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A PROPERTY OF THE H-CONVERGENCE FOR ELASTICITY
IN PERFORATED DOMAINS

HAMID HADDADOU

Abstract. In this article, we obtain the H0
e -convergence as a limit case of the

He-convergence. More precisely, if Ωε is a perforated domain with (admissible)

holes Tε and χε denote its characteristic function and if (Aε, Tε)
H0

e⇀ A0, we

show how the behavior as (ε, δ) → (0, 0) of the double sequence of tensors
Aε

δ = (χε + δ(1 − χε))Aε is connected to A0. These results extend those

given by Cioranescu, Damlamian, Donato and Mascarenhas in [3] for the H-

convergence of the scalar second elliptic operators to the linearized elasticity
systems.

1. Introduction

The notion of H-convergence was introduced by Murat and Tartar [7, 8, 9] for
the second-order elliptic operators (non necessary symmetric) and extended to the
case of holes by Briane, Damlamian and Donato in [2] and called H0-convergence.
Cioranescu, Damlamian, Donato and Mascarenhas [3] obtain the H0-convergence
as a limit case of the H-convergence with a vanishing coercivity constant in the
holes.

In this work, we show that a similar property holds for the linearized elasticity
systems, namely between the He-convergence studied by Francfort and Murat in
[6] and its generalization to the case of holes, denoted by H0

e -convergence, which
has been developed by Donato and El Hajji in [5]. The He-convergence deals
with the convergence of the solutions of a system of linearized elasticity whose
tensor coefficients {Aε} are equibounded and uniformly definite positive. The H0

e -
convergence treat the same problem in a perforated domain Ωε with a traction
condition on the holes for which uniform Korn estimates hold.

Let us briefly describe here the main results of this paper. Let Ω a bounded
open subset of Rn, {Tε} a sequence of (admissible) holes, denote Ωε = Ω \ Tε

the perforated domain and χε the characteristic function of Ωε. Let also {Aε} a

sequence of linearized elasticity tensors on Ω such that (Aε, Tε)
H0

e⇀ A0. We prove
(Theorem 4.1) that if we set for every δ > 0

Aε
δ = (χε + δ(1− χε))Aε a.e. in Ω

2000 Mathematics Subject Classification. 35B40, 74B05.
Key words and phrases. Homogenization; H-convergence; linearized elasticity system;

perforated domains.
c©2006 Texas State University - San Marcos.

Submitted July 6, 2006. Published October 31, 2006.

1



2 H. HADDADOU EJDE-2006/137

and if Aε
δ He-converges to a tensor Aδ (for some subsequence), then Aδ → A0

strongly in Lp(Ω) for any p ≥ 1, and weakly ? in L∞(Ω). Moreover, under suitable
assumption (see (4.3) below), we have also (Theorem 4.2)

(Aε
δ

δ→0−→ (Aε, Tε)) in the sense

{
uε

δ → uε strongly in H1
0 (Ωε)n,

Aε
δe(u

ε
δ) → Aεẽ(uε) strongly in L2(Ω)n×n

and (Theorem 4.3)

(Aε
δ

(ε,δ)→(0,0)−→ A0) in the sense
{
uε

δ → u0 weakly in H1
0 (Ω)n,

Aε
δe(u

ε
δ) → A0e(u0) weakly in L2(Ω)n×n,

where uε, uε
δ and u0 are the solutions of (2.2), (3.5) and (2.4) respectively. This

results can be resumed by the following commutative schema:

Aε
δ

He⇀ Aδ

↓ ↘ ↓

(Aε, Tε)
H0

e⇀ A0.

The definition and the main properties of the H0
e -convergence are recalled in

Section 2. In Section 3 we give some preliminary results and in Section 4 we state
and prove the main results.

2. The H0
e -convergence

We use the following notation:
• If A = (Aijkl)1≤i,j,k,l≤n is a forth order tensors and Λ ∈ Rn×n, we set

AΛ =
∑

1≤i,j,k,l≤n

AijklΛpq,

Λ.Υ =
∑

1≤i,j≤n

ΛijΥij ,

|Λ| = (
∑

1≤i,j≤n

|Λij |2)
1
2 ,

• Ω is a domain of Rn,
• if F is a set of matrices fields, FS = {M ∈ F s. t. M is symmetric},
• {ε} and {δ} denote a two strictly decreasing sequence converging to zero,
• if v = (v1,. . . , vn) is a vector valued function and ζ = (ζij)1≤i,j≤n is a second
order tensor of variable x = (x1,. . . , xn), we set

