Electronic Journal of Differential Equations, Vol. 2006(2006), No. 131, pp. 1-15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A SEMILINEAR ELLIPTIC PROBLEM INVOLVING NONLINEAR BOUNDARY CONDITION AND SIGN-CHANGING POTENTIAL

TSUNG-FANG WU

Abstract

In this paper, we study the multiplicity of nontrivial nonnegative solutions for a semilinear elliptic equation involving nonlinear boundary condition and sign-changing potential. With the help of the Nehari manifold, we prove that the semilinear elliptic equation: $$
\begin{gathered} -\Delta u+u=\lambda f(x)|u|^{q-2} u \quad \text { in } \Omega, \\ \frac{\partial u}{\partial \nu}=g(x)|u|^{p-2} u \quad \text { on } \partial \Omega, \end{gathered}
$$ has at least two nontrivial nonnegative solutions for λ is sufficiently small.

1. Introduction

In this paper, we consider the multiplicity of nontrivial nonnegative solutions for the following semilinear elliptic equation

$$
\begin{gather*}
-\Delta u+u=\lambda f(x)|u|^{q-2} u \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}=g(x)|u|^{p-2} u \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where $1<q<2<p<\frac{2(N-1)}{N-2}, \lambda>0, \Omega$ is a bounded domain in \mathbb{R}^{N} with smooth boundary, $\frac{\partial}{\partial \nu}$ is the outer normal derivative and $f, g: \bar{\Omega} \rightarrow \mathbb{R}$ are continuous functions which change sign in $\bar{\Omega}$. Associated with 1.1, we consider the energy functional J_{λ} in $H^{1}(\Omega)$,

$$
J_{\lambda}(u)=\frac{1}{2}\|u\|_{H^{1}}^{2}-\frac{\lambda}{q} \int_{\Omega} f|u|^{q} d x-\frac{1}{p} \int_{\partial \Omega} g|u|^{p} d s
$$

where $d s$ is the measure on the boundary and $\|u\|_{H^{1}}^{2}=\int_{\Omega}|\nabla u|^{2}+u^{2} d x$. It is well known that J_{λ} is of C^{1} in $H^{1}(\Omega)$ and the solutions of equation 1.1 are the critical points of the energy functional J_{λ}.

The fact that the number of solutions of equation 1.1 is affected by the nonlinear boundary conditions has been the focus of a great deal of research in recent years. Garcia-Azorero, Peral and Rossi [10 have investigated 1.1 when $f \equiv g \equiv 1$.

[^0]They found that there exist positive numbers Λ_{1}, Λ_{2} with $\Lambda_{1} \leq \Lambda_{2}$ such that equation (1.1) admits at least two positive solutions for $\lambda \in\left(0, \Lambda_{1}\right)$ and no positive solution exists for $\lambda>\Lambda_{2}$. Also see Chipot-Chlebik-Fila-Shafrir 4], Chipot-Shafrir-Fila [5], Flores-del Pino [8, Hu [11, Pierrotti-Terracini [14] and Terraccini [16] where problems similar to equation (1.1) have been studied.

The purpose of this paper is to consider the multiplicity of nontrivial nonnegative solutions of equation (1.1) with sign-changing potential. We prove that equation (1.1) has at least two nontrivial nonnegative solutions for λ is sufficiently small.

Theorem 1.1. There exists $\lambda_{0}>0$ such that for $\lambda \in\left(0, \lambda_{0}\right)$, equation 1.1) has at least two nontrivial nonnegative solutions.

Among the other interesting problems which are similar of equation 1.1, Ambro-setti-Brezis-Cerami [3] have investigated the equation

$$
\begin{gather*}
-\Delta u=\lambda|u|^{q-2} u+|u|^{p-2} u \quad \text { in } \Omega \tag{1.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $1<q<2<p \leq \frac{2 N}{N-2}$. They proved that there exists $\lambda_{0}>0$ such that 1.2 admits at least two positive solutions for $\lambda \in\left(0, \lambda_{0}\right)$, has a positive solution for $\lambda=\lambda_{0}$, and no positive solution for $\lambda>\lambda_{0}$. Actually, Adimurthi-Pacella-Yadava [1], Damascelli-Grossi-Pacella [6], Ouyang-Shi [13] and Tang [17] proved that there exists $\lambda_{0}>0$ such that equation 1.2 in the unit ball $B^{N}(0 ; 1)$ has exactly two positive solutions for $\lambda \in\left(0, \lambda_{0}\right)$, has exactly one positive solution for $\lambda=\lambda_{0}$ and no positive solution exists for $\lambda>\lambda_{0}$. Generalizations of the result of equation (1.2) were done by Ambrosetti-Azorero-Peral [2, de Figueiredo-Gossez-Ubilla [9] and Wu [18.

This paper is organized as follows. In section 2 , we give some notation and preliminaries. In section 3, we prove that 1.1 has at least two nontrivial nonnegative solutions for λ is sufficiently small.

2. Notation and Preliminaries

Throughout this section, we denote by S_{p}, C_{p} the best Sobolev embedding and trace constant for the operators $H^{1}(\Omega) \hookrightarrow L^{p}(\Omega), H^{1}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$, respectively. Now, we consider the Nehari minimization problem: For $\lambda>0$,

$$
\alpha_{\lambda}=\inf \left\{J_{\lambda}(u): u \in \mathbf{M}_{\lambda}\right\}
$$

where $\mathbf{M}_{\lambda}=\left\{u \in H^{1}(\Omega) \backslash\{0\}:\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0\right\}$. Define

$$
\psi_{\lambda}(u)=\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=\|u\|_{H^{1}}^{2}-\lambda \int_{\Omega} f|u|^{q} d x-\int_{\partial \Omega} g|u|^{p} d s
$$

Then for $u \in \mathbf{M}_{\lambda}$,

$$
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=2\|u\|_{H^{1}}^{2}-\lambda q \int_{\Omega} f|u|^{q} d x-p \int_{\partial \Omega} g|u|^{p} d s
$$

Similarly to the method used in Tarantello [15], we split \mathbf{M}_{λ} into three parts:

$$
\begin{aligned}
& \mathbf{M}_{\lambda}^{+}=\left\{u \in \mathbf{M}_{\lambda}:\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle>0\right\}, \\
& \mathbf{M}_{\lambda}^{0}=\left\{u \in \mathbf{M}_{\lambda}:\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=0\right\}, \\
& \mathbf{M}_{\lambda}^{-}=\left\{u \in \mathbf{M}_{\lambda}:\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle<0\right\} .
\end{aligned}
$$

Then, we have the following results.

