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A SEMILINEAR ELLIPTIC PROBLEM INVOLVING NONLINEAR
BOUNDARY CONDITION AND SIGN-CHANGING POTENTIAL

TSUNG-FANG WU

Abstract. In this paper, we study the multiplicity of nontrivial nonnegative

solutions for a semilinear elliptic equation involving nonlinear boundary con-

dition and sign-changing potential. With the help of the Nehari manifold, we
prove that the semilinear elliptic equation:

−∆u + u = λf(x)|u|q−2u in Ω,

∂u

∂ν
= g(x)|u|p−2u on ∂Ω,

has at least two nontrivial nonnegative solutions for λ is sufficiently small.

1. Introduction

In this paper, we consider the multiplicity of nontrivial nonnegative solutions for
the following semilinear elliptic equation

−∆u+ u = λf(x)|u|q−2u in Ω,
∂u

∂ν
= g(x)|u|p−2u on ∂Ω,

(1.1)

where 1 < q < 2 < p < 2(N−1)
N−2 , λ > 0, Ω is a bounded domain in RN with smooth

boundary, ∂
∂ν is the outer normal derivative and f, g : Ω → R are continuous

functions which change sign in Ω. Associated with (1.1), we consider the energy
functional Jλ in H1(Ω),

Jλ(u) =
1
2
‖u‖2H1 −

λ

q

∫
Ω

f |u|qdx− 1
p

∫
∂Ω

g|u|pds.

where ds is the measure on the boundary and ‖u‖2H1 =
∫
Ω
|∇u|2 + u2dx. It is well

known that Jλ is of C1 in H1(Ω) and the solutions of equation (1.1) are the critical
points of the energy functional Jλ.

The fact that the number of solutions of equation (1.1) is affected by the non-
linear boundary conditions has been the focus of a great deal of research in recent
years. Garcia-Azorero, Peral and Rossi [10] have investigated (1.1) when f ≡ g ≡ 1.
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They found that there exist positive numbers Λ1,Λ2 with Λ1 ≤ Λ2 such that equa-
tion (1.1) admits at least two positive solutions for λ ∈ (0,Λ1) and no positive solu-
tion exists for λ > Λ2. Also see Chipot-Chlebik-Fila-Shafrir [4], Chipot-Shafrir-Fila
[5], Flores-del Pino [8], Hu [11], Pierrotti-Terracini [14] and Terraccini [16] where
problems similar to equation (1.1) have been studied.

The purpose of this paper is to consider the multiplicity of nontrivial nonnegative
solutions of equation (1.1) with sign-changing potential. We prove that equation
(1.1) has at least two nontrivial nonnegative solutions for λ is sufficiently small.

Theorem 1.1. There exists λ0 > 0 such that for λ ∈ (0, λ0), equation (1.1) has at
least two nontrivial nonnegative solutions.

Among the other interesting problems which are similar of equation (1.1), Ambro-
setti-Brezis-Cerami [3] have investigated the equation

−∆u = λ|u|q−2u+ |u|p−2u in Ω,
u = 0 on ∂Ω,

(1.2)

where 1 < q < 2 < p ≤ 2N
N−2 . They proved that there exists λ0 > 0 such that (1.2)

admits at least two positive solutions for λ ∈ (0, λ0), has a positive solution for
λ = λ0, and no positive solution for λ > λ0. Actually, Adimurthi-Pacella-Yadava
[1], Damascelli-Grossi-Pacella [6], Ouyang-Shi [13] and Tang [17] proved that there
exists λ0 > 0 such that equation (1.2) in the unit ball BN (0; 1) has exactly two
positive solutions for λ ∈ (0, λ0), has exactly one positive solution for λ = λ0 and
no positive solution exists for λ > λ0. Generalizations of the result of equation
(1.2) were done by Ambrosetti-Azorero-Peral [2], de Figueiredo-Gossez-Ubilla [9]
and Wu [18].

This paper is organized as follows. In section 2, we give some notation and pre-
liminaries. In section 3, we prove that (1.1) has at least two nontrivial nonnegative
solutions for λ is sufficiently small.

2. Notation and Preliminaries

Throughout this section, we denote by Sp, Cp the best Sobolev embedding and
trace constant for the operators H1(Ω) ↪→ Lp(Ω), H1(Ω) ↪→ Lp(∂Ω), respectively.
Now, we consider the Nehari minimization problem: For λ > 0,

αλ = inf{Jλ(u) : u ∈ Mλ},
where Mλ = {u ∈ H1(Ω)\{0} : 〈J ′λ(u), u〉 = 0}. Define

ψλ(u) = 〈J ′λ(u), u〉 = ‖u‖2H1 − λ

∫
Ω

f |u|qdx−
∫

∂Ω

g|u|pds.

Then for u ∈ Mλ,

〈ψ′λ(u), u〉 = 2‖u‖2H1 − λq

∫
Ω

f |u|qdx− p

∫
∂Ω

g|u|pds.