(∇v)ij =
∂vi

∂xj
≡ Dxj

vi,

e(v) =
1
2
(∇v +t ∇v),

(div ξ)i =
∂ξij
∂xj

;

• for two real numbers α and β such that 0 < α < β, Me(α, β,Ω) is the set of the
tensors A = (Aijkl)1≤i,j,k,l≤n defined on Ω, such that a.e. on Ω we have

(i) Aijkl ∈ L∞(Ω), for any i, j, k, l = 1, . . . , n,
(ii) Aijkl = Ajikl = Aklij , for any i, j, k, l = 1, . . . , n,
(iii) α|Λ|2 ≤ AΛ.Λ, for any symmetric matrix Λ,
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(iv) |AΛ| ≤ β|Λ|, for any matrix Λ,
• if f ∈ H−1(Ω)n and u ∈ H1

0 (Ω)n, we set 〈f, u〉 = 〈f, u〉H−1(Ω)n,H1
0 (Ω)n .

Let us recall first the main results concerning the H0
e -convergence introduced by

Donato and El Hajji [5]. We introduce the perforated domain

Ωε = Ω\Tε,

where Tε is a sequence of compact subsets of Ω and set

Vε = {v ∈ H1(Ωε)n s. t. v = 0 on ∂Ω}.
In the following, we denote by ν the outward normal unit vector on the boundary

of Ωε and .̃ the extension by 0 from Ωε to Ω and set χε = χΩε
.

Definition 2.1 ([5]). The set Tε is said to be admissible (in Ω) for the linearized
elasticity (or e-admissible), if and only if:

(i) Every L∞ weak ∗-limit point of {χΩε
}ε is positive a.e. in Ω;

(ii) there exists a positive real C, independent of ε, and a sequence {Pε}ε of
linear extension operators such that for each ε

Pε ∈ L(Vε,H
1
0 (Ω)n),

(Pεv)|Ωε
= v, ∀v ∈ Vε,

‖e(Pεv)‖0,Ω ≤ C‖e(v)‖0,Ωε
, ∀v ∈ Vε.

(2.1)

We denote by P ?
ε the adjoint operator of Pε, which is defined from H−1(Ω)n to

V ′ε with P ?
ε given for every f ∈ H−1(Ω)n by

∀v ∈ Vε, 〈P ?
ε f, v〉V ′ε ,Vε = 〈f, Pεv〉H−1(Ω)n,H1

0 (Ω)n .

Definition 2.2 ([5]). Let Aε ∈ Me(α, β,Ω), Tε be e-admissible in Ω. The pair
(Aε, Tε) is said H0

e -converge to the tensor A0 ∈ Me(α′, β′,Ω) and denoted by

(Aε, Tε)
H0

e⇀ A0 if and only if for each function fε ∈ H−1(Ω)n such that fε → f
strongly in H−1(Ω)n, the solution uε of

−div (Aεe(uε)) = P ?
ε f

ε in Ωε,

(Aεe(uε))ν = 0 on ∂Tε,

uε = 0 on ∂Ω,
(2.2)

satisfies the weak convergence

Pε(uε)⇀u0 weakly in H1
0 (Ω)n,

Aεẽ(uε)⇀A0e(u0) weakly in L2(Ω)n×n,
(2.3)

where u0 is the unique solution of the problem

−div(A0e(u0)) = f in Ω,

u0 = 0 on ∂Ω.
(2.4)

Remark 2.3. (1) In [5] the definition is given for fixed fε
.= f . The two definitions

are equivalent in view of [5, Proposition 2].
(2) In the case where Tε = ∅, this definition reduces to the definition of the He-
convergence [6].

This notion of convergence makes sense in view of the following compactness
theorem:
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Theorem 2.4 ([5]). Let Aε ∈Me(α, β,Ω) and Tε be e-admissible in Ω. Then there
exists a subsequence, still denoted by {ε}, and a tensor A0 ∈ Me( α

C2 , β,Ω), such
that the sequence {(Aε, Tε)}ε H

0
e -converge to A0.

Remark 2.5. The fact that A0 belongs toMe( α
C2 , β,Ω), does not appears explicitly

in the statement given in [5], but can be easily deduced with the same arguments
as that used in the non perforated case.

Let us recall also a property proved recently in [4].

