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WEAK SOLUTIONS FOR A STRONGLY-COUPLED NONLINEAR
SYSTEM

OSMUNDO A. LIMA, ALDO T. LOUREDO, ALEXANDRO O. MARINHO

ABSTRACT. In this paper the authors study the existence of local weak solu-
tions of the strongly nonlinear system

u” + Au+ f(u,v)u = hy
v + Av + g(u,v)v = ha

where A is the pseudo-Laplacian operator and f, g, h1 and hy are given
functions.

1. INTRODUCTION

Let © be an open and bounded subset in R™ with smooth boundary I' and let
T be a positive real number. In the cylinder @ = Qx]0, T, with lateral boundary
> =Tx]0,T[, we consider the nonlinear system

' 4+ Au+ f(u,v)u = hy
V" 4+ Av + g(u,v)v = ho
w(0) = ug, v(0) =vy, ' (0)=wuy, v'(0)=uw
u=v=0 onX=Ix]0,T]

where

"9 / 0u p—2 OU
Au= ;axi@axi' &ri)’ p>2
is the pseudo-Laplacian operator, f is a continuous function in the first variable and
Lipschitz in the second variable and g is a Lipschitz’s function in the first variable
and continuous in the second variable, with f(0,0) = ¢(0,0) = 0 and ug, vo, u1, v1,
h1 and hy are given functions.

When p > 2, many authors studied the system (l.1). For instance, we can
mention: Segal [I1], where the physical meaning of is presented, Medeiros
and Menzala [9], Medeiros and M. Miranda [I0], Castro [3], Biazutti [1I] and more
recently, Clark and Lima [6] showed the existence, a local solution and its uniqueness
for the system

u' — Au+ f(u,v)u=h; inQ=Qx(0,T)
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v — Au+ g(u,v)v = hy inQ
w(0) =ug, u'(0)=wu; inQ
v(0) = vy, ¥'(0)=wv; inQ
u=0, v=0 onX=TIx(0,T),
where the functions f and ¢ satisfying the same conditions of the problem (1.1).
Castro [3] showed the existence of solution for the system
u” + Au— Au' + o] ulfu = fi in Q
v+ Av — AV |u)P TP ulfo = fo in Q
w(0) =ug, «(0)=wu; inQ
v(0) =vy, v'(0)=wv; inQ
u=0, v=0 on,
where A is the pseudo-Laplacian operator. We can show that the functions f(u,v) =
lu|P2[v|P and g(u,v) = |v|PT2|u|?,p > —1, satisfy the conditions of the system
(1.1). Consequently the above system, without the dissipations Au' and Av’, is
a particular case of (x). Thus, we see that ([L.1) generalizes the above mentioned
problems.

To show the existence of a local solution for (1.1]), we encounter following tech-
nical difficulties:

(i) The choices of the functional spaces;

(ii) In the a priori estimate for ./, we had that to use the projection operator,
since, to derive the approximated equation we will have much technical
difficulties because of the pseudo-Laplacian operator in the equation;

(iii) In the passage to the limit, we use strongly the fact that A is a monotonic
and hemicontinuous operator.

We remark that these difficulties do not appear in [6].

Notation. We represent the Sobolev space of order m in € by
Wm™P(Q) ={u € LP(Q) : D% € LP(Q)V|a| < m},
with the norm
1/p
el = ( ) |Da“‘ir’(ﬂ)) yu e WP(Q),1 <p < oo.
la|<m

Let D(£2) be the space of test functions in Q and by W;""(2) we represent the
closure of D(Q) in W™?(Q). The dual space of W{"?(Q) is denoted by W~ ()
with p’ is such that % + i = 1. We use the symbols (+,-) and | - |, to indicate the
inner product and the norm in L?(§2). We use (-, '>W_1YP(Q),W01,p(Q) to indicate the
duality between W=7 (€2) and W, (Q) and || - ||o to indicate the norm W, *(£2).
The pseudo-Laplacian operator A is such that
A WeP(Q) — WP (Q)
u — Au
and it satisfies the following properties:
e A is monotonic, that is, (Au — Av,u — v) > 0,Yu,v € W, (Q);
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e A is hemicontinuous, that is, for each u,v,w € Wol (Q) the function X —
(A(u + Av),w) is continuous in R;
o (Au(t),u(®))y-1., " (Q)x W, P (Q) = [ull6;
o (Au(t), v (t)) 1.0 (Q)leP = pdt” ullg, & o=
o [l Au) -1 () < Cllulp™, Where C is a constant;

We will use the same notation for the operator P and its restrictions, as well as for
the operator P*.