Similarly to the method used in Tarantello [15], we split Mλ into three parts:

M+
λ = {u ∈ Mλ : 〈ψ′λ(u), u〉 > 0},

M0
λ = {u ∈ Mλ : 〈ψ′λ(u), u〉 = 0},

M−
λ = {u ∈ Mλ : 〈ψ′λ(u), u〉 < 0}.

Then, we have the following results.



EJDE-2006/131 A SEMILINEAR ELLIPTIC PROBLEM 3

Lemma 2.1. There exists λ1 > 0 such that for each λ ∈ (0, λ1) we have M0
λ = φ.

Proof. We consider the following two cases.
Case (I): u ∈ Mλ and

∫
∂Ω
g|u|pds ≤ 0. We have

λ

∫
Ω

f |u|qdx = ‖u‖2H1 −
∫

∂Ω

g|u|pds.

Thus,

〈ψ′λ(u), u〉 = 2‖u‖2H1 − λq

∫
Ω

f |u|qdx− p

∫
∂Ω

g|u|pds

= (2− q)‖u‖2H1 + (q − p)
∫

∂Ω

g|u|pds > 0

and so u ∈ M+
λ .

Case (II): u ∈ Mλ and
∫

∂Ω
g|u|pds > 0. Suppose that M0

λ 6= φ for all λ > 0. If
u ∈ M0

λ, then we have

0 = 〈ψ′λ(u), u〉 = 2‖u‖2H1 − λq

∫
Ω

f |u|qdx− p

∫
∂Ω

g|u|pds

= (2− q)‖u‖2H1 − (p− q)
∫

∂Ω

g|u|pds.

Thus,

‖u‖2H1 =
p− q

2− q

∫
∂Ω

g|u|pds (2.1)

and

λ

∫
Ω

f |u|qdx = ‖u‖2H1 −
∫

∂Ω

g|u|pds =
p− 2
2− q

∫
∂Ω

g|u|pds. (2.2)

Moreover,

(
p− 2
p− q

)‖u‖2H1 = ‖u‖2H1 −
∫

∂Ω

g|u|pds

= λ

∫
Ω

f |u|qdx

≤ λ‖f‖Lp∗ ‖u‖q
Lp

≤ λ‖f‖Lp∗Sq
p‖u‖

q
H1 ,

where p∗ = p
p−q . This implies

‖u‖H1 ≤
[
λ(
p− q

p− 2
)‖f‖Lp∗Sq

p

]1/(2−q)

. (2.3)

Let Iλ : Mλ → R be given by

Iλ(u) = K(p, q)
( ‖u‖2(p−1)

H1∫
∂Ω
g|u|pds

)1/(p−2)

− λ

∫
Ω

f |u|qdx,
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where K(p, q) = ( 2−q
p−q )(p−1)/(p−2)(p−2

2−q ). Then Iλ(u) = 0 for all u ∈ M0
λ. Indeed,

from (2.1) and (2.2) it follows that for u ∈ M0
λ we have

Iλ(u) = K(p, q)
( ‖u‖2(p−1)

H1∫
∂Ω
g|u|pds

)1/(p−1)

− λ

∫
Ω

f |u|qdx

=
(2− q

p− q

) p
p−1 (

p− 2
2− q

)
( (p−q

2−q )p−1
( ∫

∂Ω
g|u|pds

)p−1∫
∂Ω
g|u|pds

) 1
p−2

− p− 2
2− q

∫
∂Ω

g|u|pds = 0.

(2.4)

However, by (2.3), the Hölder and Sobolev trace inequality, for u ∈ M0
λ

Iλ(u) ≥ K(p, q)
( ‖u‖2(p−1)

H1∫
∂Ω
g|u|pds

)1/(p−2)

− λSq
p‖f‖Lp∗ ‖u‖q

H1

≥ ‖u‖q
H1

(
K(p, q)

( ‖u‖2(p−1)
H1

Cp
p‖g‖∞‖u‖p+q(p−2)

H1

)1/(p−2)

− λSq
p‖f‖Lp∗

)
≥ ‖u‖q

H1

{
K(p, q)C

p
2−p
p λ

1−q
2−q

[(p− q

p− 2
)
‖f‖Lp∗Sq

p

] 1−q
2−q − λSq

p‖f‖Lp∗
}
.

This implies that for λ sufficiently small we have Iλ(u) > 0 for all u ∈ M0
λ, this

contradicts (2.4). Thus, we can conclude that there exists λ1 > 0 such that for
λ ∈ (0, λ1), we have M0

λ = φ. �

By Lemma 2.1, for λ ∈ (0, λ1) we write Mλ = M+
λ ∪M−

λ and define

α+
λ = inf

u∈M+
λ

Jλ(u); α−λ (Ω) = inf
u∈M−

λ

Jλ(u).

The following lemma shows that the minimizers on Mλ are “usually” critical points
for Jλ.

