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A SEMILINEAR ELLIPTIC PROBLEM INVOLVING NONLINEAR
BOUNDARY CONDITION AND SIGN-CHANGING POTENTIAL

TSUNG-FANG WU

ABSTRACT. In this paper, we study the multiplicity of nontrivial nonnegative
solutions for a semilinear elliptic equation involving nonlinear boundary con-
dition and sign-changing potential. With the help of the Nehari manifold, we
prove that the semilinear elliptic equation:
—Au+u=Af(2)ul?"%u inQ,
ou

— =g(@)|u/’"%u on 89,
ov

has at least two nontrivial nonnegative solutions for \ is sufficiently small.

1. INTRODUCTION

In this paper, we consider the multiplicity of nontrivial nonnegative solutions for
the following semilinear elliptic equation
—Au+u=A(z)|u/%u inQ,
% = g(z)|ulP"2u  on 09, (1)
where 1 < g<2<p< 2%\/__21), A >0, Qis a bounded domain in RV with smooth
boundary, 8% is the outer normal derivative and f,g : @ — R are continuous

functions which change sign in €. Associated with (1.1]), we consider the energy
functional Jy in H(Q),

1 A 1
@ = glulfy =2 [ fuptde == [ gpupas

where ds is the measure on the boundary and ||lul|3;, = [, |Vul? + u?dz. It is well
known that Jy is of C! in H'({) and the solutions of equation are the critical
points of the energy functional Jy.

The fact that the number of solutions of equation is affected by the non-
linear boundary conditions has been the focus of a great deal of research in recent
years. Garcia-Azorero, Peral and Rossi [10] have investigated when f =g = 1.
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They found that there exist positive numbers Ay, Ay with A; < As such that equa-
tion admits at least two positive solutions for A € (0, A1) and no positive solu-
tion exists for A > As. Also see Chipot-Chlebik-Fila-Shafrir [4], Chipot-Shafrir-Fila
[5], Flores-del Pino [§], Hu [IT], Pierrotti-Terracini [I4] and Terraccini [16] where
problems similar to equation have been studied.

The purpose of this paper is to consider the multiplicity of nontrivial nonnegative
solutions of equation with sign-changing potential. We prove that equation
has at least two nontrivial nonnegative solutions for A is sufficiently small.

Theorem 1.1. There exists A\g > 0 such that for A € (0, X), equation (1.1) has at
least two nontrivial nonnegative solutions.

Among the other interesting problems which are similar of equation (1.1, Ambro-
setti-Brezis-Cerami [3] have investigated the equation

—Au = Mu|"%u + [ulP"2u in Q,
u=0 on 0,

where 1 < ¢g<2<p< % They proved that there exists A\g > 0 such that
admits at least two positive solutions for A € (0, Ag), has a positive solution for
A = Ag, and no positive solution for A > A\g. Actually, Adimurthi-Pacella-Yadava
[1], Damascelli-Grossi-Pacella [6], Ouyang-Shi [13] and Tang [I7] proved that there
exists A9 > 0 such that equation in the unit ball BV (0;1) has exactly two
positive solutions for A € (0, \g), has exactly one positive solution for A = Xy and
no positive solution exists for A > \g. Generalizations of the result of equation
were done by Ambrosetti-Azorero-Peral [2], de Figueiredo-Gossez-Ubilla [9]
and Wu [I8].

This paper is organized as follows. In section 2, we give some notation and pre-
liminaries. In section 3, we prove that has at least two nontrivial nonnegative
solutions for A is sufficiently small.