Theorem 2.6 ([4]). Let {Aε} ∈ Me(α, β,Ω) and {Bε} ∈ Me(α′, β′,Ω) such that
Aε He⇀ A0 and Bε He⇀ B0. Assume that there exists two functions hε, h0 ∈ L1(Ω)
such that

|Aε −Bε| ≤ hε −→ h0 strongly in L1(Ω).

Then

|A0(x)−B0(x)| ≤
√
ββ′

αα′
h0(x) a.e. in Ω.

The following proposition completes a result given in [5]:

Proposition 2.7. One has
(1) If {vε} is a bounded sequence in H1

0 (Ω), then

(vε ⇀ v weakly in H1
0 (Ω)n) ⇔

(
Pε(vε|Ωε

) ⇀ v weakly in H1
0 (Ω)n

)
.

(2) If (ε, δ) is a sequence of R?
+ × R?

+ such that (ε, δ) → (0, 0) and {vε
δ} is a

sequence in H1
0 (Ω) bounded independently of ε and δ, then

(vε
δ ⇀ v weakly in H1

0 (Ω)n) ⇔
(
Pε(vε

δ |Ωε
) ⇀ v weakly in H1

0 (Ω)n
)
.

Proof. Suppose that

Pε(vε|Ωε
) ⇀ v weakly in H1

0 (Ω)n. (2.5)

Observe first that
vεχε = Pε(vε

|Ωε
)χε. (2.6)

On the other hand, since {vε} is a bounded sequence in H1
0 (Ω), there exists a

{ε′} ⊂ {ε} and w ∈ H1
0 (Ω)n such that

vε′ ⇀ w weakly in H1
0 (Ω)n. (2.7)

But |χε′ | ≤ 1, hence there exists χ0 ∈ L∞(Ω) and {ε′′} ⊂ {ε′} such that

χε′′ ⇀ χ0 weakly ? in L∞(Ω). (2.8)

Passing to the limit (in D′(Ω)) in (2.6) by using (2.5), (2.7) and (2.8), we find

χ0w = χ0v.

Taking now into account the fact that (in view of Definition 2.1) χ0 > 0, we
obtain w = v. This, together with (2.7), implies that the whole sequence Pε(vε

δ |Ωε
)

converge weakly to v. We refer to [5] for the converse implication. The proof of (2)
follows by the same arguments. �
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3. Preliminary results

In this paper, {Aε} is a sequence of fourth-order tensors of Me(α, β,Ω) and {Tε}
is a sequence of holes e-admissible in Ω such that

Aε H0
e⇀ A0. (3.1)

Set, for every δ > 0,

Aε
δ = (χε + δ(1− χε))Aε a.e. in Ω. (3.2)

Since, for fixed δ > 0, Aε
δ ∈ Me(min(1, δ)α,max(1, δ)β,Ω), in view of the com-

pactness properties of He-convergence, there exists a subsequence {εm} of {ε} and
Aδ ∈ Me(min(1, δ)α,max(1, δ)β,Ω) such that Aεm

δ

He⇀ Aδ as εm → 0. Hence, for
every δ > 0, the set

Wδ = {Aδ; ∃{εm}m∈N ⊂ {ε} s. t. Aεm

δ

He⇀ Aδ} (3.3)

is not empty. Let {fε} be a sequence in H−1(Ω)n such that

fε → fquadstrongly in H−1(Ω)n (3.4)

and let Aδ be in Wδ. Let uε
δ and uδ the solutions of

−div(Aε
δe(u

ε
δ)) = fε in Ω,

uε
δ = 0 on ∂Ω

(3.5)

and
−div(Aδe(uδ)) = f in Ω,

uδ = 0 on ∂Ω
(3.6)

respectively. We consider now the following sets:

Uδ = {uδ : uδ is the solution of (3.6) for some Aδ ∈Wδ},
Vδ = {The set of weak limit points of Aε

δe(u
ε
δ) in L2(Ω)n as ε→ 0}.

(3.7)

One has the following result:

Lemma 3.1. One has

Vδ = {Aδe(uδ) : Aδ ∈Wδ and uδ is the solution of (3.6)}.

Proof. It is clear that, if Aδ ∈ Wδ and uδ is the solution of (3.6), then Aδe(uδ)
belongs to Vδ. On the other hand, let v ∈ Vδ. Then, there exists a subsequence
{εm} of ε such that

Aεm

δ e(uεm

δ ) ⇀ v weakly in L2(Ω)n, (3.8)

as εm → 0. But the compactness property of the He-convergence shows that there
exists a subsequence {ε′m} of {εm} and a forth-order tensor Aδ such that

A
ε′m
δ

He⇀ Aδ.

