$
P_{m}(h)=\sum_{j=1}^{m}\left(h, w_{j}\right) w_{j}
$$

the projection operator on $L^{2}(\Omega)$. Observe that $P_{m}=P_{m}^{*}$ and $P_{m} \in \mathcal{L}\left(H_{0}^{s}(\Omega)\right)$. Now, by the approximate equation 2.12 ,

$$
\begin{equation*}
\left(u_{m}^{\prime \prime}(t), w\right)+\left\langle\mathcal{A} u_{m}(t), w\right\rangle+\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), w\right\rangle=\left(h_{1}(t), w\right) \tag{2.20}
\end{equation*}
$$

for all $w \in V_{m}$. By the chain of immersions 2.10 we have

$$
\left\langle u_{m}^{\prime \prime}(t)+\mathcal{A} u_{m}(t)+f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)-h_{1}(t), w\right\rangle_{H^{-s}(\Omega), H_{0}^{s}(\Omega)}=0
$$

for all $w \in V_{m}$. From this equality and the fact that $P_{m} w=w, \forall w \in V_{m}$, we have

$$
P_{m}^{*}\left(u_{m}^{\prime \prime}(t)+\mathcal{A} u_{m}(t)+f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)-h_{1}(t)\right)=0
$$

in V_{m}. From this, by the linearity of P_{m}^{*}, the fact that $u_{m}^{\prime \prime} \in V_{m}$, and by the continuous and dense immersions, we have

$$
u_{m}^{\prime \prime}(t)=-P_{m}^{*}\left(\mathcal{A} u_{m}(t)\right)-P_{m}^{*}\left(f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right)+P_{m}^{*}\left(h_{1}(t)\right)
$$

in $H^{-s}(\Omega)$. Thus

$$
\begin{aligned}
\left\|u_{m}^{\prime \prime}(t)\right\|_{H^{-s}(\Omega)} \leq & \left\|P_{m}^{*}\left(f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right)\right\|_{H^{-s}(\Omega)} \\
& +\left\|P_{m}^{*}\left(\mathcal{A} u_{m}(t)\right)\right\|_{H^{-s}(\Omega)}+\left\|P_{m}^{*}\left(h_{1}(t)\right)\right\|_{H^{-s}(\Omega)}
\end{aligned}
$$

With $P_{m} \in \mathcal{L}\left(H_{0}^{s}(\Omega)\right)$ which implies $P_{m}^{*} \in \mathcal{L}\left(H^{-s}(\Omega)\right)$. Since $W^{-1, p^{\prime}}(\Omega) \hookrightarrow$ $H^{-s}(\Omega)$, it follows that $P_{m}^{*} \in \mathcal{L}\left(W^{-1, p^{\prime}}(\Omega), H^{-s}(\Omega)\right)$, Then

$$
\begin{equation*}
\left\|P_{m}^{*}\left(A u_{m}(t)\right)\right\|_{H^{-s}(\Omega)} \leq C\left\|\left(\mathcal{A} u_{m}(t)\right)\right\|_{W^{-1, p^{\prime}}(\Omega)} \leq C\left\|u_{m}(t)\right\|_{0}^{p-1} \tag{2.21}
\end{equation*}
$$

Since, $L^{2}(\Omega) \hookrightarrow H^{-s}(\Omega)$, we have $P_{m}^{*} \in \mathcal{L}\left(L^{2}(\Omega), H^{-s}(\Omega)\right.$. Furthermore,

$$
\begin{equation*}
\left\|P_{m}^{*}\left(h_{1}(t)\right)\right\|_{H^{-s}(\Omega)} \leq C\left|h_{1}(t)\right|_{L^{2}(\Omega)} . \tag{2.22}
\end{equation*}
$$

Now, to bound the term $\left\|P_{m}^{*}\left(f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right)\right\|_{H^{-s}(\Omega)}$, it is necessary to place $f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)$ in some space contained in $H^{-s}(\Omega)$. Let $\gamma, \theta \in\left[1, \frac{n p}{n-p}\right]$, such
that $\frac{1}{\gamma}+\frac{1}{\theta}=1$. Since $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for $1 \leq q \leq \frac{n p}{n-p}$, we have, in particular $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\gamma}(\Omega)$. Therefore,

$$
\left(L^{\gamma}(\Omega)\right)^{\prime} \hookrightarrow W^{-1, p^{\prime}}(\Omega)
$$

From the chain of immersions 2.10 , we have $W^{-1, p^{\prime}}(\Omega) \hookrightarrow H^{-s}(\Omega)$, from where

$$
\begin{equation*}
L^{\theta}(\Omega)=\left(L^{\gamma}(\Omega)\right)^{\prime} \hookrightarrow H^{-s}(\Omega) \tag{2.23}
\end{equation*}
$$

Now, it is sufficient to show that $f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t) \in L^{\theta}(\Omega)$. From the Hölder inequality and the hypothesis on f we have

$$
\begin{align*}
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}(s)\right|^{\theta} d x & =\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right)\right|^{\theta}\left|u_{m}(s)\right|^{\theta} d x \\
& \left.\leq C_{f}^{\theta} \int_{\Omega} \mid v_{m}(s)\right)\left.\right|^{\theta}\left|u_{m}(s)\right|^{\theta} d x \\
& \left.\left.\leq\left. C_{f}^{\theta}\left(\int_{\Omega} \mid v_{m}(s)\right)\right|^{\alpha^{\prime} \theta}\right)\left.^{1 / \alpha^{\prime}}\left(\int_{\Omega} \mid u_{m}(s)\right)\right|^{\beta^{\prime} \theta}\right)^{\frac{1}{\beta^{\prime}}} \tag{2.24}
\end{align*}
$$

where C_{f} is the Lipschitz constant, associated f and $\frac{1}{\alpha^{\prime}}+\frac{1}{\beta^{\prime}}=1$.
If $\theta \alpha^{\prime} \leq \frac{n p}{n-p}$ and $\theta \beta^{\prime} \leq \frac{n p}{n-p}$, then

$$
\theta \leq \frac{1}{\alpha^{\prime}} \frac{n p}{(n-p)}, \quad \text { and } \quad \theta \leq \frac{1}{\beta^{\prime}} \frac{n p}{(n-p)}
$$

from which,

$$
2 \theta \leq\left(\frac{1}{\alpha^{\prime}}+\frac{1}{\beta^{\prime}}\right) \frac{n p}{n-p}
$$