(1.2)

2. NOTATION AND PRELIMINARIES

Throughout this section, we denote by .S;,, C, the best Sobolev embedding and
trace constant for the operators H(Q) — LP(Q), HY(Q) — LP(99), respectively.
Now, we consider the Nehari minimization problem: For A > 0,

ay =1inf{Jy(u) : u € My},
where M = {u € H'(Q)\{0} : (J}(u),u) = 0}. Define
on(w) = () ) = [alfys = [ fluftda [ glups
Q 0
Then for u € M,
Whtu) ) = 2l = 2a [ Sluftdz=p [ glupds
Q o0

Similarly to the method used in Tarantello [I5], we split M into three parts:

M = {u € M, : (¢} (u),u) > 0},

M3} = {u € My : (¢} (u),u) = 0},

M; = {ue M, : (Y\(u),u) <0}

Then, we have the following results.
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Lemma 2.1. There exists A\; > 0 such that for each X € (0, A1) we have MS = ¢.

Proof. We consider the following two cases.
Case (I): u € M and [, glu[Pds < 0. We have

A [ fluftde = fully ~ [ gluas,
Q o0
Thus,

(W (), u) = 2ul 2 — Ag / flultdz — p / glufPds
Q oN
=(2- q)||u\|%p +(g—0p) /Emg|u|pds >0

and so u € Mj\r
Case (II): w € M and [, glu|Pds > 0. Suppose that M3 # ¢ for all A > 0. If
U € M?\, then we have

0= (v, =2l ~ A [ fluftde—p [ glulds
Q o0

—@-lul? - -0 / glufPds.
o0

Thus,
s =5=2 [ gluas (2.1)
2—4q Jon
and
-2
3 [ thultde =l = [ gluras =222 [ glufras. (2:2)
Q o0 2—q Joa
Moreover,
p—2
E=2)ulf =Vl = [ _glupds
:)\/ flul9dx
Q
S M fllpee llullEs
S M fllper SEllullys
where p* = -E-. This implies

p—q’

}1/(2*11).

el < AC=I1fllzoe 5 (2.3)

Let I : My — R be given by

2(p—1)

B ]| 7 1/(p=2) .
Ix(u) = K(p, Q)(m) - )\/Qf|u| dz,
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where K(p,q) = (2%3)(?*1)/(?*2)(%). Then I)(u) = 0 for all w € MY. Indeed,

from (2.1) and (2.2) it follows that for u € MY we have

2(p—1) _
u| 1/(p—1)
.h(u)zK(p,q)(i‘| i ) —A/Qf|u\qu

Joq glulPds
_ _ p—1
— (2;(1)%(79 - 2)((%)11 Y( Soq glulPds) )p%z (2.4)
p—=q 2-4q Joq 9lulPds
p— p
- ulPds = 0.
2—gq aﬂgl |

However, by (2.3), the Holder and Sobolev trace inequality, for u € M

) 287D\ 1/(-2)
I 2 Ko (7= Ho) ™ = ASg el
o0
[ 2807 1/(p-2)
> gy, (5 (v ) ( L ) sl )

gl lull 52"
1—q
o\ lza [/ D— ¢ 2—¢q

> [l (K ()07 N [ (O D)l 53] = ASE e )

This implies that for A sufficiently small we have I)(u) > 0 for all u € MY, this

contradicts (2.4)). Thus, we can conclude that there exists A; > 0 such that for

A € (0,A1), we have MY = ¢. a
By Lemma [2.1} for A € (0, A1) we write My = M;\r UMy} and define

oy = inf Jy(u); ay ()= inf Jy(u).
ueMY u€EM;

The following lemma shows that the minimizers on M are “usually” critical points
for J,.

Lemma 2.2. For A € (0,A\1). If ug is a local minimizer for Jx on My, then
Ji(ug) =0 in H*(Q).

Proof. If ug is a local minimizer for Jy on M), then ug is a solution of the opti-
mization problem

minimize Jy(u) subject to ¥y (u) = 0.
Hence, by the theory of Lagrange multipliers, there exists § € R such that
J\(ug) = ¢\ (ug) in H*(Q).