Lemma 2.2. For λ ∈ (0, λ1). If u0 is a local minimizer for Jλ on Mλ, then
J ′λ(u0) = 0 in H∗(Ω).

Proof. If u0 is a local minimizer for Jλ on Mλ, then u0 is a solution of the opti-
mization problem

minimize Jλ(u) subject to ψλ(u) = 0.

Hence, by the theory of Lagrange multipliers, there exists θ ∈ R such that

J ′λ(u0) = θψ′λ(u0) in H∗(Ω).

Thus,
〈J ′λ(u0), u0〉H1 = θ〈ψ′λ(u0), u0〉H1 . (2.5)

By Lemma 2.1, u0 ∈ M+
λ ∪M−

λ , we have 〈ψ′λ(u0), u0〉H1 6= 0 and so by (2.5) θ = 0.
This completes the proof. �

Lemma 2.3. (i) If u ∈ M+
λ , then

∫
Ω
f |u|qdx > 0;

(ii) If u ∈ M−
λ , then

∫
∂Ω
g|u|pds > 0.
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Proof. (i) Case (I):
∫

∂Ω
g|u|pds ≤ 0. We have

λ

∫
Ω

f |u|qdx = ‖u‖2H1 −
∫

∂Ω

g|u|pds > 0.

Case (II):
∫

∂Ω
g|u|pds > 0. We have

‖u‖2H1 − λ

∫
Ω

f |u|qdx−
∫

∂Ω

g|u|pds = 0

and
‖u‖2H1 >

p− q

2− q

∫
∂Ω

g|u|pds.

Thus,

λ

∫
Ω

f |u|qdx = ‖u‖2H1 −
∫

∂Ω

g|u|pds > p− 2
2− q

∫
∂Ω

g|u|pds > 0.

(ii) Since

(2− q)‖u‖2H1 − (p− q)
∫

∂Ω

g|u|pds = 〈ψ′λ(u), u〉 < 0.

It follows that
∫

∂Ω
g|u|pds > 0. This completes the proof. �

For each u ∈ M−
λ , we write

tmax =
( (2− q)‖u‖2H1

(p− q)
∫

∂Ω
g|u|pds

)1/(p−2)

< 1.

Then we have the following lemma.

Lemma 2.4. Let p∗ = p
p−q and λ2 = (p−2

p−q )( 2−q
p−q )

2−q
p−2C

p(2−q)
2−p

p S−q
p ‖f‖−1

Lp∗ . Then for
each u ∈ M−

λ and λ ∈ (0, λ2), we have
(i) if

∫
Ω
f |u|qdx ≤ 0, then Jλ(u) = supt≥0 Jλ(tu) > 0;

(ii) if
∫
Ω
f |u|qdx > 0, then there is a unique 0 < t+ = t+(u) < tmax such that

t+u ∈ M+
λ and

Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu), Jλ(u) = sup
t≥tmax

Jλ(tu).

Proof. Fix u ∈ M−
λ . Let

h(t) = t2−q‖u‖2H1 − tp−q

∫
∂Ω

g|u|pds for t ≥ 0.

We have h(0) = 0, h(t) → −∞ as t → ∞, h(t) achieves its maximum at tmax,
increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax,∞). Moreover,

h(tmax)

=
( (2− q)‖u‖2H1

(p− q)
∫

∂Ω
g|u|pds

) 2−q
p−2 ‖u‖2H1 −

( (2− q)‖u‖2H1

(p− q)
∫

∂Ω
g|u|pds

) p−q
p−2

∫
∂Ω

g|u|pds

= ‖u‖q
H1

[
(
2− q

p− q
)

2−q
p−2 − (

2− q

p− q
)

p−q
p−2

]( ‖u‖p
H1∫

∂Ω
g|u|pds

) 2−q
p−2

≥ ‖u‖q
H1(

p− 2
p− q

)(
2− q

p− q
)

2−q
p−2C

p(2−q)
2−p

p

or
h(tmax) ≥ ‖u‖q

H1(
p− 2
p− q

)(
2− q

p− q
)

2−q
p−2C

p(2−q)
2−p

p . (2.6)
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(i):
∫
Ω
f |u|qdx ≤ 0. There is a unique t− > tmax such that h(t−) = λ

∫
Ω
f |u|qdx

and h′(t−) < 0. Now,

(2− q)‖t−u‖2H1 − (p− q)
∫

∂Ω

|t−u|pds

= (t−)1+q
[
(2− q)(t−)1−q‖u‖2H1 − (p− q)(t−)p−q−1

∫
∂Ω

g|u|pds
]

= (t−)1+qh′(t−) < 0,

and

〈J ′λ(t−u), t−u〉

= (t−)2‖u‖2H1 − (t−)qλ

∫
Ω

f |u|qdx− (t−)p

∫
∂Ω

g|u|pds

= (t−)q
[
h(t−)− λ

∫
Ω

f |u|qdx
]

= 0.

