Electronic Journal of Differential Equations, Vol. 2006(2006), No. 135, pp. 1–8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# BIFURCATION OF POSITIVE SOLUTIONS FOR A SEMILINEAR EQUATION WITH CRITICAL SOBOLEV EXPONENT

#### YUANJI CHENG

ABSTRACT. In this note we consider bifurcation of positive solutions to the semilinear elliptic boundary-value problem with critical Sobolev exponent

$$-\Delta u = \lambda u - \alpha u^p + u^{2^* - 1}, \quad u > 0, \quad \text{in } \Omega,$$
$$u = 0, \quad \text{on } \partial \Omega.$$

where  $\Omega \subset \mathbb{R}^n$ ,  $n \geq 3$  is a bounded  $C^2$ -domain  $\lambda > \lambda_1$ ,  $1 and <math>\alpha > 0$  is a bifurcation parameter. Brezis and Nirenberg [2] showed that a lower order (non-negative) perturbation can contribute to regain the compactness and whence yields existence of solutions. We study the equation with an indefinite perturbation and prove a bifurcation result of two solutions for this equation.

## 1. INTRODUCTION AND MAIN RESULT

It is well known that the following equation with a critical exponent has no solution on the star-shaped domains, [12],

$$-\Delta u = u^{\frac{n+2}{n-2}}, \quad \text{in } \Omega, u = 0, \quad \text{on } \partial\Omega,$$
(1.1)

due to the lack of compactness in the embedding  $H_0^1(\Omega) \hookrightarrow L_{\frac{2n}{n-2}}(\Omega)$ . In their seminal work [2], Brezis and Nirenberg show that perturbation by a lower order term suffices to regain the compactness and hence existence of a solution. Consider particularly for the following equation

$$-\Delta u = \lambda u + u^{\frac{n+2}{n-2}}, \quad u > 0 \quad \text{in } \Omega,$$
  
$$u = 0, \quad \text{on } \partial\Omega,$$
  
(1.2)

where  $\lambda$  is considered as a bifurcation parameter, let  $\lambda_1 > 0$  be the first eigenvalue of Laplacian with a Dirichlet boundary, then they show the following result.

**Theorem 1.1** ([2]). There is a constant  $\lambda^* \in [0, \lambda_1)$ , such that (1.2) has a solution if  $\lambda \in (\lambda^*, \lambda_1)$  and has no solution, if  $\lambda \ge \lambda_1$ .

<sup>2000</sup> Mathematics Subject Classification. 49K20, 35J65, 34B15.

Key words and phrases. Critical Sobolev exponent; positive solutions; bifurcation.

<sup>©2006</sup> Texas State University - San Marcos.

Submitted August 12, 2005. Published October 25, 2006.

Thereafter, there are many papers devoted to study of problems with critical Sobolev exponent (see [9, 14] and references therein). Effects of concave and convex combination on bifurcation have been studied in [1, 4, 5, 6, 15]. In this paper we consider the equation with an indefinite lower order perturbation. For simplicity consider the prototype equation

$$-\Delta u = \lambda u - \alpha u^p + u^{\frac{n+2}{n-2}}, \quad u > 0, \quad \text{in } \Omega,$$
  
$$u = 0, \quad \text{on } \partial\Omega.$$
 (1.3)

where  $\lambda$  is a fixed positive constant, and  $\alpha > 0$  is considered as a bifurcation parameter. The main result of this note is the the following theorem showing the existence of two solutions.

**Theorem 1.2.** If  $\lambda > \lambda_1$  and  $3 \le n \le 5$ ,  $1 , then there is a constant <math>\alpha_0 > 0$  such that (1.3) has at least two solutions for  $\alpha > \alpha_0$  and has no solution if  $\alpha < \alpha_0$ 



FIGURE 1. Bifurcation diagram of (1.3)

#### 2. Auxiliary Lemmas

In this section we establish some estimates which are needed in the proof of Theorem 1.2. Without loss of generality, we assume that the domain  $\Omega$  contains the origin and choose R > 0 small enough so that  $\{x : |x| \leq 2R\} \subset \Omega$ . Let  $\psi(x)$  be a cut-off function such that

$$\psi(x) \equiv \begin{cases} 1, & |x| \le R, \\ 0, & |x| \ge 2R, \end{cases}$$

and  $N = \sqrt{n(n-2)}$ . Also let

$$u_{\varepsilon}(x) = \psi(x)u_{0\varepsilon}(x), \quad u_{0\varepsilon}(x) = \left(\frac{N\varepsilon}{\varepsilon^2 + |x|^2}\right)^{(n-2)/2}.$$

EJDE-2006/135

Then  $\|\nabla u_{0\varepsilon}\|_2^2 = S^{n/2} = \|u_{0\varepsilon}\|_{2^*}^{2^*}$  for all  $\varepsilon > 0$ . The following estimates will be needed in the proof of Theorem 1.2.