Lemma 2.1. There exists $\lambda_{1}>0$ such that for each $\lambda \in\left(0, \lambda_{1}\right)$ we have $\mathbf{M}_{\lambda}^{0}=\phi$.
Proof. We consider the following two cases.
Case (I): $u \in \mathbf{M}_{\lambda}$ and $\int_{\partial \Omega} g|u|^{p} d s \leq 0$. We have

$$
\lambda \int_{\Omega} f|u|^{q} d x=\|u\|_{H^{1}}^{2}-\int_{\partial \Omega} g|u|^{p} d s
$$

Thus,

$$
\begin{aligned}
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle & =2\|u\|_{H^{1}}^{2}-\lambda q \int_{\Omega} f|u|^{q} d x-p \int_{\partial \Omega} g|u|^{p} d s \\
& =(2-q)\|u\|_{H^{1}}^{2}+(q-p) \int_{\partial \Omega} g|u|^{p} d s>0
\end{aligned}
$$

and so $u \in \mathbf{M}_{\lambda}^{+}$.
Case (II): $u \in \mathbf{M}_{\lambda}$ and $\int_{\partial \Omega} g|u|^{p} d s>0$. Suppose that $\mathbf{M}_{\lambda}^{0} \neq \phi$ for all $\lambda>0$. If $u \in \mathbf{M}_{\lambda}^{0}$, then we have

$$
\begin{aligned}
0 & =\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=2\|u\|_{H^{1}}^{2}-\lambda q \int_{\Omega} f|u|^{q} d x-p \int_{\partial \Omega} g|u|^{p} d s \\
& =(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\|u\|_{H^{1}}^{2}=\frac{p-q}{2-q} \int_{\partial \Omega} g|u|^{p} d s \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \int_{\Omega} f|u|^{q} d x=\|u\|_{H^{1}}^{2}-\int_{\partial \Omega} g|u|^{p} d s=\frac{p-2}{2-q} \int_{\partial \Omega} g|u|^{p} d s \tag{2.2}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\left(\frac{p-2}{p-q}\right)\|u\|_{H^{1}}^{2} & =\|u\|_{H^{1}}^{2}-\int_{\partial \Omega} g|u|^{p} d s \\
& =\lambda \int_{\Omega} f|u|^{q} d x \\
& \leq \lambda\|f\|_{L^{p^{*}}}\|u\|_{L^{p}}^{q} \\
& \leq \lambda\|f\|_{L^{p^{*}}} S_{p}^{q}\|u\|_{H^{1}}^{q},
\end{aligned}
$$

where $p^{*}=\frac{p}{p-q}$. This implies

$$
\begin{equation*}
\|u\|_{H^{1}} \leq\left[\lambda\left(\frac{p-q}{p-2}\right)\|f\|_{L^{p^{*}}} S_{p}^{q}\right]^{1 /(2-q)} \tag{2.3}
\end{equation*}
$$

Let $I_{\lambda}: \mathbf{M}_{\lambda} \rightarrow \mathbb{R}$ be given by

$$
I_{\lambda}(u)=K(p, q)\left(\frac{\|u\|_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{1 /(p-2)}-\lambda \int_{\Omega} f|u|^{q} d x
$$

where $K(p, q)=\left(\frac{2-q}{p-q}\right)^{(p-1) /(p-2)}\left(\frac{p-2}{2-q}\right)$. Then $I_{\lambda}(u)=0$ for all $u \in \mathbf{M}_{\lambda}^{0}$. Indeed, from (2.1) and 2.2 it follows that for $u \in \mathbf{M}_{\lambda}^{0}$ we have

$$
\begin{align*}
I_{\lambda}(u)= & K(p, q)\left(\frac{\|u\|_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{1 /(p-1)}-\lambda \int_{\Omega} f|u|^{q} d x \\
= & \left(\frac{2-q}{p-q}\right)^{\frac{p}{p-1}}\left(\frac{p-2}{2-q}\right)\left(\frac{\left(\frac{p-q}{2-q}\right)^{p-1}\left(\int_{\partial \Omega} g|u|^{p} d s\right)^{p-1}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{\frac{1}{p-2}} \tag{2.4}\\
& -\frac{p-2}{2-q} \int_{\partial \Omega} g|u|^{p} d s=0 .
\end{align*}
$$

However, by (2.3), the Hölder and Sobolev trace inequality, for $u \in \mathbf{M}_{\lambda}^{0}$

$$
\begin{aligned}
I_{\lambda}(u) & \geq K(p, q)\left(\frac{\|u\|_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{1 /(p-2)}-\lambda S_{p}^{q}\|f\|_{L^{p^{*}}}\|u\|_{H^{1}}^{q} \\
& \geq\|u\|_{H^{1}}^{q}\left(K(p, q)\left(\frac{\|u\|_{H^{1}}^{2(p-1)}}{C_{p}^{p}\|g\|_{\infty}\|u\|_{H^{1}}^{p+q(p-2)}}\right)^{1 /(p-2)}-\lambda S_{p}^{q}\|f\|_{L^{p^{*}}}\right) \\
& \geq\|u\|_{H^{1}}^{q}\left\{K(p, q) C_{p}^{\frac{p}{2-p}} \lambda^{\frac{1-q}{2-q}}\left[\left(\frac{p-q}{p-2}\right)\|f\|_{L^{p^{*}}} S_{p}^{q}\right]^{\frac{1-q}{2-q}}-\lambda S_{p}^{q}\|f\|_{L^{p^{*}}}\right\} .
\end{aligned}
$$

This implies that for λ sufficiently small we have $I_{\lambda}(u)>0$ for all $u \in \mathbf{M}_{\lambda}^{0}$, this contradicts 2.4. Thus, we can conclude that there exists $\lambda_{1}>0$ such that for $\lambda \in\left(0, \lambda_{1}\right)$, we have $\mathbf{M}_{\lambda}^{0}=\phi$.

By Lemma 2.1. for $\lambda \in\left(0, \lambda_{1}\right)$ we write $\mathbf{M}_{\lambda}=\mathbf{M}_{\lambda}^{+} \cup \mathbf{M}_{\lambda}^{-}$and define

$$
\alpha_{\lambda}^{+}=\inf _{u \in \mathbf{M}_{\lambda}^{+}} J_{\lambda}(u) ; \quad \alpha_{\lambda}^{-}(\Omega)=\inf _{u \in \mathbf{M}_{\lambda}^{-}} J_{\lambda}(u) .
$$

The following lemma shows that the minimizers on \mathbf{M}_{λ} are "usually" critical points for J_{λ}.

Lemma 2.2. For $\lambda \in\left(0, \lambda_{1}\right)$. If u_{0} is a local minimizer for J_{λ} on \mathbf{M}_{λ}, then $J_{\lambda}^{\prime}\left(u_{0}\right)=0$ in $H^{*}(\Omega)$.

Proof. If u_{0} is a local minimizer for J_{λ} on \mathbf{M}_{λ}, then u_{0} is a solution of the optimization problem

$$
\operatorname{minimize} J_{\lambda}(u) \quad \text { subject to } \psi_{\lambda}(u)=0
$$

Hence, by the theory of Lagrange multipliers, there exists $\theta \in \mathbb{R}$ such that

$$
J_{\lambda}^{\prime}\left(u_{0}\right)=\theta \psi_{\lambda}^{\prime}\left(u_{0}\right) \quad \text { in } H^{*}(\Omega)
$$

Thus,

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}}=\theta\left\langle\psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}} \tag{2.5}
\end{equation*}
$$

By Lemma 2.1, $u_{0} \in \mathbf{M}_{\lambda}^{+} \cup \mathbf{M}_{\lambda}^{-}$, we have $\left\langle\psi_{\lambda}^{\prime}\left(u_{0}\right), u_{0}\right\rangle_{H^{1}} \neq 0$ and so by 2.5 $\theta=0$. This completes the proof.

Lemma 2.3. (i) If $u \in \mathbf{M}_{\lambda}^{+}$, then $\int_{\Omega} f|u|^{q} d x>0$;
(ii) If $u \in \mathbf{M}_{\lambda}^{-}$, then $\int_{\partial \Omega} g|u|^{p} d s>0$.