This implies in particular

A
ε′m
δ e(uε′m

δ ) ⇀ Aδe(uδ) weakly in L2(Ω)n.

This, together with (3.8), gives v = Aδe(uδ). �
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Remark 3.2. Let us show that in view of Theorem 2.6, there exists {εm} ⊂ {ε}
and for all δ > 0 a tensor Âδ such that

Aεm

δ

He⇀ Âδ. (3.9)
Let us also point out that in Theorem 4.1 we will consider a more general situation,
where for every δ > 0, there exists {εδ} and a tensor Aδ such that Aεδ

δ

He⇀ Aδ.

Let us prove (3.9). Using the diagonal subsequence procedure and the compact-
ness property of the He-convergence, one extracts a subsequence {εm} of {ε} such
that, for every δ ∈ Q?

+, one has

Aεm

δ He-convergences to a limit Aδ. (3.10)

Since a.e in Ω one has

|Aεm

δ1
−Aεm

δ2
| ≤ β|δ1 − δ2|, ∀δ1, δ2 ∈ Q?

+,

Aεm

δ1
∈Me(min(1, δ1)α,max(1, δ1)β,Ω),

Aεm

δ2
∈Me(min(1, δ2)α,max(1, δ2)β,Ω).

Then, from Theorem 2.6, it follows

|Aδ1 −Aδ2 | ≤
β2

α

√
max(1, δ1) max(1, δ2)
min(1, δ1) min(1, δ2)

|δ1 − δ2|.

This implies that the mapping δ ∈ Q?
+ 7→ Aδ ∈ L∞(Ω) is uniformly continuous.

Hence, it can be extended to a mapping (still denoted by δ 7→ Aδ) defined and
uniformly continuous on all R?

+ (since Q?
+ is dense in R?

+).
Let now δ be a strictly positive real and {δs} be a sequence of Q?

+ which converges
to δ as s→∞. Then, there exists a sub-subsequence {ε′m} of {εm} such that

A
ε′m
δ He-converges to some A. (3.11)

In view of Theorem 2.6 this give, together with (3.10) and the fact that |Aε′m
δ −

A
ε′m
δs
| ≤ β|δ − δs|, the following inequality:

|A−Aδs | ≤
β2

α

√
max(1, δ)max(1, δs)
min(1, δ)min(1, δs)

|δ − δs| a.e. in Ω.

Using the continuity of the mapping δ 7→ Aδ on R?
+ and passing to the limit in this

inequality as s→∞, one finds

A = Aδ, a.e. in Ω.

The uniqueness of the limit implies then that the whole subsequence Aεm

δ He-
converges to Aδ, for every δ > 0.

The following results state some a priori estimates that we will need in the
following:

Proposition 3.3. Let uε and uε
δ the solutions of (2.2) and (3.5) respectively. Then,

there exists c > 0 independent of ε and δ such that

‖P ε(uε
δ |Ωε

)− P εuε‖H1
0 (Ω)n ≤ c(δ1/2 + |〈fε, P

ε(uε
δ |Ωε

)− uε
δ〉|1/2),

‖e(uε
δ)‖L2(Tε)n×n ≤ c(1 + δ

− 1
2 |〈fε, P

ε(uε
δ |Ωε

)− uε
δ〉|1/2),

‖Aε
δe(u

ε
δ)−Aεẽ(uε) ‖L2(Ω)n×n ≤ c(δ1/2 + |〈fε, P

ε(uε
δ |Ωε

)− uε
δ〉|1/2).

(3.12)
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Proof. Observe that the variational formulations of problems (2.2) and (3.5) are

∀w ∈ H1
0 (Ω)n,

∫
Ωε

Aεe(uε).e(w)dx = 〈fε, P
ε(w|Ωε

)〉 (3.13)

and

∀w ∈ H1
0 (Ω)n,

∫
Ωε

Aεe(uε
δ).e(w)dx+ δ

∫
Tε

Aεe(uε
δ).e(w)dx = 〈fε, w〉

respectively. Then, for every w ∈ H1
0 (Ω)n, one has∫

Ωε

Aε(e(uε
δ)− e(uε)).e(w)dx+ δ

∫
Tε

Aεe(uε
δ).e(w)dx = −〈fε, P

ε(w|Ωε
)− w〉.