**Lemma 2.1.** The following estimates hold for some constant K = K(q) > 0

(a)  $\|\nabla u_{\varepsilon}\|_{2}^{2} = S^{n/2} + O(\varepsilon^{n-2})$ (b)  $\|u_{\varepsilon}\|_{2^{*}}^{2^{*}} = S^{n/2} + O(\varepsilon^{n})$ (c)  $1 \le q < 2^{*}$ ,  $\|u_{\varepsilon}\|_{q}^{q} \begin{cases} = K\varepsilon^{\frac{2n-(n-2)q}{2}} + O(\varepsilon^{\frac{(n-2)q}{2}}), & q > n/(n-2) \\ = \varepsilon^{n/2}(K|\ln\varepsilon| + O(1)), & q = n/(n-2) \\ \approx \varepsilon^{(n-2)q/2}, & q < n/(n-2). \end{cases}$ 

*Proof.* The estimate in (a) and (b) are known. Estimate (c) can be shown similarly as in [9, 14].  $\Box$ 

**Lemma 2.2.** There are constants  $\beta$ ,  $\beta_1$ ,  $\beta_2 > 0$  such that the following inequalities hold for all  $a, b \ge 0$ 

(1)  $p \ge 2, \ \beta_1(a^{p-1}b + ab^{p-1}) \ge (a+b)^p - a^p - b^p \ge \beta_2(a^{p-1}b + ab^{p-1}).$ (2)  $p \in (1,2), \ (a+b)^p - a^p - b^p \le \beta a^{p-1}b.$ 

*Proof.* The inequalities follow from the facts that  $h(t) = \frac{(1+t)^p - 1 - t^p}{t + t^{p-1}} \to p$  as either  $t \to 0+$  or  $t \to +\infty$ ;  $h_0(t) = \frac{(1+t)^p - 1 - t^p}{t} \to p$  as  $t \to 0+$  and  $h_0(t) \to 0$  as  $t \to +\infty$ .

We would like to point out here that if  $1 then there is no constant <math>\beta > 0$  such that the following estimate holds for all  $a, b \ge 0$ ,

$$(a+b)^p \ge a^p + b^p + \beta a^{p-1}b$$

3. Proof of Theorem 1.2

Now we consider

$$-\Delta u = \lambda u - \alpha u^p + u^{\frac{n+2}{n-2}}, \quad u > 0, \quad \text{in } \Omega,$$
  
$$u = 0, \quad \text{on } \partial\Omega,$$
(3.1)

We first observe that for small  $\alpha > 0$  there is no solution for (3.1) by comparison, because  $f(u) := \lambda u - \alpha u^p + u^{\frac{n+2}{n-2}}$  satisfies the inequality  $f(u) > \lambda_1 u$  on  $(0, \infty)$ . On the other hand, if  $\alpha$  is big enough, then f(u) vanishes somewhere on  $(0, \infty)$  and whence a constant  $u_+(x) = M$  suffices for a super-solution. To find a sub-solution, we can take  $u_-(x) = t\phi_1(x) > 0$ , where  $\phi_1(x) > 0$  is the normalized eigenfunction associated to  $\lambda_1$ , because

$$-\Delta(t\phi_1) - \lambda(t\phi_1) + \alpha(t\phi_1)^p - (t\phi_1)^{2^*-1} = t(\lambda_1 - \lambda)\phi_1 + \alpha(t\phi_1)^p - (t\phi_1)^{2^*-1} < 0.$$
(3.2)