Thus, t−u ∈ M−
λ or t− = 1. Since for t > tmax, we have

(2− q)‖tu‖2H1 − (p− q)
∫

∂Ω

g|tu|pds < 0,

d2

dt2
Jλ(tu) < 0,

d

dt
Jλ(tu) = t‖u‖2H1 − λtq−1

∫
Ω

f |u|qdx− tp−1

∫
∂Ω

g|u|pds = 0 for t = t−.

Thus, Jλ(u) = supt≥0 Jλ(tu). Moreover,

Jλ(u) ≥ Jλ(tu) ≥ t2

2
‖u‖2H1 −

tp

p

∫
∂Ω

g|u|pds for all t ≥ 0.

By routine computations, g(t) = t2

2 ‖u‖
2
H1 − tp

p

∫
∂Ω
g|u|pds achieves its maximum at

t0 = (‖u‖2H1/
∫

∂Ω
g|u|pds)1/(p−2). Thus,

Jλ(u) ≥ p− 2
2p

( ‖u‖p
H1∫

∂Ω
g|u|pds

) 2
p−2

> 0.

(ii):
∫
Ω
f |u|qdx > 0. By (2.6) and

h(0) = 0 < λ

∫
Ω

f |u|qdx ≤ λ‖f‖Lp∗Sq
p‖u‖

q
H1

< ‖u‖q
H1(

p− 2
p− q

)(
2− q

p− q
)

2−q
p−2C

p(2−q)
2−p

p

≤ h(tmax) for λ ∈ (0, λ2),

there are unique t+ and t− such that 0 < t+ < tmax < t−,

h(t+) = λ

∫
Ω

f |u|qdx = h(t−),

h′(t+) > 0 > h′(t−).
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We have t+u ∈ M+
λ , t−u ∈ M−

λ , and Jλ(t−u) ≥ Jλ(tu) ≥ Jλ(t+u) for each
t ∈ [t+, t−] and Jλ(t+u) ≤ Jλ(tu) for each t ∈ [0, t+]. Thus, t− = 1 and

Jλ(u) = sup
t≥0

Jλ(tu), Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu).

This completes the proof. �

Next, we establish the existence of nontrivial nonnegative solutions for the equa-
tion

−∆u+ u = λf(x)|u|q−2u in Ω,
u = 0 on ∂Ω,

(2.7)

Associated with equation (2.7), we consider the energy functional

Kλ(u) =
1
2
‖u‖2H1 −

λ

q

∫
Ω

f |u|qdx

and the minimization problem

βλ = inf{Kλ(u) : u ∈ Nλ},

where Nλ = {u ∈ H1
0 (Ω)\{0} : 〈K ′

λ(u), u〉 = 0}. Then we have the following result.

Theorem 2.5. Suppose that λ > 0. Then equation (2.7) has a nontrivial nonneg-
ative solution vλ with Kλ(vλ) = βλ < 0.

Proof. First, we need to show that Kλ is bounded below on Nλ and βλ < 0. Then
for u ∈ Nλ,

‖u‖2H1 = λ

∫
Ω

f |u|qdx ≤ λ‖f‖Lq∗S
− q

2
p ‖u‖q

H1 .

where p∗ = p
p−q . This implies

‖u‖H1 ≤ (λ‖f‖Lp∗S
− q

2
p )

1
2−q . (2.8)

Hence,

Kλ(u) =
1
2
‖u‖H1 − λ

q

∫
Ω

f |u|qdx

=
(1
2
− 1
q

)
‖u‖2H1

≤
(1
2
− 1
q

)(
λ‖f‖Lp∗S

− q
2

p

) 1
2−q

for all u ∈ Nλ and βλ < 0. Let {vn} be a minimizing sequence for Kλ on Nλ. Then
by (2.8) and the compact imbedding theorem, there exist a subsequence {vn} and
vλ in H1

0 (Ω) such that
vn ⇀ vλ weakly in H1

0 (Ω)

and
vn → vλ strongly in Lq(Ω). (2.9)

First, we claim that
∫
Ω
f |vλ|qdx > 0. If not,

Kλ(vn) ≥ 1
2
‖vλ‖2H1 −

λ

q

∫
Ω

f |vλ|qdx+ o(1) ≥ 1
2
‖vλ‖2H1 + o(1),
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this contradicts Kλ(vn) → βλ(Ω) < 0 as n → ∞. Thus,
∫
Ω
f |vλ|qdx > 0. In

particular, vλ 6≡ 0. Now, we prove that vn → vλ strongly in H1
0 (Ω). Suppose

otherwise, then ‖vλ‖H1 < lim infn→∞ ‖vn‖H1 and so

‖vλ‖2H1 − λ

∫
Ω

f |vλ|qdx < lim inf
n→∞

(
‖vn‖2H1 − λ

∫
Ω

f |vn|qdx
)

= 0.