Thus,

(J\(u0), u0) 1 = O (o), uo) pr1 - (2.5)
By Lemma ug € MI UM, , we have (¢ (uo), uo) g1 # 0 and so by (2.5)) 6 = 0.
This completes the proof. ([l
Lemma 2.3. (i) Ifu e MY, then [, flu|dz > 0;

(ii) If u € My, then [, glu[Pds > 0.
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Proof. (i) Case (I): [, glu[Pds < 0. We have
3 [ fhuftda = s~ [ glurds > o.
Q o9
Case (I): [, glulPds > 0. We have

Jully = [ flalvae = [ glulras =0
Q o0
and
2 p—Q/ »
u|| g > —— glulPds.
e > 5=2 [ glu

-2
)\/ Flul9dz = ||ul|%: —/ glulPds > L/ glulPds > 0.
Q a0 2—q Jan

=l = =) | glulds = W 0.0) <0,
It follows that faQ glulPds > 0. This completes the proof. O

Thus

)

(ii) Since

For each u € M, , we write

b = (Dl __y/-s
(P = @) Joo glulPds
Then we have the following lemma.

<1

p(2—q
Lemma 2.4. Let p* = ;5 and Ay = (%)(iig)%CﬁSZ)—qﬂfﬂﬁ*. Then for
each v € My and X € (0, \2), we have
(i) if [o flul9dz <0, then Jx(u) = sup,q J(tu) > 0;
(ii) i [q, flul?dz > 0, then there is a unique 0 < t* = t*(u) < tmax such that
ttu € MY and
Jn(ttu) = ogtigtfmax Ia(tu), Jx(u) = ti?nzx I (tu).

Proof. Fix u € My . Let
h(t) = t2—q|\u||%{1 — tp_q/ glu|Pds for t > 0.
a0

We have h(0) = 0, h(t) — —oco as t — oo, h(t) achieves its maximum at tyax,
increasing for ¢t € [0, tmax) and decreasing for ¢ € (tymax, 00). Moreover,

h(tmax)

o Celulds NFE e Ceglull. (R .
= (- s — (0 olulPds
(P =) [oq glulrds (P — q) [oq, glulPds o

p 2-g
= gy [y - 2] (ol
b= P4 Joq 9lulPds
p—22—q =g P20
> ||U||§{1(7)(7)p720p2
p—a"p—q
or ) o
hltmax) > [ull%: (E=2)(E=d) = 0 26
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(i): [ flu|%dz < 0. There is a unique ¢t~ > tpay such that h(t™) = X [, flu|%dz
and h'(t7) < 0. Now,

@— gl ulZn - (p—q) / 1 ufPds
o0

=)= ) Nl — 0= [ gl
= (7)) < 0,

and
(JA(tu), t"u)
(a2 — ()7 / flultdz — ()P / glulPds
Q o0
- (t’)q[h(t’) f)\/ f|u|qu} = 0.
Q
Thus, t~u € M, or t~ = 1. Since for t > t;ax, We have
- )lltul?n — (- q) / gltulPds < 0,
o0
2
dt?
d
4 ) = tulZ — )\tq‘l/ Flultda — tp—l/ glulPds =0 for t =1
Q o0

Ja(tu) <0,

dt

Thus, Jx(u) = sup;>q Ja(tu). Moreover,
L
Ia(uw) > Ix(tu) > —||ullzn — — glu|Pds for all t > 0.
2 P Joo

By routine computations, g(t) = % llull, — % S50 9lulPds achieves its maximum at
to = (||u||%{1/f8Qg|u|pd5)1/(”’2>. Thus,

2

p—2¢ |ulfp 7=
Ja(u) > ( ) > 0.
(u) 2p \ [y glulPds

(ii): [, fluldz > 0. By and

h(0) =0 < A /Q Flultdz < M1l e S8l
p—2  2—q 2-q P20
< |lu||%. (—— 2 (%"
A e Lo
< B(tmax)  for A € (0,A9),

there are unique T and ¢t~ such that 0 < t7 <t <t

Bt = A /Q flultda = h(t™),
B () >0>h(t7).
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We have tTu € MY, t7u € My, and Jy(t7u) > Jy(tu) > Jy(tTu) for each
te[tt,t7] and Jx(tTu) < Jx(tu) for each t € [0,¢tF]. Thus, t~ =1 and
_ oy — i
Ja(u) = jggJ,\(tu),JA(t u) = ogtlgf I (tu).