Thus by the sub- and super-solution method, there is a solution for (3.1). Furthermore for given  $\alpha_0 > 0$  if the problem (3.1) has a solution  $u_{\alpha_0}$ , we shall show then for any  $\alpha > \alpha_0$  the problem (3.1) has also a solution. Clearly  $u_{\alpha_0}$  is a super-solution for (3.1), because

$$-\Delta u_{\alpha_0} - \lambda u_{\alpha_0} + \alpha u_{\alpha_0}^p - u_{\alpha_0}^{2^*-1} = (\alpha - \alpha_0) u_{\alpha_0}^p > 0,$$
(3.3)

and moreover  $t\phi_1(x)$  still suffices as a sub-solution. Further, by the Hopf's lemma  $\frac{\partial u_{\alpha_0}}{\partial \nu} > 0$  on  $\partial\Omega$ , we deduce that  $t\phi_1(x) < u_{\alpha_0}(x)$  on the whole domain  $\Omega$  and

thus again via sub- and super-solution method we obtain a solution  $u_{\alpha}(x)$  for (3.1), where  $u_{\alpha}(x)$  is a minimizer of

$$J(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \frac{\lambda}{2} u^2 + \frac{\alpha}{p+1} |u|^{p+1} + \frac{1}{2^*} |u|^{2^*} dx$$

over the convex set  $K = \{u \in H_0^1(\Omega) : t\phi_1(x) \leq u(x) \leq u_{\alpha_0}(x) \text{ a. e. in } \Omega\}$ . Furthermore, since  $t\phi_1, u_{\alpha_0}$  are not solutions of  $(3)_{\alpha}$ , we deduce that  $t\phi_1(x) < u(x) < u_{\alpha_0}(x)$  on  $\Omega$ . If we choose k > 0 large then  $(\lambda + k)u - \alpha u^p + u^{\frac{n+2}{n-2}}$  will be increasing on  $(0, \infty)$  and whence we deduce from [3, Theorem 2] that  $u_{\alpha}$  is a local minimizer for J in  $H_0^1(\Omega)$ -topology.

We now define  $\alpha_0$  to be the infimum of all  $\alpha > 0$  such that (3.1) has a solution, then we infer that  $\alpha_0 > 0$  is an finite number, and it remains to show that for all  $\alpha > \alpha_0$  there are two solutions for (3.1).

Let  $\alpha > \alpha_0$  be given, and  $u_{\alpha}$  be the solution of (3.1) obtained by the sub- and super-solution method. To establish the second solution we exploit the truncation and translation technique and define  $v = u - u_{\alpha}$  and

$$g(x,v) = \begin{cases} \lambda v - \alpha ((v+u_{\alpha})^{p} - u_{\alpha}^{p}) + (v+u_{\alpha})^{2^{*}-1} - u_{\alpha}^{2^{*}-1} & v \ge 0\\ 0 & v < 0. \end{cases}$$

In the sequel we shall study the boundary-value problem

$$-\Delta v = g(x, v) \quad \text{in } \Omega$$
  

$$v = 0 \quad \text{on } \partial\Omega.$$
(3.4)

First we notice that any nontrivial solution v of (3.4) must be non-negative and then by the strong maximal principle it should be strictly positive on  $\Omega$ . Whence if  $v \neq 0$  is a solution of (3.4), then  $u = v + u_{\alpha}$  will be a positive solution to the problem (3.1), which is bigger than  $u_{\alpha}$ .

We will exploit the critical point method and whence will study the associated functional to the problem (3.4),

$$E(v) = \int_{\Omega} \frac{1}{2} |\nabla v|^2 - G(x, v), \quad G(x, v) = \int_0^v g(x, t) \, dx.$$

Given any  $v \in H$ , decomposed into positive part  $v_+$ , and negative part  $v_-$ , then we test the equation (3.1) for the solution  $u_{\alpha}$  by  $v_+$  and obtain

$$\int_{\Omega} \nabla u_{\alpha} \cdot \nabla v_{+} = \int_{\Omega} (\lambda u_{\alpha} - \alpha u_{\alpha}^{p} + u_{\alpha}^{\frac{n+2}{n-2}}) v_{+} \, .$$

Furthermore we obtain the relation

$$E(v) = J(v_{+} + u_{\alpha}) - J(u_{\alpha}) + \frac{1}{2} ||v_{-}||^{2}, \qquad (3.5)$$

which shows that zero is even a local minimizer for E.

**Lemma 3.1.** The equation (3.4) satisfies the Palais-Smale condition  $(P.S.)_c$  for any  $c \in (0, \frac{1}{n}S^{n/2})$ .

*Proof.* Arguments in [14, Lemma 2.3] works also here.