The next lemma plays a central role in the proof of the Existence Theorem. Its
proof can be found in [6].

Lemma 1.1. Let ¢ be a positive real function, o, 8 and 7y, positive real constants,
with v > 1, such that

t
s <a+s [ {o6s)+67()ds
0
Then, there exists Ty € R, with 0 < Ty < T, such that ¢ is bounded in [0, Ty|.

Definition. A local weak solution of the problem (|l.1)) is a pair of functions
u=u(x,t), v =v(z,t) defined for all (z,t) € Qr, = Q2 x (0,Tp), and Ty > 0 fixed,
satisfying

u,v € L*(0, To; Wy P ());

u', v € L®(0,To; L*(Q));

%(u w) + (Au, w) + (f (u,v)u,w) = (hi,w),Yw € Wy P (Q)in D'(0, Tp);

d
a(v w) + (Av, w) + (g(u,v)v,w) = (ho,w), Yw € WyP(Q) in D'(0,Tp);
w(0) = ug, u'(0)=wu1, v(0)=1vy, v'(0)=n01.

2. EXISTENCE RESULTS

Theorem 2.1. Let f and g be functions of two variables such that f is continuous
in the first variable and Lipschitz in the second variable and g is Lipschitz in the
first and continuous in the second variable, with f(0,0) = g(0,0) = 0.

hi,hy € L*(0,T; L*(Q)); (2.1)
ug, vg € Wy P(9); (2.2)
uy,v1 € LQ(Q) (23)

Then it exists Ty > 0, Ty € R and functions v : Qr, — R and v : Q, — R
satisfying
u,v € L*(0, To; Wy P ());
u' v € L0, Ty; L*(R)); (2.5)
d
%(u w) + (Au,w) + (f(u,v)u,w) = (hi,w), Yw € WyP(Q), in D'(0,Tp);
(2.6)
i(v w) + (Av,w)+)g(u,v)v,w) = (hg,w), Yw e Wy P(Q), in D'(0,Tp); (2.7)
(2.8)

dt
u(0) = up, v(0) = vp;
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' (0) =uy, 0'(0)=uv;. (2.9)
The main tools in the proof of this theorem are the Faedo-Galerkin method and
compactness arguments. Let H§(), with s > m = n(% - 1%) + 1 a separable

Hilbert space such that HS () — VVO1 "P(Q), is a continuous and dense immersion.
In H§(S2), there exists a complete orthonormal hilbertian base {w;};en in L*(Q).
We consider V,,, = [wy,...,wy] the subspace of H§(Q2) generated by the m first
vectors of the base {w;};en. Also, we have the following chain of continuous and
dense immersions.

HE(Q) — WiP(Q) — L*(Q) — W1 (Q) — H~*(Q). (2.10)

We will divide the proof in three steps: (i) Approximated Problem, (ii) A Priori
Estimates I and (#i4) A Priori Estimates I1.

Approximated Problem. We want to find u,,(t), v, (t) in V,, satisfying the ap-
proximated problem.

(t (8), ) + (At (8), w) + (f (i (8), 0 (8)Juma (8), w) = (R (t),w),  (2.11)
(v (8), w) + (Av (), ) + (g (U (1), Vi (1) U (£), w) = (h2(t),w),  (2.12)

for all w € V,,,; and
Um (0) = UOm,, U;n (0) = Ulm,

2.13
Um (0) = Vom, ’U;n(()) = Vim; ( )

So that
; 1,p .
Uom — UQ, Vom — Vo, in Wy (Q2);
Ul — U1,  Vim — U1, in L2(9).

It can be shown that the above system satisfies the Caracthodory’s conditions;
therefore there exists solutions w,,(t), vy, (t) in [0,ty,), t, < T satisfying (2.11)—
(2.13).

A priori estimates I. Let us consider w = 2u/,(¢) in (2.11)). It follows that
2ty (£), g (1)) + 2( At (£), 11, () + 2(f (W (£), 0 (£) )10 (), 15 (1))
= (ha(t), up,, (1))

Thus

d / 2 2 d P ’ /

g Y OF + 22l (©)lf = 20k (8), 1 (8)) = 20F (i (8), 0 (8) e (£), 2, (8))
Similarly, setting w = 2v],(¢) in it follows that

GO 2 2 m (1 = 20h2(6), 10 () = 20 (8,0 (6 (), 05 1)

Summing the two equalities above, then integrating from 0 to ¢, ¢ < t,,, and using

the Cauchy-Schwarz’s inequality and ab < GQ'QH’Z, we obtain

2 2
[ (B + 07, (8)* + HHum @Il + Zllom )6

2 2
< [ur, (0) + v}, (0)* + Hum Ol + Zllvm (05

+2 / / 1t (), 0 (5)) i () [ ()



EJDE-2006/130 WEAK SOLUTIONS 5

+2 / /Q 19t (5), O ()] [0 () [0 (5)] s
T

t
[P 4 1P ds + [ (O + o))
0 0
From (2.1)), , and , it follows that
2 2
Jur, ()% + [or, (8)[* + Ellum(t)\\g + ];va(t)”g

<c+ / (It (5)[2 + o ()2 ds
N (2.14)
2 / 1t (), 0 (5)) [ (5) [ ()

+2/0 |9t (5), vm ()| [vm ()07, (5)]ds.