Proof. (i) Case (I): $\int_{\partial \Omega} g|u|^{p} d s \leq 0$. We have

$$
\lambda \int_{\Omega} f|u|^{q} d x=\|u\|_{H^{1}}^{2}-\int_{\partial \Omega} g|u|^{p} d s>0
$$

Case (II): $\int_{\partial \Omega} g|u|^{p} d s>0$. We have

$$
\|u\|_{H^{1}}^{2}-\lambda \int_{\Omega} f|u|^{q} d x-\int_{\partial \Omega} g|u|^{p} d s=0
$$

and

$$
\|u\|_{H^{1}}^{2}>\frac{p-q}{2-q} \int_{\partial \Omega} g|u|^{p} d s
$$

Thus,

$$
\lambda \int_{\Omega} f|u|^{q} d x=\|u\|_{H^{1}}^{2}-\int_{\partial \Omega} g|u|^{p} d s>\frac{p-2}{2-q} \int_{\partial \Omega} g|u|^{p} d s>0
$$

(ii) Since

$$
(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s=\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle<0
$$

It follows that $\int_{\partial \Omega} g|u|^{p} d s>0$. This completes the proof.
For each $u \in \mathbf{M}_{\lambda}^{-}$, we write

$$
t_{\max }=\left(\frac{(2-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\partial \Omega} g|u|^{p} d s}\right)^{1 /(p-2)}<1
$$

Then we have the following lemma.
Lemma 2.4. Let $p^{*}=\frac{p}{p-q}$ and $\lambda_{2}=\left(\frac{p-2}{p-q}\right)\left(\frac{2-q}{p-q}\right)^{\frac{2-q}{p-2}} C_{p}^{\frac{p(2-q)}{2-p}} S_{p}^{-q}\|f\|_{L^{p^{*}}}^{-1}$. Then for each $u \in \mathbf{M}_{\lambda}^{-}$and $\lambda \in\left(0, \lambda_{2}\right)$, we have
(i) if $\int_{\Omega} f|u|^{q} d x \leq 0$, then $J_{\lambda}(u)=\sup _{t \geq 0} J_{\lambda}(t u)>0$;
(ii) if $\int_{\Omega} f|u|^{q} d x>0$, then there is a unique $0<t^{+}=t^{+}(u)<t_{\max }$ such that $t^{+} u \in \mathbf{M}_{\lambda}^{+}$and

$$
J_{\lambda}\left(t^{+} u\right)=\inf _{0 \leq t \leq t_{\max }} J_{\lambda}(t u), J_{\lambda}(u)=\sup _{t \geq t_{\max }} J_{\lambda}(t u)
$$

Proof. Fix $u \in \mathbf{M}_{\lambda}^{-}$. Let

$$
h(t)=t^{2-q}\|u\|_{H^{1}}^{2}-t^{p-q} \int_{\partial \Omega} g|u|^{p} d s \quad \text { for } t \geq 0
$$

We have $h(0)=0, h(t) \rightarrow-\infty$ as $t \rightarrow \infty, h(t)$ achieves its maximum at $t_{\max }$, increasing for $t \in\left[0, t_{\max }\right)$ and decreasing for $t \in\left(t_{\max }, \infty\right)$. Moreover,

$$
\begin{aligned}
& h\left(t_{\max }\right) \\
& =\left(\frac{(2-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\partial \Omega} g|u|^{p} d s}\right)^{\frac{2-q}{p-2}}\|u\|_{H^{1}}^{2}-\left(\frac{(2-q)\|u\|_{H^{1}}^{2}}{(p-q) \int_{\partial \Omega} g|u|^{p} d s}\right)^{\frac{p-q}{p-2}} \int_{\partial \Omega} g|u|^{p} d s \\
& =\|u\|_{H^{1}}^{q}\left[\left(\frac{2-q}{p-q}\right)^{\frac{2-q}{p-2}}-\left(\frac{2-q}{p-q}\right)^{\frac{p-q}{p-2}}\right]\left(\frac{\|u\|_{H^{1}}^{p}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{\frac{2-q}{p-2}} \\
& \geq\|u\|_{H^{1}}^{q}\left(\frac{p-2}{p-q}\right)\left(\frac{2-q}{p-q}\right)^{\frac{2-q}{p-2}} C_{p}^{\frac{p(2-q)}{2-p}}
\end{aligned}
$$

or

$$
\begin{equation*}
h\left(t_{\max }\right) \geq\|u\|_{H^{1}}^{q}\left(\frac{p-2}{p-q}\right)\left(\frac{2-q}{p-q}\right)^{\frac{2-q}{p-2}} C_{p}^{\frac{p(2-q)}{2-p}} \tag{2.6}
\end{equation*}
$$

(i): $\int_{\Omega} f|u|^{q} d x \leq 0$. There is a unique $t^{-}>t_{\max }$ such that $h\left(t^{-}\right)=\lambda \int_{\Omega} f|u|^{q} d x$ and $h^{\prime}\left(t^{-}\right)<0$. Now,

$$
\begin{aligned}
& (2-q)\left\|t^{-} u\right\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega}\left|t^{-} u\right|^{p} d s \\
& =\left(t^{-}\right)^{1+q}\left[(2-q)\left(t^{-}\right)^{1-q}\|u\|_{H^{1}}^{2}-(p-q)\left(t^{-}\right)^{p-q-1} \int_{\partial \Omega} g|u|^{p} d s\right] \\
& =\left(t^{-}\right)^{1+q} h^{\prime}\left(t^{-}\right)<0
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\langle J_{\lambda}^{\prime}\left(t^{-} u\right), t^{-} u\right\rangle \\
& =\left(t^{-}\right)^{2}\|u\|_{H^{1}}^{2}-\left(t^{-}\right)^{q} \lambda \int_{\Omega} f|u|^{q} d x-\left(t^{-}\right)^{p} \int_{\partial \Omega} g|u|^{p} d s \\
& =\left(t^{-}\right)^{q}\left[h\left(t^{-}\right)-\lambda \int_{\Omega} f|u|^{q} d x\right]=0
\end{aligned}
$$

Thus, $t^{-} u \in \mathbf{M}_{\lambda}^{-}$or $t^{-}=1$. Since for $t>t_{\max }$, we have

$$
\begin{gathered}
(2-q)\|t u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|t u|^{p} d s<0, \\
\frac{d^{2}}{d t^{2}} J_{\lambda}(t u)<0, \\
\frac{d}{d t} J_{\lambda}(t u)=t\|u\|_{H^{1}}^{2}-\lambda t^{q-1} \int_{\Omega} f|u|^{q} d x-t^{p-1} \int_{\partial \Omega} g|u|^{p} d s=0 \quad \text { for } t=t^{-} .
\end{gathered}
$$

Thus, $J_{\lambda}(u)=\sup _{t \geq 0} J_{\lambda}(t u)$. Moreover,

$$
J_{\lambda}(u) \geq J_{\lambda}(t u) \geq \frac{t^{2}}{2}\|u\|_{H^{1}}^{2}-\frac{t^{p}}{p} \int_{\partial \Omega} g|u|^{p} d s \quad \text { for all } t \geq 0
$$

By routine computations, $g(t)=\frac{t^{2}}{2}\|u\|_{H^{1}}^{2}-\frac{t^{p}}{p} \int_{\partial \Omega} g|u|^{p} d s$ achieves its maximum at $t_{0}=\left(\|u\|_{H^{1}}^{2} / \int_{\partial \Omega} g|u|^{p} d s\right)^{1 /(p-2)}$. Thus,

$$
J_{\lambda}(u) \geq \frac{p-2}{2 p}\left(\frac{\|u\|_{H^{1}}^{p}}{\int_{\partial \Omega} g|u|^{p} d s}\right)^{\frac{2}{p-2}}>0
$$