By the min-max principle, if we can find v > 0 such that

$$c = \inf_{\phi \in \Gamma} \max\{E(\phi(t)) : t \in [0,1]\}$$

EJDE-2006/135

is finite and E satisfies the local Palais-Smale condition  $(P.S.)_c$ , where

$$\Gamma = \{\phi \in C([0,1], H) : \phi(0) = 0, \phi(1) = v\}$$
(3.6)

then there is a critical point u of E at level c. It follows from (3.5) that  $c \ge 0$ . If c > 0, then we will have a nontrivial solution u. If c = 0, then by [7, Theorem 5.10], see also [8, 10], we deduce that there is a continua of minimizers  $u^{\varepsilon}(x), \varepsilon \in (0, \varepsilon_0)$  such that  $E(u^{\varepsilon}) = E(u_{\alpha})$ . So we are also done even in this case.

To find the function v in (3.6), we shall test  $v = tu_{\varepsilon}$ . For n = 3, we may assume  $p \in (2,3)$  then we have  $2^* = 6$ ,  $\frac{n}{n-2} = 3$  and by Lemma 2.2 we obtain

$$(v+u_{\alpha})^{2^{*}-1} - u_{\alpha}^{2^{*}-1} \ge v^{5} + 4v^{4}u_{\alpha},$$
  
$$(v+u_{\alpha})^{p} - u_{\alpha}^{p} \le v^{p} + \beta_{1}(v^{p-1}u_{\alpha} + vu_{\alpha}^{p-1})$$

and consequently

$$G(x,v) \ge \frac{\lambda}{2}v^2 - \alpha(\frac{1}{p+1}v^{p+1} + \beta(\frac{1}{2}v^2u_{\alpha}^{p-1} + \frac{1}{p}v^pu_{\alpha})) + \frac{1}{6}v^6 + \frac{\beta_2}{5}v^5u_{\alpha}.$$

Since  $u_{\alpha}$  is strictly positive on  $\Omega$ , so there are constants  $C_1 \geq C_2 > 0$  such that  $C_1 \geq u_{\alpha}(x) \geq C_2$ , for all  $x \in \Omega, |x| \leq 2R$ . We deduce that for some constants  $C_3, C_4 > 0$ ,

$$E(tu_{\varepsilon}) \leq \int_{\Omega} \frac{t^2}{2} |\nabla u_{\varepsilon}|^2 + C_4(t^2 u_{\varepsilon}^2 + t^p u_{\varepsilon}^p + t^{p+1} u_{\varepsilon}^{p+1}) - C_3 t^5 u_{\varepsilon}^5 - \frac{t^6}{6} u_{\varepsilon}^6.$$

In view of lemma 2.1, we obtain

$$\begin{split} \|u_{\varepsilon}\|_{2}^{2} &\leq A\varepsilon, \quad \|u_{\varepsilon}\|_{p}^{p} \leq A\varepsilon^{p/2}, \quad \|u_{\varepsilon}\|_{p+1}^{p+1} = K(p+1)\varepsilon^{(5-p)/2} + O(\varepsilon^{(p+1)/2}), \\ \|u_{\varepsilon}\|_{5}^{5} &= K(3.3)\sqrt{\varepsilon} + O(\varepsilon^{5/2}), \quad \|u_{\varepsilon}\|_{6}^{6} = S^{3/2} + O(\varepsilon^{3}) \end{split}$$

thus

$$E(tu_{\varepsilon}) \leq \frac{t^2}{2} (S^{3/2} + O(\varepsilon)) + C_4(t^2 A \varepsilon + t^p A \varepsilon^{p/2} + t^{p+1} (K(p+1)\varepsilon^{\frac{5-p}{2}} + O(\varepsilon^{\frac{p+1}{2}})))$$

$$-t^{5}C_{3}(K(5)\sqrt{\varepsilon}+O(\varepsilon^{5/2}))-\frac{t^{6}}{6}(S^{3/2}+O(\varepsilon^{3})):=h_{3}(t).$$

The function  $h_3(t)$  attains its maximum on  $(0, \infty)$  at  $t_{max3} := 1 - \frac{5K(3.3)C_3}{4S^{3/2}}\sqrt{\varepsilon} + o(\sqrt{\varepsilon})$ . Moreover  $h_3(t_{max3}) = \frac{1}{3}S^{3/2} - C_3K(3.3)\sqrt{\varepsilon} + o(\sqrt{\varepsilon})$ . Therefore, we deduce that for  $\varepsilon > 0$  enough small

$$c = \inf_{\phi \in \Gamma} \max\{E(\phi(t)) : t \in [0, 1]\} \le h_3(t_{max3}) < \frac{1}{3}S^{3/2}$$

and obtain via the mountain pass theorem that (3.4) admits a positive solution u. The proof is complete for the case of dimension 3.