From the Sobolev immersions it is well known that

np

Lr LI(Q 1<q< .
VVO()(_> ()’ v q n—op

. 1,1 1 _ :
Let a, 8 > 0, such that E+B+§—1,Wlth1§a,ﬂ§%.

Now, using Holder and Young inequalities, the inequality ab < # and the
hypothesis over f, we have

2 / /Q 1 Gt (), 0n ()]t (5) 1 (5)

<cf t [ o @l s)as
<0 [ (Lm0 ([ 1) ([ )

t
e / [ (5)] ey [t ()] s o () 2y s

toq b1 )
< _ p r - —1 ’
> C/O {p\vm(S) Lo(Q) + P ‘Um(5)|Lﬁ(Q)}'um(8)|L2(Q)ds

1 1 (-1 2
o) oy + (s ot S (AP

1 1 -2
om () oy + )y + 5= P (5) 12y s

p—2.2
D) [ ()30 s

1 1 p—2

L lom )y + lm(5)1 o0 + ﬁ} + i ()32 s
1 —

{ 2 |Um(3)|iﬂ(9) + Pmm( s) i%(g) + (zf

1 1
ﬁ|vm(5)|i€x(g) + P|UM(S)@%(Q) +1+ |U;n(5)|%2(9)}d5-
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Since WyP(Q) < L*(Q) and W, *(Q) — LP(RQ), it follows that

//|f (), U (5)) |t (5) 18, () s

(2.15)
<c / {5 10m N + 5 ()E + 1+ (9o s
0o \P
Similarly, we have
t
2 / / 19t (5), 0 (5)) m () [0 ()]s
(2.16)
<c / fnum )2 vam( Y+ 1+ 0] (3) 30 Jds.
Substituting, (2.15) and (2.16) in (2.14]),
2 2
el ()2 + [0l (D + 2 et I + 21l (1) 2
p p
t t
<c+ic / ()% + o ()[2)ds + C / et ()22 + [om() 127}
t
+C’/ 2ds
- . . (2.17)
<c+c / ()] + v ()[2)ds + C / [t ()22 + [om () 127}
T
+C’/ 2ds
0

<c+tc / ([l ()% + () 2)ds + C / [t ()27 + lom ()27

Note that

2, 9 2, 9 2 p . 2 »
— |, (O] + =, ()7 + =llum @)l + =|vm(t
|t ()] v (£)] [[um (2) [l [[om (£

2 2
< Jup, (O + Jon (O + =[um @5 + = [lom (@)1]5,
p p
with p > 2, It follows that

U (O + (O + e ()15 + [ (O]
<C+0 [ (P +1n@P)ds+C [ {un I+ lon)I}
<00 [ {nl) + Pl + (lun I+ lom ()15’
21 ()2 + e () ()2 + [ ()]E) J s
40 [P + 10060 + T (E + o (s

=0 C/o [ () + [0 ()2 + (I + lom(s) 2} 2ds
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t
+ C/O {[n ()P + [on ()7 + llum ($)5 + l[om ()]1E }ds.
By setting
A(t) = Jun, () + [0, ()1 + [[um ()G + [lom (£)]5,

the above inequality can be rewritten as

p(t) < C+O/0 {6(s) + ¢*(s) }ds. (2.18)

Then, by Lemmal[T.1] there exists Ty € R, with 0 < Ty < T', such that ¢ is bounded
in [0,7p). From this, we have
[ty (1) + [0, (O)* + [um (D)6 + [[om ()[5 < C - VE€[0,Tp), YmeN. (2.19)

Therefore, by prolongation results, we can extend the solutions u,, (t), vy, (t), to the
interval [0, Tp].
We will estimate, now, the second derivatives !/ (¢), v/ (t). Since the procedure,

> Ym

to estimates !/ (t) and v/, (t) are similar, we will fix our attention only on bounding
U (1)-
2.1. A priori Estimates II. Let P, : L?(Q2) — V,, C L*(Q) be

m

Pr(h) =Y (h,w))w,

j=1
the projection operator on L?({2). Observe that P, = P and P, € L(HZ(Q)).
Now, by the approximate equation (2.12)),