In particular, for w = uε
δ − P εuε, this gives∫

Ωε

Aε(e(uε
δ)− e(uε)).(e(uε

δ)− e(P εuε))dx+ δ

∫
Tε

Aεe(uε
δ).(e(u

ε
δ)− e(P εuε))dx

= −〈fε, P
ε((uε

δ − P εuε)|Ωε
)− uε

δ − P εuε〉.

Using that P εuε
|Ωε

= uε, one deduces∫
Ωε

Aε(e(uε
δ)− e(uε)).(e(uε

δ)− e(uε))dx+ δ

∫
Tε

Aεe(uε
δ).e(u

ε
δ)dx

= δ

∫
Tε

Aεe(uε
δ).e(P

εuε)dx− 〈fε, P
ε(uε

δ)|Ωε
− uε

δ〉.

In view of the fact that Aε ∈Me(α, β,Ω), this gives

α

∫
Ωε

|e(uε
δ)− e(uε))|2dx+ αδ

∫
Tε

|e(uε
δ)|2dx

≤ δ|
∫

Tε

Aεe(uε
δ).e(P

εuε)dx|+ |〈fε, P
ε(uε

δ |Ωε
)− uε

δ〉|.
(3.14)

Using the Young’s inequality, one obtains∣∣ ∫
Tε

Aεe(uε
δ).e(P

εuε)dx
∣∣ ≤ β

∫
Tε

|e(uε
δ)||e(P εuε)|dx

≤ α

2

∫
Tε

|e(uε
δ)|2dx+

β2

2α

∫
Tε

|e(P εuε)|2dx

≤ α

2

∫
Tε

|e(uε
δ)|2dx+

β2

2α

∫
Ω

|e(P εuε)|2dx.

But, taking w = P εuε in (3.13), one finds∫
Ω

|e(P εuε)|dx ≤ c1,

with c1 > 0 independent of ε and δ. Then∣∣ ∫
Tε

Aεe(uε
δ).e(P

εuε)dx
∣∣ ≤ α

2

∫
Tε

|e(uε
δ)|2dx+ c2,

where c2 > 0 independent of ε and δ. This, together with (3.14), gives

α

∫
Ωε

|e(uε
δ)−e(uε))|2dx+

αδ

2

∫
Tε

|e(uε
δ)|2dx ≤ c3(δ+|〈fε, P

ε(uε
δ |Ωε

)−uε
δ〉|). (3.15)
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with c3 > 0 independent of ε and δ. From this, (3.12)ii) follows immediately.
Moreover, since uε

δ |Ωε
− uε ∈ H1

0 (Ωε)n, Definition 2.1 shows that

‖e(P ε(uε
δ|Ωε − uε))‖0,Ω ≤ C‖e(uε

δ − uε)‖0,Ωε .

Hence, by virtue of the Korn inequality, (3.15) gives also (3.12)i).

On the other hand, since Aε
δ = Aε a.e. in Ωε and Aε

δ = δAε a.e. in Tε, one has∫
Ω

|Aε
δe(u

ε
δ)−Aεẽ(uε)|2dx ≤

∫
Ωε

|Aεe(uε
δ)−Aεe(uε)|2dx+ δ2

∫
Tε

|Aεe(uε
δ)|2dx

≤ β2

∫
Ωε

|e(uε
δ)− e(uε)|2dx+ β2δ2

∫
Tε

|e(uε
δ)|2dx,

which, together with (3.12)(i) and (3.12)(ii), gives (3.12)(iii). �

Proposition 3.4. Let u0 the solution of (2.4). Then

sup
u∈Uδ

‖u− u0‖H1
0 (Ω)n ≤ c δ1/2,

sup
v∈Vδ

‖v −A0e(u0)‖L2(Ω)n×n ≤ c δ1/2.
(3.16)

Proof. Let be uδ in Uδ. This means that there exists Aδ ∈ Wδ such that uδ is
the solution of (3.6). But the fact that Aδ is in Wδ implies that there exists a
subsequence {εm} of ε such that Aεm

δ He-converges to Aδ. Hence, the solution uε
δ

of
−div(Aεm

δ e(uεm

δ )) = fεm in Ω,

uεm

δ = 0 on ∂Ω
(3.17)

satisfies as εm → 0

uεm

δ ⇀ uδ weakly in H1
0 (Ω)n,

Aεm

δ e(uεm

δ ) ⇀ Aδe(uδ) weakly in L2(Ω)n×n.
(3.18)