Then, we have

$$
1 \leq \theta \leq \frac{n p}{2(n-p)}<\frac{n p}{n-p}
$$

Noticing that $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\theta \alpha^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\theta \beta^{\prime}}(\Omega)$, we have

$$
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}(s)\right|^{\theta} d x \leq C_{f}^{\theta}\left|v_{m}(t)\right|_{L^{\alpha^{\prime} \theta}}^{\theta}\left|u_{m}(t)\right|_{L^{\beta^{\prime} \theta}}^{\theta} \leq C\left\|u_{m}(t)\right\|_{0}^{\theta}\left\|v_{m}(t)\right\|_{0}^{\theta}
$$

From this estimate and 2.19, it follows

$$
\begin{equation*}
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}(s)\right|^{\theta} d x<\infty \tag{2.25}
\end{equation*}
$$

that is,

$$
\begin{equation*}
f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t) \in L^{\theta}(\Omega)=\left(L^{\gamma}(\Omega)\right)^{\prime}, \quad \text { for } 1 \leq \theta \leq \frac{n p}{2(n-p)} \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right\|_{L^{\theta}(\Omega)} \leq C, \quad \forall m, t \in\left[0, T_{0}\right] \tag{2.27}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|g\left(u_{m}(t), v_{m}(t)\right) v_{m}(t)\right\|_{L^{\theta}(\Omega)} \leq C, \quad \forall m, t \in\left[0, T_{0}\right] \tag{2.28}
\end{equation*}
$$

We will also need that $f\left(u_{m}(t), v_{m}(t)\right) u_{m}^{2}(t) \in L^{\theta}(\Omega)$. In fact, by Hölder inequality,

$$
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}^{2}(s)\right|^{\theta} d x
$$

$$
\begin{aligned}
& =\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right)\right|^{\theta}\left|u_{m}^{2}(s)\right|^{\theta} d x \\
& \left.\leq C_{f}^{\theta} \int_{\Omega} \mid v_{m}(s)\right)\left.\right|^{\theta}\left|u_{m}(s)\right|^{\theta}\left|u_{m}(s)\right|^{\theta} d x \\
& \left.\left.\left.\leq\left. C_{f}^{\theta}\left(\int_{\Omega} \mid v_{m}(s)\right)\right|^{\xi \theta}\right)\left.^{\frac{1}{\xi}}\left(\int_{\Omega} \mid u_{m}(s)\right)\right|^{\delta \theta}\right)\left.^{1 / \delta}\left(\int_{\Omega} \mid u_{m}(s)\right)\right|^{\omega \theta}\right)^{1 / \omega}
\end{aligned}
$$

where C_{f} is the Lipschitz constant, associated to f and $\frac{1}{\delta}+\frac{1}{\omega}+\frac{1}{\xi}=1$. If $\theta \xi \leq \frac{n p}{n-p}$, $\theta \delta \leq \frac{n p}{n-p}$ and $\theta \omega \leq \frac{n p}{n-p}$ then

$$
\theta \leq \frac{1}{\xi} \frac{n p}{n-p}, \quad \theta \leq \frac{1}{\delta} \frac{n p}{n-p}, \quad \theta \leq \frac{1}{\omega} \frac{n p}{n-p}
$$

which implies

$$
3 \theta \leq\left(\frac{1}{\xi}+\frac{1}{\delta}+\frac{1}{\omega}\right) \frac{n p}{n-p}
$$

Then

$$
1 \leq \theta \leq \frac{n p}{3(n-p)}<\frac{n p}{n-p}
$$

Observing that $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\theta \xi}(\Omega), W_{0}^{1, p}(\Omega) \hookrightarrow L^{\theta \delta}(\Omega)$ and $W_{0}^{1, p}(\Omega) \hookrightarrow L^{\theta \omega}(\Omega)$, it follows that

$$
\begin{align*}
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}^{2}(s)\right|^{\theta} d x & \leq C_{f}^{\theta}\left|v_{m}(t)\right|_{L^{\xi \theta}}^{\theta}\left|u_{m}(t)\right|_{L^{\omega \theta}}^{\theta}\left|u_{m}(t)\right|_{L^{\delta \theta}}^{\theta} \tag{2.29}\\
& \leq C\left\|u_{m}(t)\right\|_{0}^{2 \theta}\left\|v_{m}(t)\right\|_{0}^{\theta} .
\end{align*}
$$

This estimate and 2.19 lead us to

$$
\int_{\Omega}\left|f\left(u_{m}(s), v_{m}(s)\right) u_{m}^{2}(s)\right|^{\theta} d x<\infty
$$

that is,

$$
\begin{gather*}
f\left(u_{m}(t), v_{m}(t)\right) u_{m}^{2}(t) \in L^{\theta}(\Omega)=\left(L^{\gamma}(\Omega)\right)^{\prime}, \quad \text { for } 1 \leq \theta \leq \frac{n p}{3(n-p)} \tag{2.30}\\
\left\|f\left(u_{m}(t), v_{m}(t)\right) u_{m}^{2}(t)\right\|_{L^{\theta}(\Omega)} \leq C, \quad \forall m, t \in\left[0, T_{0}\right] \tag{2.31}
\end{gather*}
$$

Similarly, we have

$$
\begin{equation*}
\left\|g\left(u_{m}(t), v_{m}(t)\right) v_{m}^{2}(t)\right\|_{L^{\theta}(\Omega)} \leq C, \quad \forall m, t \in\left[0, T_{0}\right] \tag{2.32}
\end{equation*}
$$

Note that if $\theta \leq \frac{n p}{3(n-p)}$, we still have 2.26) and 2.30, because $\frac{n p}{3(n-p)}<\frac{n p}{2(n-p)}$. Thus, as $L^{\theta}(\Omega) \hookrightarrow H^{-s}(\Omega)$, we have that $P_{m}^{*} \in \mathcal{L}\left(L^{\theta}(\Omega), H^{-s}(\Omega)\right)$. Therefore

$$
\begin{equation*}
\left\|P_{m}^{*}\left(f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right)\right\|_{H^{-s}(\Omega)} \leq C\left\|f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right\|_{L^{\theta}(\Omega)} \tag{2.33}
\end{equation*}
$$

Hence, from the estimates 2.21, 2.22 and 2.33). we have

$$
\left\|u_{m}^{\prime \prime}(t)\right\|_{H^{-s}(\Omega)} \leq C\left\{\left\|u_{m}(t)\right\|_{0}^{p-1}+\left\|f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right\|_{L^{\theta}(\Omega)}+\left|h_{1}(t)\right|\right\} .
$$