(i (8), W) + (At (8), 0) + (f (U (), 0 () ) (), w) = (R (t), w) (2.20)
for all w € V,,,. By the chain of immersions we have
( (8) + Aun (t) + f (g (£), 0 (8) ) () — P (£), w) r-2(0), m502) = 0,
for all w € V,,,. From this equality and the fact that P,,w = w,Vw € V,,, we have
P (8) & At (£) + f (i (£), 0 (8) o (8) = 21 (£)) = 0

in V,,,. From this, by the linearity of PZ, the fact that u/ € V;,, and by the
continuous and dense immersions, we have

Uy, (t) = =Py (At () — P (f (Ui (), v (8) )t (£)) 4 Py, (P (1))
in H=*(Q2). Thus
[t ()| 12 (2) < 1Py (f (s (£) 03 (8) )0 ()| 112 (2)
+ 1P, (At () | -+ ) + 1P (1 (8)) | -+ ()

With P,, € L(Hg(Q)) which implies ) = .c( ~5(Q)). Since WP (Q) —
H~#(Q), it follows that P* € L(W =1 (Q), H*(Q)), Then

125 (A () 11+ () < Cll (Attan (D) lyyr-1.0 () < Cllum (@)IIF - (2.21)
Since, L*(Q) — H~%(Q), we have P}, € L(L*(Q), H *(Q). Furthermore,
1P (P () 5120y < Clha(®)]22(0)- (2.22)

Now, 10 boud the tert |7 (i (1), () ()1 o 1t 3 mocessary o plce
f(um(t), vm(t))um(t) in some space contained in H~*(€2). Let 7,6 € [1, ;*&], such
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that % + § = 1. Since WyP(Q) — LI(Q) for 1 < g < &, we have, in particular
WyP(Q) < L7(2). Therefore,
(L) =W (@),
From the chain of immersions (2.10)), we have W12 (Q) — H~5(Q), from where
L(Q) = (L(@) — H*(2) (2.23)

Now, it is sufficient to show that f(um, (), vim(t))um(t) € LY(Q). From the Holder
inequality and the hypothesis on f we have

[ (), 0 () Yt () P = / | (), 0 (5)) i () i
Q Q
< /2 |vm<s>>|f’|um<s>|f’dx

L
< ([ om0 )" ([ umte?)?

(2.24)
where C is the Lipschitz constant, associated f and % + % =1.
If o/ < n”—_pp and 03 < "p , then

1 np 1 np
0<——— and < ———,
T o (n—p) B (n—p)
from which,
1 1, np
20 <
G+ )L
Then, we have
1<6< np np

= < .
2(n—p) n-p
Noticing that W, ?(Q) < L (Q) and W, *(2) < L% (Q), we have

/Q [f (W (5), v ()t ()| d < CF o ()| ro [ (DI 06 < Cllem (D)5 ]lvm ()15

From this estimate and (2.19)), it follows

[ 15 0(5) 0 (5 () < (2.25)
that is,
F (i (£), 0 () (£) € LO(Q) = (L(Q))', for 1<0 < %, (2.26)
and
1 f (i (t) vm (8))um (t) | o) < C,  Ym, t € [0, To] (2.27)
Similarly, we have
19 (o (), v ()0 (D) 1oy < C, Y, £ € [0,T)] (2.28)

We will also need that f(u, (t), v, (t))u2,(t) € L(Q). In fact, by Holder inequal-
ity,

/ [ (i (5), vm () )2, (5) | der
Q
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::jé|f<um<sxvnxs»|%uixsn0dx
s;c?j/|vm<s»|%unxsnﬂumxs>ﬁdx

<CH( [ o) ([ fumteni?)’ /mm )

where C' is the Lipschitz constant, associated to f and % st3 L1 £ = =1.1If0f < A
06 < ”_p and fw < "” then

p?

t9<1 w1
—&n—p ~dn—p “wn-—p
which implies
1 1 1, np
W< (=4+=+=
_(£+5 w)n—p
Then
1<o< 2 np

< < )
3n—p) n-—-p

Observing that W, P () < L%(Q) , WP (Q) — L9 (Q) and WyP(Q) — L¥*(Q),

it follows that

/ [ (i (), vm () ()| d < CF v (8)|Feo [t ()| o [t (1) L0

(2.29)
< Cllum O3 lom D)]15-
This estimate and lead us to
[ 1) om($)) i (5) e < o
Q
that is,
F (U (), v ()2, (£) € LO(Q) = (L7(Q))', for 1 <6< ﬁ, (2.30)
Lf (i (), v () )i, ()| Lo ) < €, ¥im, ¢ € [0, To) (2.31)
Similarly, we have
||g(um(t) U ()0 (W) o) < O, Ym, t € [0, ] (2.32)