If n = 4 or 5, then by the assumption  $p < 4/(n-2) \le 2$  and thus it follows from the lemma 2.2 that

$$(v+u_{\alpha})^{p} - u_{\alpha}^{p} \leq v^{p} + \beta v u_{\alpha}; \quad (v+u_{\alpha})^{2^{*}-1} - u_{\alpha}^{2^{*}-1} \geq v^{2^{*}-1} + \beta_{2} v^{2^{*}-2} u_{\alpha},$$
$$g(x,v) \geq \lambda v - \alpha (v^{p} + \beta v u_{\alpha}^{p-1}) + v^{2^{*}-1} + \beta_{2} v^{2^{*}-2} u_{\alpha}$$

and consequently

$$G(x,v) \ge \frac{\lambda}{2}v^2 - \alpha(\frac{1}{p+1}v^{p+1} + \frac{\beta}{2}v^2u_{\alpha}^{p-1}) + \frac{1}{2^*}v^{2^*} + \frac{\beta_2}{2^*-1}v^{2^*-1}u_{\alpha},$$
  
$$E(v) \le \int_{\Omega} \frac{1}{2}|\nabla v|^2 - (\frac{\lambda}{2}v^2 - \alpha(\frac{1}{p+1}v^{p+1} + \frac{\beta}{2}v^2u_{\alpha}^{p-1}) + \frac{1}{2^*}v^{2^*} + \frac{\beta_2}{2^*-1}v^{2^*-1}u_{\alpha}).$$

In analogy as the case n = 3, we deduce that for some constants  $C_3, C_4 > 0$ .

$$E(tu_{\varepsilon}) \leq \int_{\Omega} \frac{t^2}{2} |\nabla u_{\varepsilon}|^2 + C_4(t^2 u_{\varepsilon}^2 + t^{p+1} u_{\varepsilon}^{p+1}) - C_3 t^{2^* - 1} u_{\varepsilon}^{2^* - 1} - \frac{t^{2^*}}{2^*} u_{\varepsilon}^{2^*}.$$

For n = 4, we have

$$E(tu_{\varepsilon}) \leq \frac{t^2}{2} (S^2 + 0(\varepsilon^2)) + C_4(t^2(\varepsilon^2(K(2)|\ln\varepsilon| + O(1)) + t^{p+1}(K(p+1)\varepsilon^{3-p} + O(\varepsilon^{p+1}))) - t^3C_3(K(3)\varepsilon + O(\varepsilon^3)) - \frac{t^4}{4} (S^2 + O(\varepsilon^4)) := h_4(t).$$

Then  $h_4(t)$  attains its maximum on  $(0, \infty)$  at  $t_{max4} := 1 - \frac{3K(3)C_3}{2S^2}\varepsilon + o(\varepsilon)$ , which satisfies

$$\begin{split} S^2 + O(\varepsilon^2) + C_4(2\varepsilon^2(K(2)|\ln\varepsilon| + O(1)) + t^{p-1}(p+1)(K(p+1)\varepsilon^{3-p} + O(\varepsilon^{p+1}))) \\ = t_3 C_3(K(3)\varepsilon + O(\varepsilon^3)) + t^2(S^2 + O(\varepsilon^4)) \end{split}$$

and moreover  $h_4(t_{max4}) = \frac{1}{4}S^2 - C_3K(3)\varepsilon + o(\varepsilon) < \frac{1}{4}S^2$ , for sufficient small  $\varepsilon > 0$ . So we are done in this case.

If n = 5, we obtain in a similar way that

$$E(tu_{\varepsilon}) \leq \frac{t^2}{2} (S^{5/2} + O(\varepsilon^3)) + C_4 (t^2 (\varepsilon^2 K(2) + O(\varepsilon^3)) + t^{p+1} (K(p+1)\varepsilon^{(7-3p)/2} + O(\varepsilon^{\frac{3(p+1)}{2}}))) - t^{\frac{7}{3}} C_3 (K(\frac{7}{3})\varepsilon^{\frac{3}{2}} + O(\varepsilon^{\frac{7}{2}})) - \frac{3t^{\frac{10}{3}}}{10} (S^{\frac{5}{2}} + O(\varepsilon^5)) := h_5(t).$$