From this inequality, it results

$$
\begin{aligned}
\int_{0}^{T_{0}}\left\|u_{m}^{\prime \prime}(t)\right\|_{H^{-s}(\Omega)}^{2} d t \leq & C\left\{\int_{0}^{T_{0}}\left\|u_{m}(t)\right\|_{0}^{2(p-1)} d t+\int_{0}^{T_{0}}\left|h_{1}(t)\right|^{2} d t\right. \\
& \left.+\int_{0}^{T_{0}}\left\|f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right\|_{L^{\theta}(\Omega)}^{2} d t\right\}
\end{aligned}
$$

Therefore, from 2.17, 2.25 and 2.1, we conclude that

$$
\begin{equation*}
\left\|u_{m}^{\prime \prime}(t)\right\|_{L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right.} \leq C, \quad \forall m \in \mathbb{N} \tag{2.34}
\end{equation*}
$$

Arguing in a similar way, one can deduce that

$$
\begin{equation*}
\left\|v_{m}^{\prime \prime}(t)\right\|_{L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right.} \leq C, \forall m \in \mathbb{N} \tag{2.35}
\end{equation*}
$$

From 2.19, we have

$$
\begin{gathered}
\left\|u_{m}(t)\right\|_{0} \leq C \quad \text { and } \quad\left\|v_{m}(t)\right\|_{0} \leq C, \quad \forall m, t \in\left[0, T_{0}\right] . \\
\left|u_{m}^{\prime}(t)\right| \leq C \quad \text { and } \quad\left|v_{m}^{\prime}(t)\right| \leq C, \quad \forall m, t \in\left[0, T_{0}\right] .
\end{gathered}
$$

From where, it follows that ess $\sup _{t \in\left[0, T_{0}\right]}\left\|u_{m}(t)\right\|_{0} \leq C$; that is

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right)} \leq C, \quad \forall m \in \mathbb{N} \tag{2.36}
\end{equation*}
$$

Similarly, we have

$$
\begin{gather*}
\left\|v_{m}\right\|_{L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right)} \leq C, \quad \forall m \in \mathbb{N} \tag{2.37}\\
\left\|u_{m}^{\prime}\right\|_{L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)} \leq C, \quad \forall m \in \mathbb{N} \tag{2.38}\\
\left\|v_{m}^{\prime}\right\|_{L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)} \leq C, \quad \forall m \in \mathbb{N} \tag{2.39}
\end{gather*}
$$

Therefore, from 2.27), 2.28, 2.31, 2.32, 2.34, 2.35, 2.36, 2.37, 2.38, (2.39), we have

$$
\begin{gather*}
\left(u_{m}\right)_{m},\left(v_{m}\right)_{m} \quad \text { are bounded in } L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) ; \tag{2.40}\\
\left(u_{m}^{\prime}\right)_{m},\left(v_{m}^{\prime}\right)_{m} \quad \text { are bounded in } L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) ; \tag{2.41}\\
\left(u_{m}^{\prime \prime}\right)_{m},\left(v_{m}^{\prime \prime}\right)_{m} \quad \text { are bounded in } L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right) ; \tag{2.42}\\
\left(f\left(u_{m}, v_{m}\right) u_{m}\right)_{m},\left(g\left(u_{m}, v_{m}\right) v_{m}\right)_{m} \quad \text { are bounded in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) ; \tag{2.43}\\
\left(f\left(u_{m}, v_{m}\right) u_{m}^{2}\right)_{m},\left(g\left(u_{m}, v_{m}\right) v_{m}^{2}\right)_{m} \quad \text { are bounded in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) ; \tag{2.44}
\end{gather*}
$$

Furthermore, since \mathcal{A} is bounded, we have

$$
\left(\mathcal{A} u_{m}\right)_{m},\left(\mathcal{A} v_{m}\right)_{m} \quad \text { are bounded in } L^{\infty}\left(0, T_{0} ; W^{-1, p^{\prime}}(\Omega)\right)
$$

Taking Limits. From the estimates and Banach-Alaoglu-Boubarki theorem guarantee the existence of subsequences $\left(u_{\nu}\right)_{\nu},\left(v_{\nu}\right)_{\nu}$ of $\left(u_{m}\right)_{m},\left(v_{m}\right)_{m}$, respectively, such that

$$
\begin{gather*}
u_{\nu} \stackrel{*}{\rightharpoonup} u, \quad v_{\nu} \stackrel{*}{\rightharpoonup} v \quad \text { in } L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) . \tag{2.45}\\
u_{\nu}^{\prime} \stackrel{*}{\rightharpoonup} u^{\prime}, \quad v_{\nu}^{\prime} \stackrel{*}{\rightharpoonup} v^{\prime} \quad \text { in } L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) . \tag{2.46}\\
u_{\nu}^{\prime \prime} \stackrel{*}{\rightharpoonup} u^{\prime \prime}, \quad v_{\nu}^{\prime \prime} \stackrel{*}{\rightharpoonup} v^{\prime \prime} \quad \text { in } L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right) . \tag{2.47}\\
A u_{\nu} \stackrel{*}{\rightharpoonup} \chi, \quad \mathcal{A} v_{\nu} \stackrel{*}{\rightharpoonup} \eta \quad \text { in } L^{\infty}\left(0, T_{0} ; W^{-1, p^{\prime}}(\Omega)\right) . \tag{2.48}
\end{gather*}
$$

As $L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right)$ is reflexive, the convergence 2.47 becomes

$$
\begin{equation*}
u_{\nu}^{\prime \prime} \rightharpoonup u^{\prime \prime}, v_{\nu}^{\prime \prime} \rightharpoonup v^{\prime \prime} \quad \text { in } L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right) \tag{2.49}
\end{equation*}
$$

Let us consider the approximate equation 2.11 in the form
$\left(u_{\nu}^{\prime \prime}(t), w\right)+\left\langle\mathcal{A} u_{\nu}(t), w\right\rangle+\left\langle f\left(u_{\nu,}(t), v_{\nu}(t)\right) u_{\nu}(t), w\right\rangle=\left(h_{1}(t), w\right) \quad \forall w \in V_{m}, \nu \geq m$

Now, multiplying the above equality by $\varphi \in D\left(0, T_{0}\right)$ and integrating from 0 for T_{0} we obtain

$$
\begin{aligned}
& \int_{0}^{T_{0}}\left(u_{\nu}^{\prime \prime}(t), w\right) \varphi d t+\int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), w\right\rangle \varphi d t+\int_{0}^{T_{0}}\left\langle f\left(u_{\nu,}(t), v_{\nu},(t)\right) u_{\nu}(t), w\right\rangle \varphi d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi d t \quad \forall w \in V_{m}, \nu \geq m
\end{aligned}
$$