>ltmax

This completes the proof. (I

Next, we establish the existence of nontrivial nonnegative solutions for the equa-
tion
~Au+u=N(2)|u/T%u inQ,
(2.7)
u=0 on 01,
Associated with equation (2.7]), we consider the energy functional

Kaw) = glulf =5 [ flultds
and the minimization problem
By = inf{K(u) : u € Ny},
where N = {u € H}(Q2)\{0} : (K{(u),u) = 0}. Then we have the following result.

Theorem 2.5. Suppose that A > 0. Then equation (2.7) has a nontrivial nonneg-
ative solution vy with Kx(vy) = B\ < 0.

Proof. First, we need to show that K is bounded below on N and ) < 0. Then
for u € Ny,

JulZ = A / Flultdz < Ao S5 Flull,

where p* = pqu- This implies

lull e < M fllpor Sp 2) 7. (2.8)
Hence,
1 )\/
Ky(u) = =|lul|lgr — — | flu|%x
Aw) = gllullm = | flu
1 1
= (5 - 6)”“”%11

1 1 _a _1_
< (5 - 6) (AlLf]l oe Sp 2) %0

for all w € N, and 8\ < 0. Let {v,,} be a minimizing sequence for K on N. Then
by (2.8)) and the compact imbedding theorem, there exist a subsequence {v,} and
vy in H}(Q) such that

v, — vy weakly in Hj(Q)
and

v, — vy strongly in LI(Q). (2.9)
First, we claim that [, flvs|9%dz > 0. If not,

1 A 1
Kaon) = gl == [ floalfda+o(1) 2 5loalfys +of0),
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this contradicts Kx(v,) — Br(2) < 0 as n — oo. Thus, [, flva|%dz > 0. In
particular, vy # 0. Now, we prove that v, — vy strongly in H{(Q). Suppose
otherwise, then ||vy||g1 < liminf, o ||vn| g2 and so

oall%: — A/ floal9dz < liminf (ann%,l - )\/ f|vn|qu> =0.
Q n—00 Q
Since [q, flval9dz > 0, there is a unique to # 1 such that tgvy € Ny. Thus,
tovn — tovx weakly in Hy(Q).
Moreover,
Kx(tova) < Kx(va) < lim Ky(va) = Oy,

which is a contradiction. Hence v,, — vy strongly in H}(Q). This implies vy € N
and
Ky (vn) — Kx(vy) = O as n — o0.

Since Kx(va) = Kx(Jluall) and |lva]| € Ny, without loss of generality, we may
assume that vy is a nontrivial nonnegative solution of equation ([2.7)). O

Then we have the following results.

Lemma 2.6. (1) ax <af < By <0;

(ii) Jy 18 coercive and bounded below on My for all X € (0, g}.

Proof. (i) Let vy be a positive solution of equation (2.7) such that K(vy) = B.
Since vy € C*(£2). Then we have [, glva|[Pds = 0 and vy € M. This implies

1 A
T = 5loalln =5 [ flosfrde =51 <0

andsoaAgaigﬂA<0.

ii) For u € M)y, we have ||u||%, = ul?dx + glu|Pds. Then by the Holder
i) F M h 4 Alg aq 8% Pds. Then by the Hold
and Young inequalities,

p—2 P—q
I = Z 2l =MD [ it

p—2 pP—q
> o IIuIIip—A(W)IIfIILp*SSHUII‘},I
p—=2 P-4 s P—92-9q) Jage
> (22 = 2Dl = A= =) (11 59)
p—q)(2-4q)

o0 =2 = 30— )]l ~ 222

_2
)(LFlle=SE) e
Thus, J, is coercive on M) and

In(u) > ,)\(%

for all X € (0, 2=2]. O

pP—q

) (11l - S2)77
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3. PROOF OF THEOREM [[.1]
First, we will use the idea of Ni-Takagi [12] to get the following results.