Because p < 4/3, we see that (7 - 3p)/2 > 3/2 and whence  $h_5(t)$  attends its maximum on  $(0, \infty)$  at  $t_{max5} := 1 - \frac{7K(7/3)C_3}{4S^{5/2}}\varepsilon^{3/2} + o(\varepsilon^{3/2})$ , which satisfies

$$\begin{split} S^{5/2} &+ C_4(2\varepsilon^2 K(2) + O(\varepsilon^3) + (p+1)t^{p-1}(K(p+1)\varepsilon^{3-p} + O(\varepsilon^{p+1}))) \\ &= \frac{7}{3}C_3t^{1/3}(K(7/3)\varepsilon^{3/2} + O(\varepsilon^{7/2})) + t^{4/3}(S^{5/2} + O(\varepsilon^5)) \,. \end{split}$$

Moreover  $h_5(t_{max5}) = \frac{1}{5}S^{5/2} - C_3K(7/3)\varepsilon^{3/2} + o(\varepsilon^{3/2}) < \frac{1}{5}S^{5/2}$ , for sufficient small  $\varepsilon > 0$ . So the proof is complete in this case.

### 4. An example

In this part we show a numerical result of solutions for an equation on the the unite ball in  $\mathbb{R}^3$ . we consider an equation with a critical exponent  $\Omega = \{x \in \mathbb{R}^3 : \|x\| < 1\},\$ 

$$\begin{aligned} -\Delta u(x) &= 4\pi u(x) - \alpha u^2(x) + u^5(x), \quad \|x\| < 1, \\ u(x) &= 0, \quad \|x\| = 1. \end{aligned}$$

 $\mathbf{6}$ 

EJDE-2006/135

$$-(r^2 u'(r))' = r^2 (4\pi u(r) - \alpha u^2(r) + u^5(r)), \quad r \in (0,1),$$
$$u'(0) = 0, \quad u(1) = 0.$$

By a numerical simulation for  $\alpha = 7.5$ , we find two positive solutions, where their maxima of the solutions are  $u_1(0) = 0.575$  and  $u_2(0) = 3.44$ .



FIGURE 2. Numerical simulation of solutions on unit ball in  $\mathbb{R}^3$ 

#### References

- A. Ambrosetti, H. Brezis and G. Cerami; Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122, (1994) 519-543.
- [2] H. Brezis and L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. XXXVI (1983), 437 - 477.
- [3] H. Brezis and L. Nirenberg;  $H^1$  versus  $C^1$  local minmizer, C. R. Acad. Sci. Paris 317 (1993) 465 -472.
- [4] Y. Cheng; On an open problem of Ambrosetti, Brezis and Cerami. Differential and Integral Equations, 15:9 (2002) 1025 - 1044
- [5] Y. Cheng; On a quasilinear elliptic eigenvalue problems, preprint November 2004. submitted.
- [6] Y. Cheng and L. Wang; Remarks on bifurcation in elliptic boundary-value problems. Proceeding of EquaDiff 9, July 2003, Hasellt, Belgium.
- [7] D. G. de Figueiredo; Lectures on the Ekeland variational principle with applications and detours, Bombay, 1989.
- [8] D. G. de Figueiredo, S. Solimini; A variational approach to superlinear elliptic problems. Comm in PDE, 9 (1984) 699 - 717.
- [9] N. Ghoussoub; Duality and pertubation methods in critical point theory, Cambridge Univ. Press, 1993.
- [10] N. Ghoussoub and D. Preiss; A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Lináire 6 (1989), 321 - 330.
- [11] B. Gidas, W. N. Ni and L. Nirenberg; Symmetry and related properties via the maximal principle, Comm. Math. Phys. 68 (1979).
- [12] S. Pohozaev, Eigenfunctions of the equation  $\Delta u + \lambda f(u) = 0$ . Soviet Math. Dakl. 6 (1965)
- [13] P. Rabinowitz; Minimax methods in critical point theory with applications to differential equations. AMS, 1984.

- [14] M. Struwe; Variational methods, Second Ed. Springer 1996.
- [15] M. Tang, Exact multiplicity for semilinear elliptic direchelt problems involving concave and convex nonlinearities, Proc. Royal Soci. Edinburgh. Sect. A, 133 (2003), 705 - 717.

Yuanji Cheng

School of Technology and Society, Malmö University, SE-205 06 Malmö, Sweden *E-mail address:* yuanji.cheng@ts.mah.se