Integrating by parts, we obtain

$$
\begin{align*}
& -\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), w\right) \varphi^{\prime} d t+\int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), w\right\rangle \varphi d t+\int_{0}^{T_{0}}\left\langle f\left(u_{\nu,}(t), v_{\nu}(t)\right) u_{\nu}(t), w\right\rangle \varphi d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi d t \quad \forall w \in V_{m}, \nu \geq m \tag{2.50}
\end{align*}
$$

With $u_{\nu}^{\prime} \stackrel{*}{\rightharpoonup} u^{\prime}$ in $L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)=\left(L^{1}\left(0, T_{0} ; L^{2}(\Omega)\right)\right)^{\prime}$ then

$$
\begin{equation*}
\left\langle u_{\nu}^{\prime}, \phi\right\rangle \rightarrow\left\langle u^{\prime}, \phi\right\rangle, \quad \forall \phi \in L^{1}\left(0, T_{0} ; L^{2}(\Omega)\right) \tag{2.51}
\end{equation*}
$$

Convergence 2.51 with $\left\langle u_{\nu}^{\prime}, \phi\right\rangle=\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), \phi(t)\right) d t$, and assuming $\phi(x, t)=$ $w(x) \psi(t)$ imply hat

$$
\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), \phi(t)\right) d t=\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), w(x)\right) \psi(t) d t, \forall w \in L^{2}(\Omega), \quad \forall \psi \in L^{1}\left(0, T_{0}\right)
$$

Consequently, for all $w \in L^{2}(\Omega)$ and all $\psi \in L^{1}\left(0, T_{0}\right)$,

$$
\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), w(x)\right) \psi(t) d t \rightarrow \int_{0}^{T_{0}}\left(u^{\prime}(t), w(x)\right) \psi(t) d t
$$

In fact,

$$
\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), w(x)\right) \varphi^{\prime}(t) d t \rightarrow \int_{0}^{T_{0}}\left(u^{\prime}(t), w(x)\right) \varphi^{\prime}(t) d t
$$

for all $w \in V_{m} \subset W_{0}^{1, p}(\Omega) \subset L^{2}(\Omega)$ and all $\psi=\varphi^{\prime}, \varphi \in D\left(0, T_{0}\right) \subset L^{1}\left(0, T_{0}\right)$. In a similar way,

$$
\int_{0}^{T_{0}}<\mathcal{A} u_{\nu}(t), w(x)>\psi(t) d t \rightarrow \int_{0}^{T_{0}}<\chi(t), w(x)>\psi(t) d t
$$

for all $w \in W_{0}^{1, p}(\Omega)$ and all $\psi \in L^{1}\left(0, T_{0}\right)$. In fact,

$$
\int_{0}^{T_{0}}\left(\mathcal{A} u_{\nu}(t), w(x)\right) \varphi(t) d t \rightarrow \int_{0}^{T_{0}}(\chi(t), w(x)) \varphi(t) d t
$$

for all $w \in V_{m} \subset W_{0}^{1, p}(\Omega)$ and all $\varphi \in D\left(0, T_{0}\right) \subset L^{1}\left(0, T_{0}\right)$.
From 2.24$)$, we have the existence of a subsequence $\left(f\left(u_{\nu}, v_{\nu}\right) u_{\nu}\right)_{\nu}$ such that

$$
\begin{equation*}
f\left(u_{\nu}, v_{\nu}\right) u_{\nu} \stackrel{*}{\rightharpoonup} \lambda, \quad \text { in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) . \tag{2.52}
\end{equation*}
$$

Since $L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) \hookrightarrow L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right)$, we have from 2.29) that

$$
\left(f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t)\right)_{m},\left(g\left(u_{m}(t), v_{m}(t)\right) v_{m}(t)\right)_{m}
$$

are bounded in $L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right)$; Thus we guarantee the existence of a subsequence, denoted as above, such that

$$
\begin{equation*}
f\left(u_{\nu}, v_{\nu}\right) u_{\nu} \rightharpoonup \lambda, \quad \text { in } L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right) \tag{2.53}
\end{equation*}
$$

Since

$$
\begin{gathered}
\left(u_{m}^{\prime}\right)_{m}, \quad \text { is bounded in } L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right), \\
\left(u_{m}\right)_{m}, \quad \text { is bounded in } L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) W_{0}^{1, p}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega),
\end{gathered}
$$

we have by Aubin-Lions theorem, the existence of a subsequence $\left(u_{\nu}\right)_{\nu}$ such that

$$
\begin{gather*}
u_{\nu} \rightarrow u, \quad \operatorname{in} L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right) \equiv L^{2}\left(Q_{T_{0}}\right) \tag{2.54}\\
u_{\nu} \rightarrow u, \quad \text { a.e. in } Q_{T_{0}} \tag{2.55}
\end{gather*}
$$

Since, the sequences $\left(v_{m}\right)_{m},\left(v_{m}^{\prime}\right)_{m}$ satisfy the same conditions, it follows that, there exists a subsequence $\left(v_{\nu}\right)_{\nu}$ such that

$$
\begin{gather*}
v_{\nu} \rightarrow v, \quad \operatorname{in} L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right) \equiv L^{2}\left(Q_{T_{0}}\right) \tag{2.56}\\
v_{\nu} \rightarrow v, \quad \text { a.e, } \operatorname{in} Q_{T_{0}} \tag{2.57}
\end{gather*}
$$

From 2.55, 2.57, and of the hypothesis on f, g, we have

$$
\begin{align*}
f\left(u_{\nu}, v_{\nu},\right) u_{\nu} & \rightarrow f(u, v) u, \quad \text { a.e. in } Q_{T_{0}} \tag{2.58}\\
g\left(u_{\nu}, v_{\nu}\right) v_{\nu} & \rightarrow g(u, v) v, \quad \text { a.e. in } Q_{T_{0}} \tag{2.59}
\end{align*}
$$