Note that if 0 < g, we still have (2.26) and (2.30), because s < 522,
Thus, as LY (Q) — H (), we have that P¥ € L£(L(Q), H~*(Q2)). Therefore

([P (f (tan (£), v (8) )t () | =2 (02) < Ol (un (8), v (8) )i (D) [ 00y (2-33)
Hence, from the estimates (2.21]), (2.22)) and (2.33]). we have

et () a2 () < CLllm(OIG + 1L W (8), v ()t (8) | o 2y + [Ba (£)]}-

From this inequality, it results

To
Ot <o [ @ Vacs [ o

To
+A 1 (o), ()t ()2 e}
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Therefore, from (2.17] and (2.1)), we conclude that
”um(t)HL?(O,To;H*S(Q) <C, VmeN (2.34)
Arguing in a similar way, one can deduce that

o (Ol 20,70+ (2) < C,¥m € N. (2.35)

From ([2.19)), we have
lum@llo <C and ||vn(t)]o <C, Vm, tel0,Tp].
lur, ()] <C and |v],(t)] < C, Vm, te€|0,To).

From where, it follows that esssup,c(o 1, [[um(t)llo < C; that is

Similarly, we have

H’Um”L‘X’(O,To;WOl‘p(Q)) S C, Vm S N, (237)
|t |l oo (0,10:22¢0)) < €, Ym €N; (2.38)
vl Loe 0,522 < €, Vm €N (2.39)

Therefore, from [2.27), (2-28), @.31), @.32), (-34), [@.35), @.36), (2-37), [-39),
(2.39), we have

(U )ms (Um)m  are bounded in L™ (0, To; Wy P (Q)); (2.40)

(ul)m, (Vh,)m  are bounded in L>(0, Tp; L*(2)); (2.41)

(u? Y, (V) are bounded in L2(0, Tp; H*(2)); (2.42)

(f (s U )t )oms (9 (U s Uy )0 ) are bounded in L= (0, Tp; L(Q));  (2.43)
(f (U, Vo )U2 )iy (G (Ui U )02, )i are bounded in L>(0,Tp; L(Q));  (2.44)

Furthermore, since A is bounded, we have

(At )m, (Avp)m  are bounded in L (0, To; W17 (Q)).

Taking Limits. From the estimates and Banach-Alaoglu-Boubarki theorem guar-
antee the existence of subsequences (u, )., (V) Of (Um)m, (Vm)m, respectively, such
that

u, = u, v, 2w in L0, Ty; WP (). (2.45)
ul, B, v, B0l in L(0, Ty; L2(Q)). (2.46)
u? Sl v B0 in L0, To; H5(Q)). (2.47)
Au, =y, Av, 2 in L0, To; W' (Q)). (2.48)
As L?(0,Ty; H=*(2)) is reflexive, the convergence becomes
u! — v =" in L2(0,To; H*(2)). (2.49)

Let us consider the approximate equation ([2.11)) in the form
(u/u/(t),w) + <Auu(t)7w> + <f(uu,(t)avu,(t))uu(t)’w> = (hl(t)a w) Yw e Vip, v2>m
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Now, multiplying the above equality by ¢ € D(0,Tp) and integrating from 0 for Ty
we obtain

To To To
/ (ul(8), w)pdt + / (A (8), w)pdt + / F at (£), 0, (£) Y (£), ) ot
0 0 0

To
:/ (h1(t), w)pdt Yw € Vi, v > m.
0

Integrating by parts, we obtain
To To To
- [ [ w0 wbpdtt [ 0.0, 000,00t
0 0 0

To
:/ (h1(t), w)dt Yw € Vi, v > m.
0

(2.50)
With u), = o/ in L>(0, To; L2(Q)) = (L'(0, To; L2(2))) then
(uy, 0) — (W', 0), Vo € L(0,To; L*(2)). (2.51)

v

Convergence with (ul,,¢) = fOTO(ufj(t),¢(t))dt, and assuming ¢(z,t) =
w(z)y(t) imply hat
To To
[ oo = [0, u@)ind o e @), e L0.T).
0 0