Lemma 3.1. For each u € My, there exist ¢ > 0 and a differentiable function
¢:B(0;¢) € HY(Q) — RT such that £(0) = 1, the function &(v)(u —v) € My and

2 [o VuVudz — Aq [, flult?uwvdz — p [5, glulP~2uvds

(€'(0),v) @~ Dl — 0 — ) [y glulrds

(3.1)

for allv e HY ().
Proof. For u € M, define a function F': R x H}(Q)) — R by
Fu(&w) = (J3(&(u — w)), &(u — w))
_ 2 N2 N2 ca o
13 /Q|V(u w)|* + (u— w)=dx 5)\/Qf|u w|?dx

—¢&P /an|u —w|Pds.

Then F,(1,0) = (J{(u),u) = 0 and
d

P10 =2l ~ 2 [ flultde—p [ glupds
dg 20 o0

— - lulZ - (p—0q) /8 glulds 0.

According to the implicit function theorem, there exist ¢ > 0 and a differentiable
function ¢ : B(0;¢) C H*(2) — R such that £(0) = 1,
(€(0).v) 2 [, VuVudz — Aq [, flu|??uvde — p [, glulP~?uvds
) v =
2= llullF — (=) [yq glulpds

and
F,(¢{(v),v) =0 for all v e B(0;¢)
which is equivalent to
(JA(E(W)(u =), &) (u—v)) =0 for all v € B(0;¢),
that is £(v)(u — v) € M. O
Lemma 3.2. For each w € M, , there exist € > 0 and a differentiable function

£ 1 B(0;e) C HY(Q2) — RY such that £(0) = 1, the function £ (v)(u —v) € My
and
.y 2 [, VuVudz — Aq [, flu|??uwvdz — p [, glulP~?uvds
0),v) =
RRAE 2 a)lul — &~ a) Jyp oluPds

for allv € HY ().

(3.2)

Proof. Similar to the argument in Lemma [3.1] there exist € > 0 and a differentiable
function £~ : B(0;¢) C H'(2) — R such that ¢7(0) = 1 and £~ (v)(u — v) € M,
for all v € B(0;¢). Since

(Wh(u),u) = (2 — @)llullZn — (p — q) /a lupas <o
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Thus, by the continuity of the function £~, we have
(WA(E™ (W) (u = v)), & (v)(u = v))
=2-qllE”@)u=v)lFn — (p—a) /aQ g€~ (v)(u —v)[Pds <0
if e sufficiently small, this implies that £~ (v)(u —v) € M} . O

Proposition 3.3. Let A\g = min{Aq, Ao, %}, Then for X € (0, \o):
(i) There exists a minimizing sequence {u,} C My such that
Ix(un) = ax +o(1),
J\(un) = o(1) in H*(Q);
(ii) there exists a minimizing sequence {u,} C M} such that
I(un) = a) +o(1),
J\(un) = o(1) in H*(Q).

Proof. (i) By Lemma [2.6] (ii) and the Ekeland variational principle [7], there exists
a minimizing sequence {u,} C M) such that

1
In(un) <a>\+ﬁ’ (3.3)
1
In(un) < Ix(w) + wa — up||gr for each w € M. (3.4)
By taking n large, from Lemma (i), we have

Talun) = (5 - 5>||un||ip G A [ fluafrda

(3.5)
1 b
<o)+ — < —
n 2
This implies
Il Sgllunlly > [ fluftd > M P >0 (3.5)

Consequently, u, # 0 and putting together (3.5 , and the Holder inequality,
we obtain

lunllir > [ 5302 555 k] (3.7)

2(p — 1/(2—q)
e < [T e 5]

(3.8)

Now, we show that

175 (un)||g-1 — 0 as n — oo.
Applying Lemma with u, to obtain the functions &, : B(0;¢,) — R for some
€n > 0, such that &, (w)(u, —w) € My. Choose 0 < p < €,. Let u € H'(Q) with
u # 0 and let w, = ﬁ. We set 1, = &n(w,)(un — w,). Since 1, € My, we
deduce from (3.4]) that

1
In0p) = Ta(tn) = =iy = 1
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and by the mean value theorem, we have

1
(alun)smp = un) + oy = unllmr) = =—llnp = wal|ar-

Thus,
(J\(un), —wp) + (§n(wy) — (I3 (un), (un — wp))

1
= = lnp = unllzr + o(lln, — unlla).