From (2.27), we have

$$
\left\|f\left(u_{m}, v_{m}\right) u_{m}\right\|_{L^{\theta}\left(Q_{T_{0}}\right)} \leq C, \quad \forall m
$$

where $L^{\theta}\left(Q_{T_{0}}\right) \equiv L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right)$. From this and 2.58, by means of Lion's Lemma, it follows that

$$
f\left(u_{\nu}, v_{\nu},\right) u_{\nu} \rightharpoonup f(u, v) u, \text { in } L^{\theta}\left(Q_{T_{0}}\right)
$$

for $1 \leq \theta \leq \frac{n p}{3(n-p)}$. Therefore, from 2.53), we have $\lambda=f(u, v) u$ and from 2.52. This implies

$$
\begin{equation*}
f\left(u_{\nu}, v_{\nu},\right) u_{\nu} \stackrel{*}{\rightharpoonup} f(u, v) u, \quad \text { in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) . \tag{2.60}
\end{equation*}
$$

Similarly,

$$
g\left(u_{\nu}, v_{\nu},\right) v_{\nu} \stackrel{*}{\rightharpoonup} g(u, v) v, \quad \text { in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right)
$$

The convergence in 2.60 implies

$$
\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), w(x)\right\rangle \psi(t) d t \rightarrow \int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w(x)\rangle \psi(t) d t
$$

for all $w \in W_{0}^{1, p}(\Omega) \subset L^{\gamma}(\Omega)$, for all $\psi \in L^{1}\left(0, T_{0}\right)$. In fact,

$$
\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), w(x)\right\rangle \varphi(t) d t \rightarrow \int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w(x)\rangle \varphi(t) d t
$$

for all $w \in V_{m} \subset W_{0}^{1, p}(\Omega) \subset L^{\gamma}(\Omega)$, for all $\varphi \in D\left(0, T_{0}\right) \subset L^{1}\left(0, T_{0}\right)$. Taking the limit, as $\nu \rightarrow \infty$, in 2.50 and using the convergences obtained above, we have

$$
\begin{align*}
& -\int_{0}^{T_{0}}\left(u^{\prime}(t), w\right) \varphi^{\prime} d t+\int_{0}^{T_{0}}\langle\chi(t), w\rangle \varphi d t+\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w\rangle \varphi d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi d t, \quad \forall w \in V_{m}, \varphi \in D\left(0, T_{0}\right) \tag{2.61}
\end{align*}
$$

Note that, with a similar reasoning for the approximate equation 2.12 we obtain

$$
\begin{align*}
& -\int_{0}^{T_{0}}\left(v^{\prime}(t), w\right) \varphi^{\prime} d t+\int_{0}^{T_{0}}\langle\eta(t), w\rangle \varphi d t+\int_{0}^{T_{0}}\langle g(u(t), v(t)) v(t), w\rangle \varphi d t \tag{2.62}\\
& =\int_{0}^{T_{0}}\left(h_{2}(t), w\right) \varphi d t, \quad \forall w \in V_{m}, \varphi \in D\left(0, T_{0}\right)
\end{align*}
$$

Now, using the basis definition and the fact that V_{m} is dense in $W_{0}^{1, p}(\Omega)$, expressions (2.61) and 2.62 take the form

$$
\begin{align*}
& -\int_{0}^{T_{0}}\left(u^{\prime}(t), w\right) \varphi^{\prime} d t+\int_{0}^{T_{0}}<\chi(t), w>\varphi d t+\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w\rangle \varphi d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi d t, \quad \forall w \in W_{0}^{1, p}(\Omega), \varphi \in D\left(0, T_{0}\right), \tag{2.63}
\end{align*}
$$

and

$$
\begin{align*}
& -\int_{0}^{T_{0}}\left(v^{\prime}(t), w\right) \varphi^{\prime} d t+\int_{0}^{T_{0}}\langle\eta(t), w\rangle \varphi d t+\int_{0}^{T_{0}}\langle g(u(t), v(t)) v(t), w\langle\varphi d t \tag{2.64}\\
& =\int_{0}^{T_{0}}\left(h_{2}(t), w\right) \varphi d t, \quad \forall w \in W_{0}^{1, p}(\Omega), \varphi \in D\left(0, T_{0}\right)
\end{align*}
$$

Note that, the mappings $t \mapsto\left(u^{\prime}(t), w\right), t \mapsto\left(v^{\prime}(t), w\right)$ being functions in $L^{\infty}\left(0, T_{0}\right)$, they define distributions on $\left(0, T_{0}\right)$. Therefore, the first integrals of $2.63,2.64$ are the derivative of these distributions. Thus, from 2.63 we have

$$
\int_{0}^{T_{0}}\left\{\frac{d}{d t}\left(u^{\prime}(t), w\right)+\langle\chi(t), w\rangle+\langle f(u(t), v(t)) u(t), w\rangle-\left(h_{1}(t), w\right)\right\} \varphi d t=0
$$

for all $w \in W_{0}^{1, p}(\Omega)$ and all $\varphi \in D\left(0, T_{0}\right)$. Thus,

$$
\frac{d}{d t}\left(u^{\prime}(t), w\right)+\langle\chi(t), w\rangle+\langle f(u(t), v(t)) u(t), w\rangle=\left(h_{1}(t), w\right)
$$

for all $w \in W_{0}^{1, p}(\Omega)$, in $D^{\prime}\left(0, T_{0}\right)$. Similarly,

$$
\frac{d}{d t}\left(v^{\prime}(t), w\right)+\langle\eta(t), w\rangle+\langle g(u(t), v(t)) v(t), w\rangle=\left(h_{2}(t), w\right)
$$

for all $w \in W_{0}^{1, p}(\Omega)$, in $D^{\prime}\left(0, T_{0}\right)$.
If one shows that $\mathcal{A} u(t)=\chi(t)$ and $\mathcal{A} v(t)=\eta(t)$, the proof of the theorem will be complete; since the verification of the initial conditions can be done in a standard way.

The monotonocity of \mathcal{A} implies that

$$
\int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t)-\mathcal{A} w, u_{\nu}-w\right\rangle d t \geq 0, \quad \forall w \in W_{0}^{1, p}(\Omega)
$$

that is,

$$
0 \leq \int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), u_{\nu}\right\rangle d t-\int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), w\right\rangle d t-\int_{0}^{T_{0}}\left\langle\mathcal{A} w, u_{\nu}(t)-w\right\rangle d t
$$

for all $w \in W_{0}^{1, p}(\Omega)$.

$$
0 \leq \lim \sup \int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), u_{\nu}\right\rangle d t-\int_{0}^{T_{0}}\langle\chi(t), w\rangle d t-\int_{0}^{T_{0}}\langle\mathcal{A} w, u(t)-w\rangle d t
$$

for all $w \in W_{0}^{1, p}(\Omega)$. Considering the approximate equation (2.11) with $m=\nu$ and $w=u_{\nu}(t)$ we have

$$
\left(u_{\nu}^{\prime \prime}(t), u_{\nu}(t)\right)+\left\langle\mathcal{A} u_{\nu}(t), u_{\nu}(t)\right\rangle+\left\langle f\left(u_{\nu}, v_{\nu}\right) u_{\nu}, u_{\nu}\right\rangle=\left(h_{1}(t), u_{\nu}(t)\right)
$$