(ii): $\int_{\Omega} f|u|^{q} d x>0$. By 2.6 and

$$
\begin{aligned}
h(0) & =0<\lambda \int_{\Omega} f|u|^{q} d x \leq \lambda\|f\|_{L^{p^{*}}} S_{p}^{q}\|u\|_{H^{1}}^{q} \\
& <\|u\|_{H^{1}}^{q}\left(\frac{p-2}{p-q}\right)\left(\frac{2-q}{p-q}\right)^{\frac{2-q}{p-2}} C^{\frac{p(2-q)}{2-p}} \\
& \leq h\left(t_{\max }\right) \quad \text { for } \lambda \in\left(0, \lambda_{2}\right),
\end{aligned}
$$

there are unique t^{+}and t^{-}such that $0<t^{+}<t_{\max }<t^{-}$,

$$
\begin{gathered}
h\left(t^{+}\right)=\lambda \int_{\Omega} f|u|^{q} d x=h\left(t^{-}\right) \\
h^{\prime}\left(t^{+}\right)>0>h^{\prime}\left(t^{-}\right)
\end{gathered}
$$

We have $t^{+} u \in \mathbf{M}_{\lambda}^{+}, t^{-} u \in \mathbf{M}_{\lambda}^{-}$, and $J_{\lambda}\left(t^{-} u\right) \geq J_{\lambda}(t u) \geq J_{\lambda}\left(t^{+} u\right)$ for each $t \in\left[t^{+}, t^{-}\right]$and $J_{\lambda}\left(t^{+} u\right) \leq J_{\lambda}(t u)$ for each $t \in\left[0, t^{+}\right]$. Thus, $t^{-}=1$ and

$$
J_{\lambda}(u)=\sup _{t \geq 0} J_{\lambda}(t u), J_{\lambda}\left(t^{+} u\right)=\inf _{0 \leq t \leq t_{\max }} J_{\lambda}(t u)
$$

This completes the proof.
Next, we establish the existence of nontrivial nonnegative solutions for the equation

$$
\begin{gather*}
-\Delta u+u=\lambda f(x)|u|^{q-2} u \quad \text { in } \Omega \tag{2.7}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Associated with equation (2.7), we consider the energy functional

$$
K_{\lambda}(u)=\frac{1}{2}\|u\|_{H^{1}}^{2}-\frac{\lambda}{q} \int_{\Omega} f|u|^{q} d x
$$

and the minimization problem

$$
\beta_{\lambda}=\inf \left\{K_{\lambda}(u): u \in \mathbf{N}_{\lambda}\right\}
$$

where $\mathbf{N}_{\lambda}=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\}:\left\langle K_{\lambda}^{\prime}(u), u\right\rangle=0\right\}$. Then we have the following result.
Theorem 2.5. Suppose that $\lambda>0$. Then equation (2.7) has a nontrivial nonnegative solution v_{λ} with $K_{\lambda}\left(v_{\lambda}\right)=\beta_{\lambda}<0$.

Proof. First, we need to show that K_{λ} is bounded below on \mathbf{N}_{λ} and $\beta_{\lambda}<0$. Then for $u \in \mathbf{N}_{\lambda}$,

$$
\|u\|_{H^{1}}^{2}=\lambda \int_{\Omega} f|u|^{q} d x \leq \lambda\|f\|_{L^{q^{*}}} S_{p}^{-\frac{q}{2}}\|u\|_{H^{1}}^{q}
$$

where $p^{*}=\frac{p}{p-q}$. This implies

$$
\begin{equation*}
\|u\|_{H^{1}} \leq\left(\lambda\|f\|_{L^{p^{*}}} S_{p}^{-\frac{q}{2}}\right)^{\frac{1}{2-q}} . \tag{2.8}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
K_{\lambda}(u) & =\frac{1}{2}\|u\|_{H^{1}}-\frac{\lambda}{q} \int_{\Omega} f|u|^{q} d x \\
& =\left(\frac{1}{2}-\frac{1}{q}\right)\|u\|_{H^{1}}^{2} \\
& \leq\left(\frac{1}{2}-\frac{1}{q}\right)\left(\lambda\|f\|_{L^{p^{*}}} S_{p}^{-\frac{q}{2}}\right)^{\frac{1}{2-q}}
\end{aligned}
$$

for all $u \in \mathbf{N}_{\lambda}$ and $\beta_{\lambda}<0$. Let $\left\{v_{n}\right\}$ be a minimizing sequence for K_{λ} on \mathbf{N}_{λ}. Then by (2.8) and the compact imbedding theorem, there exist a subsequence $\left\{v_{n}\right\}$ and v_{λ} in $H_{0}^{1}(\Omega)$ such that

$$
v_{n} \rightharpoonup v_{\lambda} \quad \text { weakly in } H_{0}^{1}(\Omega)
$$

and

$$
\begin{equation*}
v_{n} \rightarrow v_{\lambda} \quad \text { strongly in } L^{q}(\Omega) \tag{2.9}
\end{equation*}
$$

First, we claim that $\int_{\Omega} f\left|v_{\lambda}\right|^{q} d x>0$. If not,

$$
K_{\lambda}\left(v_{n}\right) \geq \frac{1}{2}\left\|v_{\lambda}\right\|_{H^{1}}^{2}-\frac{\lambda}{q} \int_{\Omega} f\left|v_{\lambda}\right|^{q} d x+o(1) \geq \frac{1}{2}\left\|v_{\lambda}\right\|_{H^{1}}^{2}+o(1)
$$

this contradicts $K_{\lambda}\left(v_{n}\right) \rightarrow \beta_{\lambda}(\Omega)<0$ as $n \rightarrow \infty$. Thus, $\int_{\Omega} f\left|v_{\lambda}\right|^{q} d x>0$. In particular, $v_{\lambda} \not \equiv 0$. Now, we prove that $v_{n} \rightarrow v_{\lambda}$ strongly in $H_{0}^{1}(\Omega)$. Suppose otherwise, then $\left\|v_{\lambda}\right\|_{H^{1}}<\liminf _{n \rightarrow \infty}\left\|v_{n}\right\|_{H^{1}}$ and so

$$
\left\|v_{\lambda}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|v_{\lambda}\right|^{q} d x<\liminf _{n \rightarrow \infty}\left(\left\|v_{n}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|v_{n}\right|^{q} d x\right)=0 .
$$

Since $\int_{\Omega} f\left|v_{\lambda}\right|^{q} d x>0$, there is a unique $t_{0} \neq 1$ such that $t_{0} v_{\lambda} \in \mathbf{N}_{\lambda}$. Thus,

$$
t_{0} v_{n} \rightharpoonup t_{0} v_{\lambda} \quad \text { weakly in } H_{0}^{1}(\Omega)
$$

Moreover,

$$
K_{\lambda}\left(t_{0} v_{\lambda}\right)<K_{\lambda}\left(v_{\lambda}\right)<\lim _{n \rightarrow \infty} K_{\lambda}\left(v_{n}\right)=\beta_{\lambda},
$$

which is a contradiction. Hence $v_{n} \rightarrow v_{\lambda}$ strongly in $H_{0}^{1}(\Omega)$. This implies $v_{\lambda} \in \mathbf{N}_{\lambda}$ and

$$
K_{\lambda}\left(v_{n}\right) \rightarrow K_{\lambda}\left(v_{\lambda}\right)=\beta_{\lambda} \quad \text { as } n \rightarrow \infty
$$

Since $K_{\lambda}\left(v_{\lambda}\right)=K_{\lambda}\left(\left\|v_{\lambda}\right\|\right)$ and $\left\|v_{\lambda}\right\| \in \mathbf{N}_{\lambda}$, without loss of generality, we may assume that v_{λ} is a nontrivial nonnegative solution of equation (2.7).