Since &, (w,)(un —w,) € My and (3.9) it follows that

— p(J4 (), Huﬁ + (&n(w,) = (4 (wn) = T4 (), (n — w,))

1
> *ﬁllnp — Un|| g1 + o(l|np — unll ).

Thus,

Tl ) < 17 — unll _|_0(||779_“n||H1)
u n
m P P (3.10)

W(Jf\(un) — J5(0p); (= w,)).

Since [[n, — un [ < pllén(wp) | + [1€n(wp) = Ll un | and

(T (un)

_|_

- [[€n (wp) = 1] /

if we let p — 0 in (3.10) for a fixed n, then by (3.8) we can find a constant C' > 0,
independent of p, such that

(T (un)

The proof will be complete once we show that ||/, (0)] is uniformly bounded in n.
By (3.1)), (3.8)) and the Hélder inequality, we have

o ol
G0 < G T = — ) Jog glunlPds

We only need to show that

12— @)l — (0 — ) /6 glunPds| > (3.11)
Q

y< S+ e o).

U
.
[l =

for some b > 0.

for some ¢ > 0 and n large enough. We argue by contradiction. Assume that there
exists a subsequence {u,}, we have

=l =0 =a) [_glulds = o(1). (312)
Combining (3.12)) with (3.7]), we can find a suitable constant d > 0 such that
/ glun|Pds > d for n sufficiently large. (3.13)
0

In addition (3.12)), and the fact that u,, € M, also give

-2
A / Flunltda = up| 2 — / glun|Pds = 2= / glun|Pds + o(1)
Q o0 2—q o0
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and
1
pP—q Z-q
Jundlars < AC=DI Al S2] 7 + (1), (3.14)
This implies
o | 2271\ 1/(0-2) /
I(un) = K(p, q) ( —tH —A 2|2dz = o(1). 1
) = Klpa) (72050 ) | Hualdz = o(1). (3.15)

However, by (3.13), (3.14)) and X € (0, o),

[t |27\ 1/(0-2)
Inun) = Kpo) (72000 ) = A
o0 n
] 2270\ 1/(0-2)
>l (K ) (= ) = ASES e )

CplJun 7
q 2P — 4 nE=
> lunlly {K (0. 0077 A [ e S5 = Al -
this contradicts (3.15)). We get
u C
Tl (), — ) < 2
Al ) =

This completes the proof of (7).
(i) Similarly, by using Lemma we can prove (ii). We will omit detailed proof
here. |

Now, we establish the existence of a local minimum for Jy on Mj\'

Theorem 3.4. Let Ao > 0 as in Proposition[3.3, then for X € (0, o) the functional
Jx has a minimizer ud in MY and it satisfies

(i) Ja(ug) =an =ay;
(ii) ug is a nontrivial nonnegative solution of equation (1.1));
(iil) Ja(ug) — 0 as A — 0.
Proof. Let {u,} C M) be a minimizing sequence for Jy on M} such that
Ia(up) = ay +o(1) and Ji(u,) =o0(1) in H*(Q).

Then by Lemma[2.6]and the compact imbedding theorem, there exist a subsequence
{u,} and uf € H'() such that

Up — U wea mn Up — U stron mn
& weakly in H'(9), ¢ gly in LP(09)

and
u, — ug  strongly in L(Q). (3.16)

First, we claim that [, f(z)|luf [|[9dz # 0. Suppose otherwise, by (3.16) we can
conclude that

/ flup|?de — / flug|9dz =0 asn — oo
Q Q
and so
Junlies = [ glualPds + o(0)
29
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Thus,
1 A 1
I (un :7un21_7/funqu_7/ glu,|Pds
()2||||Hqﬂ\\ pmll
(5-3) [ glunPds+ o)
==z — - glun S [0
2 p Jaa
-3 [ ol
==z — - glu S asn— oo,
2 p o "

this contradicts Jy(u,) — ax < 0 as n — co. Moreover,
o(1) = (Jy(un), ¢) = (Jy(uo), ¢) +o(1) for all ¢ € H'(Q).