Therefore,

$$
\frac{d}{d t}\left(u_{\nu}^{\prime}(t), u_{\nu}(t)\right)-\left|u_{\nu}^{\prime}(t)\right|^{2}+\left\langle\mathcal{A} u_{\nu}(t), u_{\nu}(t)\right\rangle+\left\langle f\left(u_{\nu}, v_{\nu}\right) u_{\nu}, u_{\nu}\right\rangle=\left(h_{1}(t), u_{\nu}\right)
$$

Integrating from 0 the T_{0} we have

$$
\begin{align*}
\int_{0}^{T_{0}}\left\langle\mathcal{A} u_{\nu}(t), u_{\nu}(t)\right\rangle d t= & \left(u_{\nu}^{\prime}(0), u_{\nu}(0)\right)-\left(u_{\nu}^{\prime}\left(T_{0}\right), u_{\nu}\left(T_{0}\right)\right)+\int_{0}^{T_{0}}\left|u_{\nu}^{\prime}(t)\right|^{2} d t \tag{2.65}\\
& -\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}, v_{\nu}\right) u_{\nu}, u_{\nu}\right\rangle d t+\int_{0}^{T_{0}}\left(h_{1}(t), u_{\nu}\right) d t
\end{align*}
$$

Recall that $W_{0}^{1, p}(\Omega) \hookrightarrow L^{2}(\Omega)$. Since $u_{\nu}(0) \rightharpoonup u(0)$ in $W_{0}^{1, p}(\Omega)$ it implies $u_{\nu}(0) \rightarrow u(0) i n L^{2}(\Omega)$. Since $u_{\nu}^{\prime}(0) \rightharpoonup u^{\prime}(0)$ in $L^{2}(\Omega)$, it implies

$$
\begin{equation*}
\left(u_{\nu}^{\prime}(0), u_{\nu}(0)\right) \rightarrow\left(u^{\prime}(0), u(0)\right) \quad \text { in } \mathbb{R} \tag{2.66}
\end{equation*}
$$

Recall that $\left(u_{m}\left(T_{0}\right)\right)_{m}$ is bounded in $W_{0}^{1, p}(\Omega)$ and $\left(u_{m}^{\prime}\left(T_{0}\right)\right)_{m}$ is bounded in $L^{2}(\Omega)$. Thus, there exists subsequences $\left(u_{\nu}\left(T_{0}\right)\right)_{\nu}$ and $\left(u_{\nu}^{\prime}\left(T_{0}\right)\right)_{\nu}$ such that

$$
u_{\nu}\left(T_{0}\right) \rightharpoonup u\left(T_{0}\right) \quad \text { in } W_{0}^{1, p}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega)
$$

which implies

$$
\begin{gathered}
u_{\nu}\left(T_{0}\right) \rightarrow u\left(T_{0}\right), i n L^{2}(\Omega) \\
u_{\nu}^{\prime}\left(T_{0}\right) \rightharpoonup u^{\prime}\left(T_{0}\right) i n L^{2}(\Omega)
\end{gathered}
$$

Consequently,

$$
\begin{equation*}
\left(u_{\nu}^{\prime}(0), u_{\nu}\left(T_{0}\right)\right) \rightarrow\left(u^{\prime}\left(T_{0}\right), u\left(T_{0}\right)\right) \quad \text { in } \mathbb{R} \tag{2.67}
\end{equation*}
$$

We have that $\left(u_{m}^{\prime}\right)$ bounded in $L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)$. Since

$$
L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) \hookrightarrow L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right)
$$

it follows that $\left(u_{m}^{\prime}\right)$ is bounded in $L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right)$. We also have that $\left(u_{m}^{\prime \prime}\right)$ is bounded in $L^{2}\left(0, T_{0} ; H^{-s}(\Omega)\right)$. Therefore, by the Aubin-Lions Theorem, there exists a subsequence $\left(u_{\nu}^{\prime}\right)$ such that

$$
u_{\nu}^{\prime} \rightarrow u^{\prime} \quad \text { in } L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right) \equiv L^{2}\left(Q_{T_{0}}\right)
$$

Hence

$$
\begin{equation*}
\int_{0}^{T_{0}}\left|u_{\nu}^{\prime}(t)\right|^{2} d t \rightarrow \int_{0}^{T_{0}}\left|u^{\prime}(t)\right|^{2} d t \tag{2.68}
\end{equation*}
$$

Note that

$$
\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}(t), u_{m}(t)\right\rangle_{L^{\theta}, L^{\gamma}}=\left\langle f\left(u_{m}(t), v_{m}(t)\right) u_{m}^{2}(t), 1\right\rangle_{L^{\theta}, L^{\gamma}}
$$

From 2.68 we have $u_{\nu}^{2} \rightarrow u^{2}$ a.e. in $Q_{T_{0}}$. Similarly

$$
\int_{0}^{T_{0}}\left|v_{\nu}^{\prime}(t)\right|^{2} d t \rightarrow \int_{0}^{T_{0}}\left|v^{\prime}(t)\right|^{2} d t
$$

hence, we have $v_{\nu}^{2} \rightarrow v^{2}$ a.e. in $Q_{T_{0}}$, From 2.31, we have

$$
\begin{equation*}
\left\|f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2}\right\|_{L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right) \equiv L^{\theta}\left(Q_{T_{0}}\right)} \leq C, \quad \forall m \tag{2.69}
\end{equation*}
$$

From this inequality and 2.44 , we guarantee the existence of a subsequence such that

$$
\begin{align*}
f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \stackrel{*}{\rightharpoonup} \sigma & \text { in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) \tag{2.70}\\
f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \rightharpoonup \sigma & \text { in } L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right) \tag{2.71}
\end{align*}
$$

Thus, from 2.55, 2.57) and the hypotheses on f, g, we have that

$$
\begin{gather*}
f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \rightarrow f(u, v) u^{2} \quad \text { a.e. in } Q_{T_{0}} \tag{2.72}\\
g\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \rightarrow g(u, v) u^{2} \quad \text { a.e in } Q_{T_{0}} \tag{2.73}
\end{gather*}
$$