Consequently, for all w € L?(Q2) and all ¥ € L'(0,Tp),

To To
[ i — [ @, u@)ed.
0 0
In fact,
To To
| o wendwa = [ wo.uw)e o
for all w € V,,, € WyP(Q) € L*(2) and all ¢ = ¢/, ¢ € D(0,Tp) C L'(0,Tp). In a
similar way,
/ i < Auy, (t), w(z) > (t)dt — / i < x(t),w(x) > (t)dt,
0 0

for all w € W, P(Q) and all ¢ € L'(0,Tp). In fact,

T[) TO
/ (Auy (1), w(z))p(t)dt — / (x(1), w(z))p(t)dt,
0 0

for all w € V;,, € Wy?(Q) and all ¢ € D(0,Tp) € L*(0,Tp).
From (2.24), we have the existence of a subsequence (f(u,,,v,,)u,), such that

Fuy vy u, =X, in L(0, To; L2()). (2.52)
Since L°°(0, Tp; L%(Q)) — LP(0, Ty; L%(Q)), we have from that
(f (wmn (1), v ()1 (8) )y (9 (i (), Vi (£) )0 (£) )i

are bounded in L?(0, Tp; L?(Q)); Thus we guarantee the existence of a subsequence,
denoted as above, such that

fluy, v, )u, — A, in LY(0, Tp; L°(2)). (2.53)
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Since
(ul,)m, is bounded in L°°(0, Tp; L*(9)),
(Um)m,  is bounded in L™ (0, To; Wy P (Q))Wo* ()

c

= L*(Q),
we have by Aubin-Lions theorem, the existence of a subsequence (u, ), such that

u, — u, inL*(0,Tp;L*(Q)) = L*(Qr,) (2.54)

Uy, — u, a.e. in Qr, (2.55)

Since, the sequences (Vpm)m, (v),)m satisfy the same conditions, it follows that, there
exists a subsequence (v, ), such that

v, — v, inL?(0,Ty; L*(Q)) = L*(Qr,) (2.56)
v, — v,  ae, inQr, 2.57)
From (2.55)), (2.57)), and of the hypothesis on f, g, we have
fluw,, v )uy — flu,v)u, ae. in Qr. (2.58)
g(uy,,vy)v, — g(u,v)v, ae. in Q. (2.59)

From ([2.27)), we have
||f(um7U7rL)Um||L9(QTO) < O, Vm,

where L%(Qz,) = L°(0,Tp; L(Q)). From this and (2.58), by means of Lion’s
Lemma, it follows that
f(uy vy )u, — f(u,v)u,in LY (Qr,),

for 1 <6< %. Therefore, from (2.53)), we have A = f(u,v)u and from (2.52).
This implies

F(uy vy )u, = flu,v)u, in L0, To; LP(Q)). (2.60)
Similarly,
g(uy,, v, ), = g(u,v)v, in L>(0,Tp; L°(Q)).
The convergence in implies
To To
; (f (un (), 00 () Jun (8), w(z) ) (t)dt — /O (f(u(t), v(t))u(t), w(z) )y (t)dt,
for all w € Wy P(Q) C L7(Q), for all ¢ € L(0,Tp). In fact,

To To
/O <f(uu(t),Uu(t))uu(t),w(f)W(t)dtH/O (f(u(t),v(®)u(t), w(z))e(t)dt,

for all w € V,, € Wg(Q) c LY(Q), for all ¢ € D(0,Ty) € L'(0,T,). Taking the
limit, as ¥ — oo, in ([2.50)) and using the convergences obtained above, we have

To To To
- / (! (1), w) ' dt + / (x(8), w) ot + / CFCut), v(t))ult), w)pdt
0 0 0 (261)

To
:/ (h1(t),w)edt, Yw € V,,, ¢ € D(0,Ty).
0
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Note that, with a similar reasoning for the approximate equation ([2.12)) we obtain

To To To
—/ @ﬁ»m¢a+/“@mxwwﬁ+/ (g(u(t), v(t))o(t), w)pdt
0 0 0 (2.62)

To
=/ (ha(t), w)pdt, Y € Vin, o € D(0,T)).
0

Now, using the basis definition and the fact that V;, is dense in W, ? (), expressions

and take the form
To To To
- [ [ <t > gl [ oo, )
0 0 0

To
_ / (1), w)gdt, Y € WIP(Q), ¢ € D0, Ty),
0

(2.63)
and

- [ [ ao.wedr [ oo, v)o), vl
0 0 0 (2.64)

To
= / (ha(t),w)pdt, Yw e WyP(Q), ¢ € D(0,Tp).
0
Note that, the mappings t — (u'(¢),w),t — (v'(t), w) being functions in L>(0,Tp),

they define distributions on (0,7p). Therefore, the first integrals of (2.63)), (2.64)
are the derivative of these distributions. Thus, from (2.63) we have

To

o {%(u/(t),w) + (x(®), w) + (f(u(t), v(t))u(t), w) — (hi(t),w) }edt =0
for all w € Wol’p(Q) and all ¢ € D(0,Tp). Thus,

d
2 (W (@), w) + (x(8), w) + {f(ult), o(B))u(t), w) = (I (1), w),
for all w € Wy P(Q), in D'(0,Tp). Similarly,
d
21V (0 w) + (n(8), w) + {g(u(t), v(t))v(t), w) = (h2(t), w),
for all w € Wy ?(Q), in D'(0,Tp).