Since
∫
Ω
f |vλ|qdx > 0, there is a unique t0 6= 1 such that t0vλ ∈ Nλ. Thus,

t0vn ⇀ t0vλ weakly in H1
0 (Ω).

Moreover,

Kλ(t0vλ) < Kλ(vλ) < lim
n→∞

Kλ(vn) = βλ,

which is a contradiction. Hence vn → vλ strongly in H1
0 (Ω). This implies vλ ∈ Nλ

and

Kλ(vn) → Kλ(vλ) = βλ as n→∞.

Since Kλ(vλ) = Kλ(‖vλ‖) and ‖vλ‖ ∈ Nλ, without loss of generality, we may
assume that vλ is a nontrivial nonnegative solution of equation (2.7). �

Then we have the following results.

Lemma 2.6. (i) αλ ≤ α+
λ ≤ βλ < 0;

(ii) Jλ is coercive and bounded below on Mλ for all λ ∈ (0, p−2
p−q ].

Proof. (i) Let vλ be a positive solution of equation (2.7) such that K(vλ) = βλ.
Since vλ ∈ C2(Ω). Then we have

∫
∂Ω
g|vλ|pds = 0 and vλ ∈ M+

λ . This implies

Jλ(vλ) =
1
2
‖vλ‖2H1 −

λ

q

∫
Ω

f |vλ|qdx = βλ < 0

and so αλ ≤ α+
λ ≤ βλ < 0.

(ii) For u ∈ Mλ, we have ‖u‖2H1 = λ
∫
Ω
f |u|qdx+

∫
∂Ω
g|u|pds. Then by the Hölder

and Young inequalities,

Jλ(u) =
p− 2
2p

‖u‖2H1 − λ
(p− q

pq

) ∫
Ω

f |u|qdx

≥ p− 2
2p

‖u‖2H1 − λ
(p− q

pq

)
‖f‖Lp∗Sq

p‖u‖
q
H1

≥
[p− 2

2p
− λ

(p− q

2p
)]
‖u‖2H1 − λ

( (p− q)(2− q)
2pq

)(
‖f‖Lp∗Sq

p

) 2
2−q

=
1
2p

[
(p− 2)− λ(p− q)

]
‖u‖2H1 − λ

( (p− q)(2− q)
2pq

)(
‖f‖Lp∗Sq

p

) 2
2−q .

Thus, Jλ is coercive on Mλ and

Jλ(u) ≥ −λ
( (p− q)(2− q)

2pq
)(
‖f‖Lp∗Sq

p

) 2
2−q

for all λ ∈ (0, p−2
p−q ]. �
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3. Proof of Theorem 1.1

First, we will use the idea of Ni-Takagi [12] to get the following results.

Lemma 3.1. For each u ∈ Mλ, there exist ε > 0 and a differentiable function
ξ : B(0; ε) ⊂ H1(Ω) → R+ such that ξ(0) = 1, the function ξ(v)(u− v) ∈ Mλ and

〈ξ′(0), v〉 =
2

∫
Ω
∇u∇vdx− λq

∫
Ω
f |u|q−2uvdx− p

∫
∂Ω
g|u|p−2uvds

(2− q)‖u‖2H1 − (p− q)
∫

∂Ω
g|u|pds

(3.1)

for all v ∈ H1(Ω).

Proof. For u ∈ Mλ, define a function F : R×H1(Ω) → R by

Fu(ξ, w) = 〈J ′λ(ξ(u− w)), ξ(u− w)〉

= ξ2
∫

Ω

|∇(u− w)|2 + (u− w)2dx− ξqλ

∫
Ω

f |u− w|qdx

− ξp

∫
∂Ω

g|u− w|pds.

Then Fu(1, 0) = 〈J ′λ(u), u〉 = 0 and

d

dξ
Fu(1, 0) = 2‖u‖2H1 − λq

∫
∂Ω

f |u|qdx− p

∫
∂Ω

g|u|pds

= (2− q)‖u‖2H1 − (p− q)
∫

∂Ω

g|u|pds 6= 0.

According to the implicit function theorem, there exist ε > 0 and a differentiable
function ξ : B(0; ε) ⊂ H1(Ω) → R such that ξ(0) = 1,

〈ξ′(0), v〉 =
2

∫
Ω
∇u∇vdx− λq

∫
Ω
f |u|q−2uvdx− p

∫
∂Ω
g|u|p−2uvds

(2− q)‖u‖2H1 − (p− q)
∫

∂Ω
g|u|pds

and
Fu(ξ(v), v) = 0 for all v ∈ B(0; ε)

which is equivalent to

〈J ′λ(ξ(v)(u− v)), ξ(v)(u− v)〉 = 0 for all v ∈ B(0; ε),

that is ξ(v)(u− v) ∈ Mλ. �

Lemma 3.2. For each u ∈ M−
λ , there exist ε > 0 and a differentiable function

ξ− : B(0; ε) ⊂ H1(Ω) → R+ such that ξ−(0) = 1, the function ξ−(v)(u− v) ∈ M−
λ

and

〈(ξ−)′(0), v〉 =
2

∫
Ω
∇u∇vdx− λq

∫
Ω
f |u|q−2uvdx− p

∫
∂Ω
g|u|p−2uvds

(2− q)‖u‖2H1 − (p− q)
∫

∂Ω
g|u|pds

(3.2)

for all v ∈ H1(Ω).