From 2.69, 2.72) and the Lions' Lemma it follows that

$$
f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \rightharpoonup f(u, v) u^{2} i n L^{\theta}\left(Q_{T_{0}}\right) \equiv L^{\theta}\left(0, T_{0} ; L^{\theta}(\Omega)\right), \quad \text { for } 1 \leq \theta \leq \frac{n p}{3(n-p)}
$$

From this convergence and 2.71, we have $\sigma=f(u, v) u^{2}$ and from 2.70,

$$
\begin{equation*}
f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2} \stackrel{*}{\rightharpoonup} f(u, v) u^{2} \quad \text { in } L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) . \tag{2.74}
\end{equation*}
$$

Similarly,

$$
g\left(u_{\nu}, v_{\nu}\right) v_{\nu}^{2} \xrightarrow{*} g(u, v) u^{2} i n L^{\infty}\left(0, T_{0} ; L^{\theta}(\Omega)\right) .
$$

The convergence (2.74) implies

$$
\left\langle f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2}, \psi\right\rangle \rightarrow\left\langle f(u, v) u^{2}, \psi\right\rangle, \quad \forall \psi \in L^{1}\left(0, T_{0} ; L^{\gamma}(\Omega)\right)
$$

or better

$$
\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}, v_{\nu}\right) u_{\nu}^{2}, w(x)\right\rangle \varphi(t) d t \rightarrow \int_{0}^{T_{0}}\left\langle f(u, v) u^{2}, w(x)\right\rangle \varphi(t) d t
$$

for all $w \in L^{\gamma}(\Omega)$ and all $\varphi \in L^{1}\left(0, T_{0}\right)$. When fixing $w \equiv 1$ and $\varphi \equiv 1$, we have

$$
\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), u_{\nu}(t)\right\rangle d t=\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}^{2}(t), 1\right\rangle d t
$$

which approaches

$$
\int_{0}^{T_{0}}\left\langle f(u(t), v(t)) u^{2}(t), 1\right\rangle d t=\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), u(t)\rangle d t
$$

hence

$$
\begin{equation*}
\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), u_{\nu}(t)\right\rangle d t \rightarrow \int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), u(t)\rangle d t \tag{2.75}
\end{equation*}
$$

as $\nu \rightarrow \infty$. Therefore, taking the limit in (2.65), using the convergence (2.66), (2.67), 2.68 and 2.75, as $\nu \rightarrow+\infty$, we have

$$
\begin{aligned}
\lim \sup \int_{0}^{T_{0}}\left\langle A u_{\nu}(t), u_{\nu}(t)\right\rangle d t= & \left(u^{\prime}(0), u(0)\right)-\left(u^{\prime}\left(T_{0}\right), u\left(T_{0}\right)\right)+\int_{0}^{T_{0}}\left|u^{\prime}(t)\right|^{2} d t \\
& -\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), u(t)\rangle d t+\int_{0}^{T_{0}}\left(h_{1}(t), u(t)\right) d t
\end{aligned}
$$

From this equality and 2.75, we have

$$
\begin{align*}
0 \leq & \left(u^{\prime}(0), u(0)\right)-\left(u^{\prime}\left(T_{0}\right)-u\left(T_{0}\right)\right)+\int_{0}^{T_{0}}\left|u^{\prime}(t)^{2}\right| d t-\int_{0}^{T_{0}}\langle f(u, v) u, u\rangle d t \\
& -\int_{0}^{T_{0}}\langle\chi(t), w\rangle d t-\int_{0}^{T_{0}}\langle A w, u(t)-w\rangle d t+\int_{0}^{T_{0}}\left(h_{1}(t), u(t)\right) d t \tag{2.76}
\end{align*}
$$

for all $w \in W_{0}^{1, p}(\Omega)$. From the approximate equation 2.11, we have
$\left(u_{\nu}^{\prime \prime}(t), w\right)+\left\langle A u_{\nu}(t), w\right\rangle+\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), w\right\rangle=\left(h_{1}(t), w\right), \quad \forall w \in V_{m}, \nu \geq m$. Now, let $\varphi \in C^{1}\left(\left[0, T_{0}\right]\right)$. Then

$$
\begin{aligned}
& \int_{0}^{T_{0}}\left(u_{\nu}^{\prime \prime}(t), w\right) \varphi+\int_{0}^{T_{0}}\left\langle A u_{\nu}(t), w\right\rangle \varphi+\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), w\right\rangle \varphi \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right)
\end{aligned}
$$

for all $w \in V_{m}$ and all $\nu \geq m$. Setting

$$
\begin{aligned}
& \left(u_{\nu}^{\prime}(t), w\right) \varphi\left(T_{0}\right)-\left(u_{\nu}^{\prime}(0), w\right) \varphi(0)-\int_{0}^{T_{0}}\left(u_{\nu}^{\prime}(t), w\right) \varphi^{\prime} d t \\
& +\int_{0}^{T_{0}}\left\langle A u_{\nu}(t), w\right\rangle \varphi d t+\int_{0}^{T_{0}}\left\langle f\left(u_{\nu}(t), v_{\nu}(t)\right) u_{\nu}(t), w\right\rangle \varphi(t) d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi(t) d t, \quad \forall w \in V_{m}, \varphi \in C^{1}\left(\left[0, T_{0}\right]\right), \nu \geq m
\end{aligned}
$$

Taking into account the previous convergence statements, it follows that

$$
\begin{aligned}
& \left(u^{\prime}\left(T_{0}\right), w\right) \varphi\left(T_{0}\right)-\left(u^{\prime}(0), w\right) \varphi(0)-\int_{0}^{T_{0}}\left(u^{\prime}(t), w\right) \varphi^{\prime} d t \\
& +\int_{0}^{T_{0}}\langle\chi(t), w\rangle \varphi d t+\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w\rangle \varphi(t) d t \\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi(t) d t, \quad \forall w \in V_{m}, \varphi \in C^{1}\left(\left[0, T_{0}\right]\right)
\end{aligned}
$$

Using a basis argument and the fact that V_{m} is dense in $W_{0}^{1, p}(\Omega)$, it follows that

$$
\begin{align*}
& \left(u^{\prime}\left(T_{0}\right), w\right) \varphi\left(T_{0}\right)-\left(u^{\prime}(0), w\right) \varphi(0)-\int_{0}^{T_{0}}\left(u^{\prime}(t), w\right) \varphi^{\prime} d t \\
& +\int_{0}^{T_{0}}\langle\chi(t), w\rangle \varphi d t+\int_{0}^{T_{0}}\langle f(u(t), v(t)) u(t), w\rangle \varphi(t) d t \tag{2.77}\\
& =\int_{0}^{T_{0}}\left(h_{1}(t), w\right) \varphi(t) d t, \quad \forall w \in W_{0}^{1, p}(\Omega), \varphi \in C^{1}\left(\left[0, T_{0}\right]\right) .
\end{align*}
$$