If one shows that Au(t) = x(¢) and Av(t) = n(t), the proof of the theorem will be
complete; since the verification of the initial conditions can be done in a standard
way.

The monotonocity of A implies that

To
/ (Au, (t) — Aw, u, —w)dt >0, Yw e Wy (Q);
0
that is,
T To To
0< / (Ao (8), 1y )t — / (Aus (), w)dt — / (Aw, uy () — w)dt,
0 0 0

for all w € Wy (Q).

Oglimsup/o 0<Au,,(t),ul,>dt—/0 0(x(t),w)dt—/0 0<Aw,u(t) — w)dt,
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for all w € W,*(€2). Considering the approximate equation (2.11)) with m = v and
w = u,(t) we have

(upy (8), uw (8) + (Auy (1), wn (1)) + (f (W, 00 ), wn) = (ha (), uu (1))
Therefore,

%(U’y(t),uu(t)) = [y, (O + (Awy, (2), up (8)) + (f (s v )1, up) = (ha(t), uy)

Integrating from 0 the T we have

To To
/ (At (1), 11, (£))dt = (11 (0), 14, (0)) — (1t (Th), uy (T0)) + / ot (1) Pt
0 0 (2.65)

_/O 0<f(u,,,v,,)ul,,ul,>dt—|—/0 D(hl(t)7u,,)dt

Recall that W, *(Q) < L3>(Q). Since u,(0) — u(0) in W, () it implies
u,,(0) — u(0)inL?(Q). Since u/,(0) — «/(0) in L?(Q), it implies

(,(0),uy (0)) — (u'(0),u(0)) in R (2.66)

Recall that (t,(Tp))m is bounded in W, () and (u/,(Tp))m is bounded in
L?(Q). Thus, there exists subsequences (u, (1)), and (u),(Tp)), such that

uy, (To) = w(Tp) in WiP(Q) < L2(Q),
which implies
u, (To) — u(Ty), inL?(),
uy, (To) — u'(Tp)inL?(Q)
Consequently,
(,(0),u (To)) — (u/(To), u(To)) in R. (2.67)
We have that (u/,,) bounded in L°(0, Tp; L?(€2)). Since
L(0,To; L*()) = L*(0,To; L*(9)),

it follows that (ul,) is bounded in L?(0,Tp; L?(2)). We also have that (u!) is
bounded in L2(0,Ty; H=*(£2)). Therefore, by the Aubin-Lions Theorem, there ex-
ists a subsequence (u!,) such that

u, —u' in L*(0,Ty; L*(Q)) = L*(Q1, ).

Tg T(J
/ ol ()2t — / o (1)2dt (2.68)
0 0

Note that

(f (W (), 0 (8)) 20 (), i (8)) 0,20 = (F (i (8), 0 ()13, (8), 1) 0, 1
From we have u2 — u? a.e. in Q. Similarly

To
/ t)|2dt H/ t)|?dt
0
hence, we have v2 — v? a.e. in Qr,, From 7 we have
”f(uwUV)U'?/HL"(O,TO;L(’(Q))ELe(QTU) <C, Vm. (2.69)

Hence
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From this inequality and (2.44)), we guarantee the existence of a subsequence such
that

fuy,v)u2 > o in L(0,Ty; LY (Q)) (2.70)
f(uy,v)u2—=c in L°(0,Ty; LY (Q)) (2.71)
Thus, from , and the hypotheses on f, g, we have that
fluy,v,)u — f(u,v)u®  ae. in Qr,, (2.72)
g(uy,v,)u2 — g(u,v)u?  a.ein Qr, (2.73)

From (2.69), (2.72)) and the Lions’ Lemma it follows that

fuy,v,)u — f(u,v)u*inL?(Qr,) = L(0,Ty; LY (Q)), for1 <6< np

3(n —p)
From this convergence and (2.71)), we have o = f(u,v)u? and from (2.70)),
fluy,v,)u2 = fu,v)u®  in L0, Ty; LY (Q)). (2.74)

Similarly,
g(ty, v,)02 2 g(u, v)u?inL>(0, Tp; LY (Q)).
The convergence implies
(f (us v )up, ) — (f(u,v)u® ), Vo € LH0, To; L7(R))
or better