Proof. Similar to the argument in Lemma 3.1, there exist ε > 0 and a differentiable
function ξ− : B(0; ε) ⊂ H1(Ω) → R such that ξ−(0) = 1 and ξ−(v)(u − v) ∈ Mλ

for all v ∈ B(0; ε). Since

〈ψ′λ(u), u〉 = (2− q)‖u‖2H1 − (p− q)
∫

∂Ω

g|u|pds < 0.
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Thus, by the continuity of the function ξ−, we have

〈ψ′λ(ξ−(v)(u− v)), ξ−(v)(u− v)〉

= (2− q)‖ξ−(v)(u− v)‖2H1 − (p− q)
∫

∂Ω

g|ξ−(v)(u− v)|pds < 0

if ε sufficiently small, this implies that ξ−(v)(u− v) ∈ M−
λ . �

Proposition 3.3. Let λ0 = min{λ1, λ2,
p−1
p−q}, Then for λ ∈ (0, λ0):

(i) There exists a minimizing sequence {un} ⊂ Mλ such that

Jλ(un) = αλ + o(1),

J ′λ(un) = o(1) in H∗(Ω);

(ii) there exists a minimizing sequence {un} ⊂ M−
λ such that

Jλ(un) = α−λ + o(1),

J ′λ(un) = o(1) in H∗(Ω).

Proof. (i) By Lemma 2.6 (ii) and the Ekeland variational principle [7], there exists
a minimizing sequence {un} ⊂ Mλ such that

Jλ(un) < αλ +
1
n
, (3.3)

Jλ(un) < Jλ(w) +
1
n
‖w − un‖H1 for each w ∈ Mλ. (3.4)

By taking n large, from Lemma 2.6 (i), we have

Jλ(un) = (
1
2
− 1
p
)‖un‖2H1 − (

1
q
− 1
p
)λ

∫
Ω

f |un|qdx

< αλ +
1
n
<
βλ

2
.

(3.5)

This implies

‖f‖Lp∗Sq
p‖un‖q

H1 ≥
∫

Ω

f |un|qdx >
−pq

2λ(p− q)
βλ > 0. (3.6)

Consequently, un 6= 0 and putting together (3.5), (3.6) and the Hölder inequality,
we obtain

‖un‖H1 >
[ −pq
2λ(p− q)

βλS
−q
p ‖f‖−1

Lp∗

]1/q

(3.7)

‖un‖H1 <
[2(p− q)
(p− 2)q

‖f‖Lp∗Sq
p

]1/(2−q)

(3.8)

Now, we show that
‖J ′λ(un)‖H−1 → 0 as n→∞.

Applying Lemma 3.1 with un to obtain the functions ξn : B(0; εn) → R+ for some
εn > 0, such that ξn(w)(un − w) ∈ Mλ. Choose 0 < ρ < εn. Let u ∈ H1(Ω) with
u 6≡ 0 and let wρ = ρu

‖u‖H1
. We set ηρ = ξn(wρ)(un − wρ). Since ηρ ∈ Mλ, we

deduce from (3.4) that

Jλ(ηρ)− Jλ(un) ≥ − 1
n
‖ηρ − un‖H1
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and by the mean value theorem, we have

〈J ′λ(un), ηρ − un〉+ o(‖ηρ − un‖H1) ≥ − 1
n
‖ηρ − un‖H1 .

Thus,
〈J ′λ(un),−wρ〉+ (ξn(wρ)− 1)〈J ′λ(un), (un − wρ)〉

≥ − 1
n
‖ηρ − un‖H1 + o(‖ηρ − un‖H1).

(3.9)

Since ξn(wρ)(un − wρ) ∈ Mλ and (3.9) it follows that

− ρ〈J ′λ(un),
u

‖u‖H1
〉+ (ξn(wρ)− 1)〈J ′λ(un)− J ′λ(ηρ), (un − wρ)〉

≥ − 1
n
‖ηρ − un‖H1 + o(‖ηρ − un‖H1).

Thus,

〈J ′λ(un),
u

‖u‖H1
〉 ≤ ‖ηρ − un‖H1

nρ
+
o(‖ηρ − un‖H1)

ρ

+
(ξn(wρ)− 1)

ρ
〈J ′λ(un)− J ′λ(ηρ), (un − wρ)〉.