Observing that the set of the linear combinations of the type $w \varphi$, with $w \in W_{0}^{1, p}(\Omega)$ and $\varphi \in C^{1}\left(\left[0, T_{0}\right]\right)$, is dense in the space

$$
V=\left\{v \in L^{2}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right), v^{\prime} \in L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right)\right\}
$$

It follows that 2.77) is true in the space V.
Using the fact that,

$$
\begin{gathered}
u \in L^{\infty}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) \hookrightarrow L^{2}\left(0, T_{0} ; W_{0}^{1, p}(\Omega)\right) \\
u^{\prime} \in L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right) \hookrightarrow L^{2}\left(0, T_{0} ; L^{2}(\Omega)\right)
\end{gathered}
$$

we obtain that $u \in V$. So 2.77) takes the form

$$
\begin{aligned}
& \left(u^{\prime}\left(T_{0}\right), w\right) \varphi\left(T_{0}\right)-\left(u^{\prime}(0), w\right) \varphi(0) \\
& -\int_{0}^{T_{0}}\left(u^{\prime}(t), u^{\prime}(t)\right) d t+\int_{0}^{T_{0}}\langle\chi(t), u(t)\rangle d t+\int_{0}^{T_{0}}\langle f(u, v) u, u\rangle d t
\end{aligned}
$$

$$
=\int_{0}^{T_{0}}\left(h_{1}(t), u(t) d t\right.
$$

Substituting this expression in 2.76 , it follows that

$$
0 \leq \int_{0}^{T_{0}}\langle\chi(t), u(t)-w\rangle d t-\int_{0}^{T_{0}}\langle\mathcal{A} w, u(t)-w\rangle d t, \quad \forall w \in W_{0}^{1, p}(\Omega)
$$

Let us take $w=u(t)+\lambda v(t), \lambda>0$. Thus

$$
0 \leq-\int_{0}^{T_{0}}\langle\chi(t), \lambda v(t)\rangle d t+\int_{0}^{T_{0}}\langle\mathcal{A} u(t)+\lambda v(t), \lambda v(t)\rangle d t, \forall w \in W_{0}^{1, p}(\Omega)
$$

which implies

$$
0 \leq-\int_{0}^{T_{0}}\langle\chi(t), \lambda v(t)\rangle d t+\int_{0}^{T_{0}}\langle\mathcal{A}(u(t)+\lambda v(t)), \lambda v(t)\rangle d t
$$

Dividing the previous inequality by λ and letting $\lambda \rightarrow 0^{+}$, by the hemicontinuity of \mathcal{A}, we have

$$
0 \leq-\int_{0}^{T_{0}}\langle\chi(t), v(t)\rangle d t+\int_{0}^{T_{0}}\langle\mathcal{A}(u(t)), v(t)\rangle d t, \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

Hence

$$
0 \leq \int_{0}^{T_{0}}\langle\mathcal{A} u(t)-\chi(t), v(t)\rangle d t, \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

Now, for $\lambda<0$ it follows that

$$
\int_{0}^{T_{0}}\langle\mathcal{A} u(t)-\chi(t), v(t)\rangle d t \leq 0, \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

Therefore,

$$
0 \leq \int_{0}^{T_{0}}\langle\mathcal{A} u(t)-\chi(t), v(t)\rangle d t \leq 0, \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

Thus $\mathcal{A} u(t)=\chi(t)$. Similarly, $\mathcal{A} v(t)=\eta(t)$. This completes the proof of the theorem.

References

[1] Biazutti. A; Sobre uma Equação não Linear de Vibrações: Existência de Soluções Fracas e Comportamento Assintótico. Phd Thesis, IM-UFRJ, Rio-Brazil (1988).
[2] Brezis, H; Analyse Fonctionelle-theorie et Applications. Masson, Paris (1983).
[3] Castro, N. N; Existence and asymptotic behavior of solutions for a nonlinear evolution problem. Appl. of Mathematics, 42(1997), No. 6, 411-420.
[4] Clark, M.R., Lima, O.A; On a class of nonlinear Klein-Gordon equations. Proceedings of 52 Seminário Brasileiro de Análise (2000), 445-451.
[5] Clark, M.R., Maciel, A.B; On a mixed problem for a nonlinear $K \times K$ system. IJAM, 9, No. 2(2000), 207-219.
[6] Clark, M.R., Clark, H.R., Lima, O.A; On a Nonlinear Coupled System. International Journal of Pure and Applied Mathematics. Vol. 20 No. 1 (2005), 81-95.
[7] Lions, J.L; Quelque Methodes des Resolution des Probléms aux Limites non Lineaires. Dunod, Paris (1969).
[8] Medeiros, L.A., Menzala, G.P; On a mixed problem for a class of nonlinear Klein-Gordon equation. Acta Math Hung., 52, No. 1 - 2(1988), $61-69$.
[9] Medeiros, L.A., Menzala, G.P; On the existence of global solutions for a coupled nonlinear Klein-Gordon equations. Funkcialaj Ekvacioj, 30 (1987), 147-161.
[10] Medeiros, L.A., Miranda, M.M; Weak Solutions for the system of nonlinear Klein-Gordon equation. Annali di Matematica Pura ed Applicata, IV, CXLVI (1987), 173-183.
[11] Segal, I; Nonlinear partial differential equations in quantum field theory. Proc. Symb. Appl. Math. A.M.S., (1965), 210-226.

Osmundo A. Lima
Universidade Estadual da Paraíba, DME, Campina Grande - PB, Brazil
E-mail address: osmundo@hs24.com.br
Aldo T. Lourêdo
Universidade Estadual da Paraíba, DME, Campina Grande - PB, Brazil
E-mail address: aldotl@bol.com.br
Alexandro O. Marinho
Universidade Federal da Paraíba, DM, João Pessoa - PB, Brazil
E-mail address: nagasak@ig.com.br

[^0]: 2000 Mathematics Subject Classification. 35L85, 35L05, 35L20, 35L70, 49A29.
 Key words and phrases. Weak solutions; coupled system; monotonic operator. (C) 2006 Texas State University - San Marcos.

 Submitted March 3, 2006. Published October 16, 2006.
 O. A. Marinho is partially supported by CNPq-Brazil.