Then we have the following results.
Lemma 2.6. (i) $\alpha_{\lambda} \leq \alpha_{\lambda}^{+} \leq \beta_{\lambda}<0$;
(ii) J_{λ} is coercive and bounded below on \mathbf{M}_{λ} for all $\lambda \in\left(0, \frac{p-2}{p-q}\right]$.

Proof. (i) Let v_{λ} be a positive solution of equation 2.7 such that $K\left(v_{\lambda}\right)=\beta_{\lambda}$. Since $v_{\lambda} \in C^{2}(\bar{\Omega})$. Then we have $\int_{\partial \Omega} g\left|v_{\lambda}\right|^{p} d s=0$ and $v_{\lambda} \in \mathbf{M}_{\lambda}^{+}$. This implies

$$
J_{\lambda}\left(v_{\lambda}\right)=\frac{1}{2}\left\|v_{\lambda}\right\|_{H^{1}}^{2}-\frac{\lambda}{q} \int_{\Omega} f\left|v_{\lambda}\right|^{q} d x=\beta_{\lambda}<0
$$

and so $\alpha_{\lambda} \leq \alpha_{\lambda}^{+} \leq \beta_{\lambda}<0$.
(ii) For $u \in \mathbf{M}_{\lambda}$, we have $\|u\|_{H^{1}}^{2}=\lambda \int_{\Omega} f|u|^{q} d x+\int_{\partial \Omega} g|u|^{p} d s$. Then by the Hölder and Young inequalities,

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{p-2}{2 p}\|u\|_{H^{1}}^{2}-\lambda\left(\frac{p-q}{p q}\right) \int_{\Omega} f|u|^{q} d x \\
& \geq \frac{p-2}{2 p}\|u\|_{H^{1}}^{2}-\lambda\left(\frac{p-q}{p q}\right)\|f\|_{L^{p^{*}}} S_{p}^{q}\|u\|_{H^{1}}^{q} \\
& \geq\left[\frac{p-2}{2 p}-\lambda\left(\frac{p-q}{2 p}\right)\right]\|u\|_{H^{1}}^{2}-\lambda\left(\frac{(p-q)(2-q)}{2 p q}\right)\left(\|f\|_{L^{p^{*}}} S_{p}^{q}\right)^{\frac{2}{2-q}} \\
& =\frac{1}{2 p}[(p-2)-\lambda(p-q)]\|u\|_{H^{1}}^{2}-\lambda\left(\frac{(p-q)(2-q)}{2 p q}\right)\left(\|f\|_{L^{p^{*}}} S_{p}^{q}\right)^{\frac{2}{2-q}} .
\end{aligned}
$$

Thus, J_{λ} is coercive on \mathbf{M}_{λ} and

$$
J_{\lambda}(u) \geq-\lambda\left(\frac{(p-q)(2-q)}{2 p q}\right)\left(\|f\|_{L^{p^{*}}} S_{p}^{q}\right)^{\frac{2}{2-q}}
$$

for all $\lambda \in\left(0, \frac{p-2}{p-q}\right]$.

3. Proof of Theorem 1.1

First, we will use the idea of Ni-Takagi [12] to get the following results.
Lemma 3.1. For each $u \in \mathbf{M}_{\lambda}$, there exist $\epsilon>0$ and a differentiable function $\xi: B(0 ; \epsilon) \subset H^{1}(\Omega) \rightarrow \mathbb{R}^{+}$such that $\xi(0)=1$, the function $\xi(v)(u-v) \in \mathbf{M}_{\lambda}$ and

$$
\begin{equation*}
\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2 \int_{\Omega} \nabla u \nabla v d x-\lambda q \int_{\Omega} f|u|^{q-2} u v d x-p \int_{\partial \Omega} g|u|^{p-2} u v d s}{(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s} \tag{3.1}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$.
Proof. For $u \in \mathbf{M}_{\lambda}$, define a function $F: \mathbb{R} \times H^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F_{u}(\xi, w)= & \left\langle J_{\lambda}^{\prime}(\xi(u-w)), \xi(u-w)\right\rangle \\
= & \xi^{2} \int_{\Omega}|\nabla(u-w)|^{2}+(u-w)^{2} d x-\xi^{q} \lambda \int_{\Omega} f|u-w|^{q} d x \\
& -\xi^{p} \int_{\partial \Omega} g|u-w|^{p} d s
\end{aligned}
$$

Then $F_{u}(1,0)=\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=0$ and

$$
\begin{aligned}
\frac{d}{d \xi} F_{u}(1,0) & =2\|u\|_{H^{1}}^{2}-\lambda q \int_{\partial \Omega} f|u|^{q} d x-p \int_{\partial \Omega} g|u|^{p} d s \\
& =(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s \neq 0 .
\end{aligned}
$$

According to the implicit function theorem, there exist $\epsilon>0$ and a differentiable function $\xi: B(0 ; \epsilon) \subset H^{1}(\Omega) \rightarrow \mathbb{R}$ such that $\xi(0)=1$,

$$
\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2 \int_{\Omega} \nabla u \nabla v d x-\lambda q \int_{\Omega} f|u|^{q-2} u v d x-p \int_{\partial \Omega} g|u|^{p-2} u v d s}{(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s}
$$

and

$$
F_{u}(\xi(v), v)=0 \quad \text { for all } v \in B(0 ; \epsilon)
$$

which is equivalent to

$$
\left\langle J_{\lambda}^{\prime}(\xi(v)(u-v)), \xi(v)(u-v)\right\rangle=0 \quad \text { for all } v \in B(0 ; \epsilon)
$$

that is $\xi(v)(u-v) \in \mathbf{M}_{\lambda}$.
Lemma 3.2. For each $u \in \mathbf{M}_{\lambda}^{-}$, there exist $\epsilon>0$ and a differentiable function $\xi^{-}: B(0 ; \epsilon) \subset H^{1}(\Omega) \rightarrow \mathbb{R}^{+}$such that $\xi^{-}(0)=1$, the function $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}^{-}$ and

$$
\begin{equation*}
\left\langle\left(\xi^{-}\right)^{\prime}(0), v\right\rangle=\frac{2 \int_{\Omega} \nabla u \nabla v d x-\lambda q \int_{\Omega} f|u|^{q-2} u v d x-p \int_{\partial \Omega} g|u|^{p-2} u v d s}{(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s} \tag{3.2}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$.
Proof. Similar to the argument in Lemma 3.1, there exist $\epsilon>0$ and a differentiable function $\xi^{-}: B(0 ; \epsilon) \subset H^{1}(\Omega) \rightarrow \mathbb{R}$ such that $\xi^{-}(0)=1$ and $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}$ for all $v \in B(0 ; \epsilon)$. Since

$$
\left\langle\psi_{\lambda}^{\prime}(u), u\right\rangle=(2-q)\|u\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g|u|^{p} d s<0
$$

Thus, by the continuity of the function ξ^{-}, we have

$$
\begin{aligned}
& \left\langle\psi_{\lambda}^{\prime}\left(\xi^{-}(v)(u-v)\right), \xi^{-}(v)(u-v)\right\rangle \\
& =(2-q)\left\|\xi^{-}(v)(u-v)\right\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g\left|\xi^{-}(v)(u-v)\right|^{p} d s<0
\end{aligned}
$$

if ϵ sufficiently small, this implies that $\xi^{-}(v)(u-v) \in \mathbf{M}_{\lambda}^{-}$.
Proposition 3.3. Let $\lambda_{0}=\min \left\{\lambda_{1}, \lambda_{2}, \frac{p-1}{p-q}\right\}$, Then for $\lambda \in\left(0, \lambda_{0}\right)$:
(i) There exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}$ such that

$$
\begin{aligned}
& J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}+o(1) \\
& J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{*}(\Omega)
\end{aligned}
$$