Estimate (3.16)(i): By Lemma 2.7, (3.18)i) implies that, for every fixed δ > 0,

Pεm(uεm

δ |Ωεm
) ⇀ uδ weakly in H1

0 (Ω)n. (3.19)

Hence, by (3.4), one has

lim
εm→0

〈fεm
, P εm(uεm

δ |Ωεm

)− uδ〉 = 0. (3.20)

From this and (3.12)(i), it comes

lim
εm→0

‖P εm(uεm

δ |Ωεm

)− P εmuεm‖H1
0 (Ω)n ≤ cδ1/2. (3.21)

But, (3.19) and (2.3)i) imply

Pεm
(uεm

δ |Ωε
)− Pεm

(uεm) ⇀ uδ − u0 weakly in H1
0 (Ω)n.

This gives, by using the weak lower semi-continuity of the H1
0 -norm,

‖uδ − u0‖H1
0 (Ω)n ≤ lim

εm→0
‖P εm(uεm

δ |Ωεm

)− P εmuεm‖H1
0 (Ω)n ,

where u0 is the solution of (2.4). Hence, (3.21) gives

‖uδ − u0‖H1
0 (Ω)n ≤ cδ1/2.

This is still valid for every uδ ∈ Uδ, which implies (3.16)(i).
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Estimate 3.16(ii): From (3.12)(iii) and (3.20), it comes

lim
εm→0

‖Aεm

δ e(uεm

δ )−Aεm ẽ(uεm) ‖H1
0 (Ω)n×n ≤ cδ1/2.

But (2.3)(ii) and (3.18)(ii) imply, as εm → 0, that

(Aεm

δ e(uεm

δ )−Aεm ẽ(uεm)) ⇀ (Aδe(uδ)−A0e(u0)) weakly in L2(Ω)n×n.

In view of the weak lower semi-continuity of the L2-norm, these two last relations
give

‖(Aδe(uδ)−A0e(u0))‖L2(Ω)n×n ≤ cδ1/2,

for every uδ ∈ Uδ. Hence,

sup
uδ∈Uδ

‖(Aδe(uδ)−A0e(u0))‖L2(Ω)n×n ≤ cδ1/2,

which, together with Lemma 3.1, gives the claimed result. �

4. Main results

Theorem 4.1. Let Aδ ∈Wδ. Then, the solution uδ of (3.6) satisfies as δ → 0

uδ → u0 strongly in H1
0 (Ω)n,

Aδe(uδ) → A0e(u0) strongly in L2(Ω)n×n,
(4.1)

where u0 is the solution of (2.4). Moreover, one has the convergence:

∀p ∈ [1,∞[, Aδ → A0, (4.2)

strongly in Lp(Ω) and weakly ? in L∞(Ω).

Theorem 4.2. Let fε, f be in H−1(Ω)n satisfying (3.4). Suppose that

∀ε > 0, 〈fε, v〉 = 0, ∀v ∈ H1
0 (Ω)n, v = 0 on Ωε. (4.3)

Then, as δ → 0,

uε
δ → uε strongly in H1

0 (Ωε)n,

Aε
δe(u

ε
δ) → Aεẽ(uε) strongly in L2(Ω)n×n,

(4.4)

where uε and uε
δ are the solutions of (2.2) and (3.5) respectively.

Theorem 4.3. Let fε, f ∈ H−1(Ω)n satisfying (3.4) and (4.3). Then, as (ε, δ) →
(0, 0)

uε
δ → u0 weakly in H1

0 (Ω)n,

Aε
δe(u

ε
δ) → A0e(u0) weakly in L2(Ω)n×n,

(4.5)

where u0 and uε
δ are the solutions of (2.4) and (3.5) respectively.

To prove these results we use similar arguments as those used in [3]. Before
giving these proofs, we recall the following lemma:

Lemma 4.4 ([3]). Let {ψm} be a sequence of L2(Ω). Suppose that there exists
ψ, φ ∈ L2(Ω) such that

ψm → ψ strongly in L2
loc(Ω),

∀m ∈ N, |ψm| ≤ φ a.e. in Ω.