(3.10)

Since ‖ηρ − un‖H1 ≤ ρ‖ξn(wρ)‖+ ‖ξn(wρ)− 1‖‖un‖H1 and

lim
ρ→0

‖ξn(wρ)− 1‖
ρ

≤ ‖ξ′n(0)‖,

if we let ρ→ 0 in (3.10) for a fixed n, then by (3.8) we can find a constant C > 0,
independent of ρ, such that

〈J ′λ(un),
u

‖u‖H1
〉 ≤ C

n
(1 + ‖ξ′n(0)‖).

The proof will be complete once we show that ‖ξ′n(0)‖ is uniformly bounded in n.
By (3.1), (3.8) and the Hölder inequality, we have

〈ξ′n(0), v〉 ≤ b‖v‖H1

|(2− q)‖un‖H1 − (p− q)
∫

∂Ω
g|un|pds|

for some b > 0.

We only need to show that

|(2− q)‖un‖H1 − (p− q)
∫

∂Ω

g|un|pds| > c (3.11)

for some c > 0 and n large enough. We argue by contradiction. Assume that there
exists a subsequence {un}, we have

(2− q)‖un‖H1 − (p− q)
∫

∂Ω

g|un|pds = o(1). (3.12)

Combining (3.12) with (3.7), we can find a suitable constant d > 0 such that∫
∂Ω

g|un|pds ≥ d for n sufficiently large. (3.13)

In addition (3.12), and the fact that un ∈ Mλ also give

λ

∫
Ω

f |un|qdx = ‖un‖2H1 −
∫

∂Ω

g|un|pds =
p− 2
2− q

∫
∂Ω

g|un|pds+ o(1)
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and

‖un‖H1 ≤
[
λ(
p− q

p− 2
)‖f‖Lp∗Sq

p

] 1
2−q

+ o(1). (3.14)

This implies

Iλ(un) = K(p, q)
( ‖un‖2(p−1)

H1∫
∂Ω
g|un|pds

)1/(p−2)

− λ

∫
Ω

f |un|qdx = o(1). (3.15)

However, by (3.13), (3.14) and λ ∈ (0, λ0),

Iλ(un) ≥ K(p, q)
( ‖un‖2(p−1)

H1∫
∂Ω
g|un|pds

)1/(p−2)

− λSq
p‖f‖Lp∗ ‖un‖q

H1

≥ ‖un‖q
H1

(
K(p, q)

( ‖un‖2(p−1)
H1

Cp
p‖un‖p+q(p−2)

H1

)1/(p−2)

− λSq
p‖f‖Lp∗

)
≥ ‖un‖q

H1

{
K(p, q)C

p
2−p
p λ

1−q
2−q

[
(
p− q

p− 2
)‖f‖Lp∗Sq

p

] 1−q
2−q − λ‖f‖Lp∗

}
.

this contradicts (3.15). We get

〈J ′λ(un),
u

‖u‖H1
〉 ≤ C

n
.

This completes the proof of (i).
(ii) Similarly, by using Lemma 3.2, we can prove (ii). We will omit detailed proof
here. �

Now, we establish the existence of a local minimum for Jλ on M+
λ .

Theorem 3.4. Let λ0 > 0 as in Proposition 3.3, then for λ ∈ (0, λ0) the functional
Jλ has a minimizer u+

0 in M+
λ and it satisfies

(i) Jλ(u+
0 ) = αλ = α+

λ ;
(ii) u+

0 is a nontrivial nonnegative solution of equation (1.1);
(iii) Jλ(u+

0 ) → 0 as λ→ 0.

Proof. Let {un} ⊂ Mλ be a minimizing sequence for Jλ on Mλ such that

Jλ(un) = αλ + o(1) and J ′λ(un) = o(1) in H∗(Ω).

Then by Lemma 2.6 and the compact imbedding theorem, there exist a subsequence
{un} and u+

0 ∈ H1(Ω) such that

un ⇀ u+
0 weakly in H1(Ω), un → u+

0 strongly in Lp(∂Ω)

and
un → u+

0 strongly in Lq(Ω). (3.16)

First, we claim that
∫
Ω
f(x)‖u+

0 ‖qdx 6= 0. Suppose otherwise, by (3.16) we can
conclude that ∫

Ω

f |un|qdx→
∫

Ω

f |u+
0 |qdx = 0 as n→∞

and so

‖un‖2H1 =
∫

∂Ω

g|un|pds+ o(1).
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Thus,

Jλ(un) =
1
2
‖un‖2H1 −

λ

q

∫
Ω

f |un|qdx−
1
p

∫
∂Ω

g|un|pds

= (
1
2
− 1
p
)
∫

∂Ω

g|un|pds+ o(1)

= (
1
2
− 1
p
)
∫

∂Ω

g|u+
0 |pds as n→∞,

this contradicts Jλ(un) → αλ < 0 as n→∞. Moreover,

o(1) = 〈J ′λ(un), φ〉 = 〈J ′λ(u0), φ〉+ o(1) for all φ ∈ H1(Ω).