(ii) there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}^{-}$such that

$$
\begin{aligned}
& J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}^{-}+o(1) \\
& J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{*}(\Omega)
\end{aligned}
$$

Proof. (i) By Lemma 2.6 (ii) and the Ekeland variational principle [7, there exists a minimizing sequence $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}$ such that

$$
\begin{gather*}
J_{\lambda}\left(u_{n}\right)<\alpha_{\lambda}+\frac{1}{n} \tag{3.3}\\
J_{\lambda}\left(u_{n}\right)<J_{\lambda}(w)+\frac{1}{n}\left\|w-u_{n}\right\|_{H^{1}} \quad \text { for each } w \in \mathbf{M}_{\lambda} \tag{3.4}
\end{gather*}
$$

By taking n large, from Lemma 2.6 (i), we have

$$
\begin{align*}
J_{\lambda}\left(u_{n}\right) & =\left(\frac{1}{2}-\frac{1}{p}\right)\left\|u_{n}\right\|_{H^{1}}^{2}-\left(\frac{1}{q}-\frac{1}{p}\right) \lambda \int_{\Omega} f\left|u_{n}\right|^{q} d x \tag{3.5}\\
& <\alpha_{\lambda}+\frac{1}{n}<\frac{\beta_{\lambda}}{2}
\end{align*}
$$

This implies

$$
\begin{equation*}
\|f\|_{L^{p^{*}}} S_{p}^{q}\left\|u_{n}\right\|_{H^{1}}^{q} \geq \int_{\Omega} f\left|u_{n}\right|^{q} d x>\frac{-p q}{2 \lambda(p-q)} \beta_{\lambda}>0 \tag{3.6}
\end{equation*}
$$

Consequently, $u_{n} \neq 0$ and putting together 3.5, 3.6 and the Hölder inequality, we obtain

$$
\begin{align*}
\left\|u_{n}\right\|_{H^{1}} & >\left[\frac{-p q}{2 \lambda(p-q)} \beta_{\lambda} S_{p}^{-q}\|f\|_{L^{p^{*}}}^{-1}\right]^{1 / q} \tag{3.7}\\
\left\|u_{n}\right\|_{H^{1}} & <\left[\frac{2(p-q)}{(p-2) q}\|f\|_{L^{p^{*}}} S_{p}^{q}\right]^{1 /(2-q)} \tag{3.8}
\end{align*}
$$

Now, we show that

$$
\left\|J_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{H^{-1}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Applying Lemma 3.1 with u_{n} to obtain the functions $\xi_{n}: B\left(0 ; \epsilon_{n}\right) \rightarrow \mathbb{R}^{+}$for some $\epsilon_{n}>0$, such that $\xi_{n}(w)\left(u_{n}-w\right) \in \mathbf{M}_{\lambda}$. Choose $0<\rho<\epsilon_{n}$. Let $u \in H^{1}(\Omega)$ with $u \not \equiv 0$ and let $w_{\rho}=\frac{\rho u}{\|u\|_{H^{1}}}$. We set $\eta_{\rho}=\xi_{n}\left(w_{\rho}\right)\left(u_{n}-w_{\rho}\right)$. Since $\eta_{\rho} \in \mathbf{M}_{\lambda}$, we deduce from (3.4 that

$$
J_{\lambda}\left(\eta_{\rho}\right)-J_{\lambda}\left(u_{n}\right) \geq-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}
$$

and by the mean value theorem, we have

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \eta_{\rho}-u_{n}\right\rangle+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right) \geq-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}
$$

Thus,

$$
\begin{align*}
& \left\langle J_{\lambda}^{\prime}\left(u_{n}\right),-w_{\rho}\right\rangle+\left(\xi_{n}\left(w_{\rho}\right)-1\right)\left\langle J_{\lambda}^{\prime}\left(u_{n}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \\
& \geq-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right) \tag{3.9}
\end{align*}
$$

Since $\xi_{n}\left(w_{\rho}\right)\left(u_{n}-w_{\rho}\right) \in \mathbf{M}_{\lambda}$ and 3.9 it follows that

$$
\begin{aligned}
& -\rho\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle+\left(\xi_{n}\left(w_{\rho}\right)-1\right)\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}\left(\eta_{\rho}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \\
& \geq-\frac{1}{n}\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}+o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right)
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leq & \frac{\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}}{n \rho}+\frac{o\left(\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}}\right)}{\rho} \\
& +\frac{\left(\xi_{n}\left(w_{\rho}\right)-1\right)}{\rho}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}\left(\eta_{\rho}\right),\left(u_{n}-w_{\rho}\right)\right\rangle \tag{3.10}
\end{align*}
$$

Since $\left\|\eta_{\rho}-u_{n}\right\|_{H^{1}} \leq \rho\left\|\xi_{n}\left(w_{\rho}\right)\right\|+\left\|\xi_{n}\left(w_{\rho}\right)-1\right\|\left\|u_{n}\right\|_{H^{1}}$ and

$$
\lim _{\rho \rightarrow 0} \frac{\left\|\xi_{n}\left(w_{\rho}\right)-1\right\|}{\rho} \leq\left\|\xi_{n}^{\prime}(0)\right\|
$$

if we let $\rho \rightarrow 0$ in 3.10 for a fixed n, then by 3.8 we can find a constant $C>0$, independent of ρ, such that

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leq \frac{C}{n}\left(1+\left\|\xi_{n}^{\prime}(0)\right\|\right)
$$

The proof will be complete once we show that $\left\|\xi_{n}^{\prime}(0)\right\|$ is uniformly bounded in n. By (3.1), 3.8 and the Hölder inequality, we have

$$
\left\langle\xi_{n}^{\prime}(0), v\right\rangle \leq \frac{b\|v\|_{H^{1}}}{\left.\left|(2-q)\left\|u_{n}\right\|_{H^{1}}-(p-q) \int_{\partial \Omega} g\right| u_{n}\right|^{p} d s \mid} \quad \text { for some } b>0
$$

We only need to show that

$$
\begin{equation*}
\left.\left|(2-q)\left\|u_{n}\right\|_{H^{1}}-(p-q) \int_{\partial \Omega} g\right| u_{n}\right|^{p} d s \mid>c \tag{3.11}
\end{equation*}
$$

for some $c>0$ and n large enough. We argue by contradiction. Assume that there exists a subsequence $\left\{u_{n}\right\}$, we have

$$
\begin{equation*}
(2-q)\left\|u_{n}\right\|_{H^{1}}-(p-q) \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s=o(1) \tag{3.12}
\end{equation*}
$$

Combining (3.12 with (3.7), we can find a suitable constant $d>0$ such that

$$
\begin{equation*}
\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s \geq d \quad \text { for } n \text { sufficiently large. } \tag{3.13}
\end{equation*}
$$

In addition (3.12), and the fact that $u_{n} \in \mathbf{M}_{\lambda}$ also give

$$
\lambda \int_{\Omega} f\left|u_{n}\right|^{q} d x=\left\|u_{n}\right\|_{H^{1}}^{2}-\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s=\frac{p-2}{2-q} \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s+o(1)
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{H^{1}} \leq\left[\lambda\left(\frac{p-q}{p-2}\right)\|f\|_{L^{p^{*}}} S_{p}^{q}\right]^{\frac{1}{2-q}}+o(1) \tag{3.14}
\end{equation*}
$$