Thus, uar € M, is a nonzero solution of equation and J)\(ug) > «). Now
we prove that u, — ug strongly in H'((). Suppose 0therw1se then |lud ||z <
liminf,, s ||tn || 71 and so

Juf e = A [ Sl 1o~ [ gluglPas
Q o9
< liminf (||un||%p - )\/ flun|?dz —/ g|un|pds> =0,
n—oo Q o0

this contradicts ug € M. Hence u,, — ug strongly in H'(2) and
In(uy) — Ja(ug) =y asn — oo.

Moreover, we have ug € M{. If not, then uf € Mf and by Lemma there are
unique to and ¢, such that t+ € M+ and ty uo € M, . In particular, we have
ty <ty = 1. Since

d2
%J)\(to UO ) 0 and @J (tO UO ) > O,

there exists tJ < < t; such that Jy(tJud) < Jx(fud). By Lemma
In(tgug) < a(tug) < Ja(tgug) = Ja(ug),
which is a contradiction. Since Jy(ug) = Ji(Jud]) and |ug| € My, by Lemma

we may assume that uar is a nontrivial nonnegative solution of equation (1.1)).
From Lemma 2.6 it follows that

(r—q)(2—4q) 0y 72
)l 59)

and so Jy(ug) — 0 as A — 0. O

0> Ji(ud) > A(

Next, we establish the existence of a local minimum for J on M, .

Theorem 3.5. Let Ay > 0 as in Proposition, Then for X € (0, \g) the functional
Jx has a minimizer vy in M and satisfies

(i) Ja(ug) = ay;
(ii) wy is a nontrivial nonnegative solution of equation (L.1)).

Proof. By Proposition (ii), there exists a minimizing sequence {u,} for Jy on
M} such that

Ia(uy) =y +0o(1) and Jy(un) =o(1) in H*(Q).
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By Lemmal2.6|and the compact imbedding theorem, there exist a subsequence {u,,}
and ug € H(Q) such that

u, —uy weakly in H'(1),
un — uy strongly in LP(0Q),
u, — ug  strongly in L(9).

Since (2 — q)||unll} — (P — @) [5q glualPds < 0, by the Sobolev trace inequality
there exists C' > 0 such that [, glu,[Pds > C. Moreover,

o(1) = (J3(un), d) = (J3(u0), @) +o(1) for all ¢ € H'(Q)

and

@ - @)lluolZn — (0 — ) / gluolPds
oN

<liminf (2 = ) Junl: - (0 - q)/ glun|'ds) < 0.

Thus, u, € M} is a nonzero solution of equation (L.1). Now we prove that u,, — ug
strongly in H'(Q). Suppose otherwise, then |lug |1 < liminf, o ||un]/ 71 and so

g 13 — A / fluig |9z — /d glugPds

< lim inf (||un||§{1 - )\/ flun|?dz —/ g|un|”ds) =0,
n—oeo Q o0
this contradicts u; € M. Hence u,, — ug strongly in H'(2). This implies
Ia(un) = Ia(uy ) = o) asn — oo.

Since Jx(uy ) = Ja(Jug |) and |ug | € My, by Lemma we may assume that u,
is a nontrivial nonnegative solution of equation (|1.1)). [

Now, we complete the proof of Theorem [I.I} By Theorems [3:4] [3:5] we obtain
equation (I.I)) has two nontrivial nonnegative solutions ug and uy such that uf €
M and u, € M. Since M{ NM; = ¢, this implies that uj and u are different.
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