Thus, u+
0 ∈ Mλ is a nonzero solution of equation (1.1) and Jλ(u+

0 ) ≥ αλ. Now
we prove that un → u+

0 strongly in H1(Ω). Suppose otherwise, then ‖u+
0 ‖H1 <

lim infn→∞ ‖un‖H1 and so

‖u+
0 ‖2H1 − λ

∫
Ω

f |u+
0 |qdx−

∫
∂Ω

g|u+
0 |pds

< lim inf
n→∞

(
‖un‖2H1 − λ

∫
Ω

f |un|qdx−
∫

∂Ω

g|un|pds
)

= 0,

this contradicts u+
0 ∈ Mλ. Hence un → u+

0 strongly in H1(Ω) and

Jλ(un) → Jλ(u+
0 ) = αλ as n→∞.

Moreover, we have u+
0 ∈ M+

λ . If not, then u+
0 ∈ M−

λ and by Lemma 2.4, there are
unique t+0 and t−0 such that t+0 u

+
0 ∈ M+

λ and t−0 u
+
0 ∈ M−

λ . In particular, we have
t+0 < t−0 = 1. Since

d

dt
Jλ(t+0 u

+
0 ) = 0 and

d2

dt2
Jλ(t+0 u

+
0 ) > 0,

there exists t+0 < t̄ ≤ t−0 such that Jλ(t+0 u
+
0 ) < Jλ(t̄u+

0 ). By Lemma 2.4,

Jλ(t+0 u
+
0 ) < Jλ(t̄u+

0 ) ≤ Jλ(t−0 u
+
0 ) = Jλ(u+

0 ),

which is a contradiction. Since Jλ(u+
0 ) = Jλ(|u+

0 |) and |u+
0 | ∈ M+

λ , by Lemma
2.2 we may assume that u+

0 is a nontrivial nonnegative solution of equation (1.1).
From Lemma 2.6 it follows that

0 > Jλ(u+
0 ) ≥ −λ

( (p− q)(2− q)
2pq

)
(‖f‖Lp∗Sq

p)
2

2−q

and so Jλ(u+
0 ) → 0 as λ→ 0. �

Next, we establish the existence of a local minimum for Jλ on M−
λ .

Theorem 3.5. Let λ0 > 0 as in Proposition 3.3. Then for λ ∈ (0, λ0) the functional
Jλ has a minimizer u−0 in M−

λ and satisfies

(i) Jλ(u−0 ) = α−λ ;
(ii) u−0 is a nontrivial nonnegative solution of equation (1.1).

Proof. By Proposition 3.3 (ii), there exists a minimizing sequence {un} for Jλ on
M−

λ such that

Jλ(un) = α−λ + o(1) and J ′λ(un) = o(1) in H∗(Ω).
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By Lemma 2.6 and the compact imbedding theorem, there exist a subsequence {un}
and u−0 ∈ H1(Ω) such that

un ⇀ u−0 weakly in H1(Ω),

un → u−0 strongly in Lp(∂Ω),

un → u−0 strongly in Lq(Ω).

Since (2 − q)‖un‖2H1 − (p − q)
∫

∂Ω
g|un|pds < 0, by the Sobolev trace inequality

there exists C > 0 such that
∫

∂Ω
g|un|pds > C. Moreover,

o(1) = 〈J ′λ(un), φ〉 = 〈J ′λ(u0), φ〉+ o(1) for all φ ∈ H1(Ω)

and

(2− q)‖u0‖2H1 − (p− q)
∫

∂Ω

g|u0|pds

≤ lim inf
n→∞

(
(2− q)‖un‖2H1 − (p− q)

∫
∂Ω

g|un|pds
)
≤ 0.

Thus, u−0 ∈ M−
λ is a nonzero solution of equation (1.1). Now we prove that un → u−0

strongly in H1(Ω). Suppose otherwise, then ‖u−0 ‖H1 < lim infn→∞ ‖un‖H1 and so

‖u−0 ‖2H1 − λ

∫
Ω

f |u−0 |qdx−
∫

∂Ω

g|u−0 |pds

< lim inf
n→∞

(
‖un‖2H1 − λ

∫
Ω

f |un|qdx−
∫

∂Ω

g|un|pds
)

= 0,

this contradicts u−0 ∈ M−
λ . Hence un → u−0 strongly in H1(Ω). This implies

Jλ(un) → Jλ(u−0 ) = α−λ as n→∞.

Since Jλ(u−0 ) = Jλ(|u−0 |) and |u−0 | ∈ M−
λ , by Lemma 2.2 we may assume that u−0

is a nontrivial nonnegative solution of equation (1.1). �

Now, we complete the proof of Theorem 1.1. By Theorems 3.4, 3.5, we obtain
equation (1.1) has two nontrivial nonnegative solutions u+

0 and u−0 such that u+
0 ∈

M+
λ and u−0 ∈ M−

λ . Since M+
λ ∩M−

λ = φ, this implies that u+
0 and u−0 are different.
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