This implies

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right)=K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s}\right)^{1 /(p-2)}-\lambda \int_{\Omega} f\left|u_{n}\right|^{q} d x=o(1) \tag{3.15}
\end{equation*}
$$

However, by 3.13, 3.14 and $\lambda \in\left(0, \lambda_{0}\right)$,

$$
\begin{aligned}
I_{\lambda}\left(u_{n}\right) & \geq K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2(p-1)}}{\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s}\right)^{1 /(p-2)}-\lambda S_{p}^{q}\|f\|_{L^{p^{*}}}\left\|u_{n}\right\|_{H^{1}}^{q} \\
& \geq\left\|u_{n}\right\|_{H^{1}}^{q}\left(K(p, q)\left(\frac{\left\|u_{n}\right\|_{H^{1}}^{2(p-1)}}{C_{p}^{p}\left\|u_{n}\right\|_{H^{1}}^{p+q(p-2)}}\right)^{1 /(p-2)}-\lambda S_{p}^{q}\|f\|_{L^{p^{*}}}\right) \\
& \geq\left\|u_{n}\right\|_{H^{1}}^{q}\left\{K(p, q) C_{p}^{\frac{p}{2-p}} \lambda^{\frac{1-q}{2-q}}\left[\left(\frac{p-q}{p-2}\right)\|f\|_{L^{p^{*}}} S_{p}^{q}\right]^{\frac{1-q}{2-q}}-\lambda\|f\|_{L^{p^{*}}}\right\} .
\end{aligned}
$$

this contradicts (3.15). We get

$$
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{H^{1}}}\right\rangle \leq \frac{C}{n}
$$

This completes the proof of (i).
(ii) Similarly, by using Lemma 3.2 we can prove (ii). We will omit detailed proof here.

Now, we establish the existence of a local minimum for J_{λ} on \mathbf{M}_{λ}^{+}.
Theorem 3.4. Let $\lambda_{0}>0$ as in Proposition 3.3, then for $\lambda \in\left(0, \lambda_{0}\right)$ the functional J_{λ} has a minimizer u_{0}^{+}in \mathbf{M}_{λ}^{+}and it satisfies
(i) $J_{\lambda}\left(u_{0}^{+}\right)=\alpha_{\lambda}=\alpha_{\lambda}^{+}$;
(ii) u_{0}^{+}is a nontrivial nonnegative solution of equation 1.1);
(iii) $J_{\lambda}\left(u_{0}^{+}\right) \rightarrow 0$ as $\lambda \rightarrow 0$.

Proof. Let $\left\{u_{n}\right\} \subset \mathbf{M}_{\lambda}$ be a minimizing sequence for J_{λ} on \mathbf{M}_{λ} such that

$$
J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}+o(1) \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{*}(\Omega)
$$

Then by Lemma 2.6 and the compact imbedding theorem, there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0}^{+} \in H^{1}(\Omega)$ such that

$$
u_{n} \rightharpoonup u_{0}^{+} \quad \text { weakly in } H^{1}(\Omega), u_{n} \rightarrow u_{0}^{+} \quad \text { strongly in } L^{p}(\partial \Omega)
$$

and

$$
\begin{equation*}
u_{n} \rightarrow u_{0}^{+} \quad \text { strongly in } L^{q}(\Omega) \tag{3.16}
\end{equation*}
$$

First, we claim that $\int_{\Omega} f(x)\left\|u_{0}^{+}\right\|^{q} d x \neq 0$. Suppose otherwise, by 3.16 we can conclude that

$$
\int_{\Omega} f\left|u_{n}\right|^{q} d x \rightarrow \int_{\Omega} f\left|u_{0}^{+}\right|^{q} d x=0 \quad \text { as } n \rightarrow \infty
$$

and so

$$
\left\|u_{n}\right\|_{H^{1}}^{2}=\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s+o(1)
$$

Thus,

$$
\begin{aligned}
J_{\lambda}\left(u_{n}\right) & =\frac{1}{2}\left\|u_{n}\right\|_{H^{1}}^{2}-\frac{\lambda}{q} \int_{\Omega} f\left|u_{n}\right|^{q} d x-\frac{1}{p} \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s \\
& =\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s+o(1) \\
& =\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\partial \Omega} g\left|u_{0}^{+}\right|^{p} d s \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

this contradicts $J_{\lambda}\left(u_{n}\right) \rightarrow \alpha_{\lambda}<0$ as $n \rightarrow \infty$. Moreover,

$$
o(1)=\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \phi\right\rangle=\left\langle J_{\lambda}^{\prime}\left(u_{0}\right), \phi\right\rangle+o(1) \quad \text { for all } \phi \in H^{1}(\Omega)
$$

Thus, $u_{0}^{+} \in \mathbf{M}_{\lambda}$ is a nonzero solution of equation 1.1) and $J_{\lambda}\left(u_{0}^{+}\right) \geq \alpha_{\lambda}$. Now we prove that $u_{n} \rightarrow u_{0}^{+}$strongly in $H^{1}(\Omega)$. Suppose otherwise, then $\left\|u_{0}^{+}\right\|_{H^{1}}<$ $\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H^{1}}$ and so

$$
\begin{aligned}
& \left\|u_{0}^{+}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|u_{0}^{+}\right|^{q} d x-\int_{\partial \Omega} g\left|u_{0}^{+}\right|^{p} d s \\
& <\liminf _{n \rightarrow \infty}\left(\left\|u_{n}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|u_{n}\right|^{q} d x-\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s\right)=0
\end{aligned}
$$

this contradicts $u_{0}^{+} \in \mathbf{M}_{\lambda}$. Hence $u_{n} \rightarrow u_{0}^{+}$strongly in $H^{1}(\Omega)$ and

$$
J_{\lambda}\left(u_{n}\right) \rightarrow J_{\lambda}\left(u_{0}^{+}\right)=\alpha_{\lambda} \quad \text { as } n \rightarrow \infty
$$

Moreover, we have $u_{0}^{+} \in \mathbf{M}_{\lambda}^{+}$. If not, then $u_{0}^{+} \in \mathbf{M}_{\lambda}^{-}$and by Lemma 2.4, there are unique t_{0}^{+}and t_{0}^{-}such that $t_{0}^{+} u_{0}^{+} \in \mathbf{M}_{\lambda}^{+}$and $t_{0}^{-} u_{0}^{+} \in \mathbf{M}_{\lambda}^{-}$. In particular, we have $t_{0}^{+}<t_{0}^{-}=1$. Since

$$
\frac{d}{d t} J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)=0 \quad \text { and } \quad \frac{d^{2}}{d t^{2}} J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)>0
$$

there exists $t_{0}^{+}<\bar{t} \leq t_{0}^{-}$such that $J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)<J_{\lambda}\left(\bar{t} u_{0}^{+}\right)$. By Lemma 2.4

$$
J_{\lambda}\left(t_{0}^{+} u_{0}^{+}\right)<J_{\lambda}\left(\bar{t} u_{0}^{+}\right) \leq J_{\lambda}\left(t_{0}^{-} u_{0}^{+}\right)=J_{\lambda}\left(u_{0}^{+}\right),
$$

which is a contradiction. Since $J_{\lambda}\left(u_{0}^{+}\right)=J_{\lambda}\left(\left|u_{0}^{+}\right|\right)$and $\left|u_{0}^{+}\right| \in \mathbf{M}_{\lambda}^{+}$, by Lemma 2.2 we may assume that u_{0}^{+}is a nontrivial nonnegative solution of equation (1.1). From Lemma 2.6 it follows that

$$
0>J_{\lambda}\left(u_{0}^{+}\right) \geq-\lambda\left(\frac{(p-q)(2-q)}{2 p q}\right)\left(\|f\|_{L^{p^{*}}} S_{p}^{q}\right)^{\frac{2}{2-q}}
$$

and so $J_{\lambda}\left(u_{0}^{+}\right) \rightarrow 0$ as $\lambda \rightarrow 0$.
Next, we establish the existence of a local minimum for J_{λ} on \mathbf{M}_{λ}^{-}.
Theorem 3.5. Let $\lambda_{0}>0$ as in Proposition 3.3. Then for $\lambda \in\left(0, \lambda_{0}\right)$ the functional J_{λ} has a minimizer u_{0}^{-}in \mathbf{M}_{λ}^{-}and satisfies
(i) $J_{\lambda}\left(u_{0}^{-}\right)=\alpha_{\lambda}^{-}$;
(ii) u_{0}^{-}is a nontrivial nonnegative solution of equation 1.1.