To To
/ (F a0 )2, () (£)dE — / (F (s o), w(a)) o(t)dt,
0 0

for all w € L7(Q) and all ¢ € L'(0,7p). When fixing w = 1 and ¢ = 1, we have

To To
/ F g (£), 0 (8) ) (1), 0 (1))t = / (F (), v, (£)i2 (), 1)
0 0

which approaches
To To
[ oo, v = [ (o, u)de
0 0
hence
To To
/O (fun(t), vu (8))un (t), un (t))dt —>/0 (flu(t),v(t))u(t), ut))dt,  (2.75)
as v — oo. Therefore, taking the limit in (2.65), using the convergence (2.66)),

[2.67), (2.68) and ([2.75), as v — +oo, we have
To To
Jim sup /O (Auy (1), un (£))dt = (u/(0), u(0)) — (/' (To), u(Ty)) + / o (4)2dt

0

To To
- / (F (), o()ult), u(t))dt + / (ha (), u(t))dt
From this equality and , we have

To To
0< (u/(0),u(0)) — (' (To) — u(Ty)) + / ol (£)?dt — / f vy, )t
0 0 (2.76)

—/0 (X(t)7w>dt—/o <Aw,u(t)—w>dt+/0 (h1(t), u(t))dt,
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for all w € VVO1 P(Q). From the approximate equation (2.11)), we have
(uy (1), w) + (Auy (£), w) + (f(uw (), v () un (t), w) = (1 (t), w), Yw € Vi, v > m.
Now, let ¢ € C([0,Tp]). Then

/0 (W (8), w)p + / (Auy (1), w)p + / (F (), 0 ()t (), w)ep
To

=/<mmwx
0

for all w € V,,, and all v > m. Setting

wﬁxmw%wwmwwwwm—ﬁ°muwwww
To To
+A MW@WWW+Z;UWAmw®WAWwW®ﬁ

_ /To(hl(t),w)ap(t)dt, Y € Vi, o € CY([0,To)), v > m.
0

Taking into account the previous convergence statements, it follows that

To
(W%MMMN—W@@M@—A (' (), w) g dt
+A uwwwm+4<ﬂmmwmmmwwmw

To
:/0 (ha(t), w)p(t)dt, Yw € Vy, o € CY((0,Th))

Using a basis argument and the fact that V,,, is dense in I/VO1 P(Q), it follows that
To
(0 () w)pl(To) — (O, w)e(©) ~ [ (0. w)p'ds
0
To TO
+/ (x(t), w)pdt +/ (f (u(®), v(t))u(t), wp(t)dt (2.77)
0 0

To
_ / (hi(8), w)p(t)dt, Yw € WEP(Q), ¢ € C([0, Tv).
0
Observing that the set of the linear combinations of the type wey, with w € VVO1 P(Q)
and ¢ € C1([0,Tp]), is dense in the space
V = {v e L*(0,To; Wy P(Q)),v" € L*(0, Ty; L*(2))}.

It follows that (2.77) is true in the space V.
Using the fact that,

u € L™(0,To; Wy () = L*(0,To; Wy " (2))
u' € L°°(0,To; L*(Q)) — L*(0, Typ; L*(2)),
we obtain that v € V. So takes the form
(u (To), w)p(T) — (2/(0), ) (0)

—/0 (u (t),u(t))dt—l—/o <X(t),u(t)>dt—|—/0 (f(u,v)u, u)dt
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To
= / (hy(t),u(t)dt
0
Substituting this expression in ([2.76)), it follows that

og/o 0(x(t),u(t)—w)dt—/0 U (Aw, u(t) —whdt, Y € WEP(Q).

Let us take w = u(t) + Av(t), A > 0. Thus

0<— /To (x(t), M (t))dt + /To (Au(t) + Mo(t), M (t))dt, Yw € W, P(Q)

which implies

0< = [ Mo+ [ A + dvle). du(ei.

Dividing the previous inequality by A and letting A — 0T, by the hemicontinuity
of A, we have

To To
0< f/ (x(t),v(t))dt +/ (A(u(®),v(t))dt, Vv e Wy (Q).

0 0
Hence .

0< /0 (Ault) = x(t), o())dt, Yo € WEP(Q).
Now, for A < 0 it follows that

/To (Au(t) — x(t),v(t))dt <0, Vve Wol’p(Q).

0
Therefore,
0< / 0<Au(t) — x(t),v(t))dt <0, Yve W;P(Q).
0

Thus Au(t) = x(t). Similarly, Av(t) = n(t). This completes the proof of the
theorem.
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