Then, ψm → ψ strongly in L2(Ω).
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Proof of Theorem 4.1. Observe first that (4.1) follows immediately from Proposi-
tion 3.4. On the other hand, taking in (2.2) and (3.5), fε = f

.= −div(A0e(ϕΛx))
with ϕ ∈ D(Ω) and Λ ∈ Rn×n

S , then (2.4) reads

−div (A0e(u0)) = −div(A0e(ϕΛx)) in Ω,

u0 = 0 on ∂Ω.

This implies, in view of the fact that A0 ∈ Me( α
C2 , β,Ω), that u0 = ϕΛx. This,

together with (4.1), gives

uδ → ϕΛx strongly in H1
0 (Ω)n,

Aδe(uδ) → A0e(ϕΛx) strongly in L2(Ω)n×n.

Taking now ϕ ∈ D(Ω) such that ϕ = 1 on ω and where ω ⊂⊂ Ω, one obtains

uδ → Λ strongly in H1(ω)n,

Aδe(uδ) → A0Λ strongly in L2(ω)n×n.
(4.6)

On the other hand, one has almost everywhere in ω,

|AδΛ−A0Λ| ≤ |AδΛ−Aδe(uδ)|+ |Aδe(uδ)−A0Λ|
≤ β|Λ− e(uδ)|+ |Aδe(uδ)−A0Λ|.

Then, using (4.6), one gets

AδΛ → A0Λ strongly in L2(ω)n×n,

for every ω ⊂⊂ Ω. Since |Aδm
Λ| ≤ β|Λ|, this gives by Lemma 4.4 written for

ψm = Aδm
Λ (with δm → 0),

AδΛ → A0Λ strongly in L2(Ω)n×n.

By the symmetric properties of Aδ and A0, this convergence is still valid for every
matrix Λ ∈ Rn×n. Thus

Aδ → A0 strongly in L2(Ω)n×n.

From this convergence and the fact that ‖Aδ‖L∞(Ω) ≤ β, one obtains convergence
(4.2). �

Proof of Theorem 4.2. From hypothesis (4.3), Proposition 3.3 and the fact that
P ε(uε

δ |Ωε
)− uε

δ = 0 in Ωε, it follows that

‖uε
δ |Ωε

− uε‖H1
0 (Ωε)n ≤ ‖P ε(uε

δ |Ωε
)− P εuε‖H1

0 (Ω)n ≤ cδ1/2,

‖Aε
δe(u

ε
δ)−Aεẽ(uε) ‖L2(Ω)n×n ≤ cδ1/2.

Passing to the limit as δ → 0, one obtains (4.4). �

Proof of Theorem 4.3. (i) Under hypothesis (4.3), Proposition 3.3 gives

lim
(ε,δ)→(0,0)

‖P ε(uε
δ |Ωε

)− P εuε‖H1
0 (Ω)n = 0

and the fact that Aε He⇀ A0 implies

Pεu
ε − u0 ⇀ 0 weakly in H1

0 (Ω).
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Hence, by passing to the weak limit in H1
0 (Ω) as (ε, δ) → (0, 0) in the following

equality:
Pε(uε

δ |Ωε
)− u0 = (Pε(uε

δ |Ωε
)− Pεu

ε) + (Pεu
ε − u0),

one deduces
Pε(uε

δ |Ωε
) ⇀ u0 weakly in H1

0 (Ω)n. (4.7)

On the other hand, using (4.3) and Proposition 3.3, one gets

‖P ε(uε
δ |Ωε

)− P εuε‖H1
0 (Ω)n ≤ cδ1/2,

‖e(uε
δ)‖L2(Tε)n×n ≤ c.

This implies

‖uε
δ‖H1

0 (Ωε)n ≤ ‖P ε(uε
δ |Ωε

)‖H1
0 (Ω)n ≤ cδ1/2 + ‖P εuε‖H1

0 (Ω)n ,

‖e(uε
δ)‖L2(Tε)n×n ≤ c.

Since P εuε is bounded independently of ε in H1
0 (Ω)n, one deduces that uε

δ is
bounded independently of ε and δ in H1

0 (Ω)n. This, together with (4.7) and Propo-
sition 2.7, gives (4.5)i).
(ii) Using Proposition 3.3, the fact that Aε He⇀ A0 and

Aε
δe(u

ε
δ)−A0e(u0) = (Aε

δe(u
ε
δ)−Aεẽ(uε)) + (Aεẽ(uε)−A0e(u0)),

one obtains the convergence 4.5(ii). �
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