Proof. By Proposition 3.3 (ii), there exists a minimizing sequence $\left\{u_{n}\right\}$ for J_{λ} on \mathbf{M}_{λ}^{-}such that

$$
J_{\lambda}\left(u_{n}\right)=\alpha_{\lambda}^{-}+o(1) \quad \text { and } \quad J_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \quad \text { in } H^{*}(\Omega)
$$

By Lemma 2.6 and the compact imbedding theorem, there exist a subsequence $\left\{u_{n}\right\}$ and $u_{0}^{-} \in H^{1}(\Omega)$ such that

$$
\begin{gathered}
u_{n} \rightharpoonup u_{0}^{-} \quad \text { weakly in } H^{1}(\Omega) \\
u_{n} \rightarrow u_{0}^{-} \quad \text { strongly in } L^{p}(\partial \Omega) \\
u_{n} \rightarrow u_{0}^{-} \quad \text { strongly in } L^{q}(\Omega)
\end{gathered}
$$

Since $(2-q)\left\|u_{n}\right\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s<0$, by the Sobolev trace inequality there exists $C>0$ such that $\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s>C$. Moreover,

$$
o(1)=\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \phi\right\rangle=\left\langle J_{\lambda}^{\prime}\left(u_{0}\right), \phi\right\rangle+o(1) \quad \text { for all } \phi \in H^{1}(\Omega)
$$

and

$$
\begin{aligned}
& (2-q)\left\|u_{0}\right\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g\left|u_{0}\right|^{p} d s \\
& \leq \liminf _{n \rightarrow \infty}\left((2-q)\left\|u_{n}\right\|_{H^{1}}^{2}-(p-q) \int_{\partial \Omega} g\left|u_{n}\right|^{p} d s\right) \leq 0
\end{aligned}
$$

Thus, $u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}$is a nonzero solution of equation 1.1. Now we prove that $u_{n} \rightarrow u_{0}^{-}$ strongly in $H^{1}(\Omega)$. Suppose otherwise, then $\left\|u_{0}^{-}\right\|_{H^{1}}<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{H^{1}}$ and so

$$
\begin{aligned}
& \left\|u_{0}^{-}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|u_{0}^{-}\right|^{q} d x-\int_{\partial \Omega} g\left|u_{0}^{-}\right|^{p} d s \\
& <\liminf _{n \rightarrow \infty}\left(\left\|u_{n}\right\|_{H^{1}}^{2}-\lambda \int_{\Omega} f\left|u_{n}\right|^{q} d x-\int_{\partial \Omega} g\left|u_{n}\right|^{p} d s\right)=0
\end{aligned}
$$

this contradicts $u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}$. Hence $u_{n} \rightarrow u_{0}^{-}$strongly in $H^{1}(\Omega)$. This implies

$$
J_{\lambda}\left(u_{n}\right) \rightarrow J_{\lambda}\left(u_{0}^{-}\right)=\alpha_{\lambda}^{-} \quad \text { as } n \rightarrow \infty
$$

Since $J_{\lambda}\left(u_{0}^{-}\right)=J_{\lambda}\left(\left|u_{0}^{-}\right|\right)$and $\left|u_{0}^{-}\right| \in \mathbf{M}_{\lambda}^{-}$, by Lemma 2.2 we may assume that u_{0}^{-} is a nontrivial nonnegative solution of equation 1.1).

Now, we complete the proof of Theorem 1.1. By Theorems 3.4, 3.5, we obtain equation 1.1 has two nontrivial nonnegative solutions u_{0}^{+}and u_{0}^{-}such that $u_{0}^{+} \in$ \mathbf{M}_{λ}^{+}and $u_{0}^{-} \in \mathbf{M}_{\lambda}^{-}$. Since $\mathbf{M}_{\lambda}^{+} \cap \mathbf{M}_{\lambda}^{-}=\phi$, this implies that u_{0}^{+}and u_{0}^{-}are different.

References

[1] Adimurthi, F. Pacella, and L. Yadava; On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations 10 (6) (1997) 1157-1170.
[2] A. Ambrosetti, J. Garcia-Azorero and I. Peral; Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996) 219-242.
[3] A. Ambrosetti, H. Brezis and G. Cerami; Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543.
[4] M. Chipot, M. Chlebik, M. Fila and I. Shafrir; Existence of positive solutions of a semilinear elliptic equation in \mathbb{R}_{+}^{N} with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998) 429-471.
[5] M. Chipot, I. Shafrir and M. Fila; On the solutions to some elliptic equations with nonlinear boundary conditions, Adv. Diff. Eqns 1 (1) (1996) 91-100.
[6] L. Damascelli, M. Grossi and F. Pacella; Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire 16 (1999) 631-652.
[7] I. Ekeland; On the variational principle, J. Math. Anal. Appl. 17 (1974) 324-353.
[8] C. Flores, M. del Pino; Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Diff. Eqns. 26 (11-12) (2001) 2189-2210.
[9] D. G. de Figueiredo, J. P. Gossez and P. Ubilla; Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal. 199 (2003) 452-467.
[10] J. Garcia-Azorero, I. Peral and J. D. Rossi; A convex-concave problem with a nonlinear boundary condition, J. Diff. Eqns. 198 (2004) 91-128.
[11] B. Hu; Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Diff. Integral Eqns. 7 (2) (1994), 301-313.
[12] W. M. Ni and I. Takagi; On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math. 44 (1991) 819-851.
[13] T. Ouyang and J. Shi; Exact multiplicity of positive solutions for a class of semilinear problem II, J. Diff. Eqns. 158 (1999) 94-151.
[14] D. Pierrotti and S. Terracini; On a Neumann problem with critical exponent and critical nonlinearity on the boundary, Comm. Partial Diff. Eqns. 20 (7-8) (1995) 1155-1187.
[15] G. Tarantello; On nonhomogeneous elliptic involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 281-304.
[16] S. Terraccini; Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Diff. Integral Eqns. 8 (1995) 1911-1922.
[17] M. Tang; Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 705-717.
[18] T. F. Wu; On semilinear elliptic equations involving concave-convex nonlinearities and signchanging weight function, J. Math. Anal. Appl. 318 (2006) 253-270.

Tsung-Fang Wu
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

E-mail address: tfwu@nuk.edu.tw

[^0]: 2000 Mathematics Subject Classification. 35J65, 35J50, 35J55.
 Key words and phrases. Semilinear elliptic equations; Nehari manifold;
 Nonlinear boundary condition.
 (C) 2006 Texas State University - San Marcos.

 Submitted July 6, 2006. Published October 17, 2006.
 Partially supported by the National Science Council of Taiwan (R.O.C.).

