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THE DIRICHLET PROBLEM FOR THE MONGE-AMPÈRE
EQUATION IN CONVEX (BUT NOT STRICTLY CONVEX)

DOMAINS

DAVID HARTENSTINE

Abstract. It is well-known that the Dirichlet problem for the Monge-Ampère

equation det D2u = µ in a bounded strictly convex domain Ω in Rn has a weak

solution (in the sense of Aleksandrov) for any finite Borel measure µ on Ω and
for any continuous boundary data. We consider the Dirichlet problem when

Ω is only assumed to be convex, and give a necessary and sufficient condition

on the boundary data for solvability.

1. Introduction

This note concerns the solvability of the Dirichlet problem for the Monge-Ampère
equation:

det D2u = µ in Ω
u = g on ∂Ω,

(1.1)

where Ω is a bounded convex domain in Rn, µ is a finite Borel measure on Ω, and
g ∈ C(∂Ω). The solution to this problem is in the Aleksandrov sense and we look
for a solution u ∈ C(Ω̄) that is convex in Ω.

It is well-known (see Theorem 2.1 below) that this problem has a solution when
Ω is strictly convex. An obvious necessary condition for the solvability of (1.1) is
that there exists a convex function g̃ ∈ C(Ω̄) such that g̃ = g on ∂Ω, or equivalently,
that g can be extended to a C(Ω̄) function, convex in Ω. We demonstrate that this
condition is also sufficient, so that the following theorem holds.

Theorem 1.1. Let Ω ⊂ Rn be a bounded convex domain, and let µ be a finite
Borel measure on Ω. The Dirichlet problem (1.1) has a unique Aleksandrov solution
u ∈ C(Ω̄) if and only if g ∈ C(∂Ω) can be extended to a function g̃ ∈ C(Ω̄) that is
convex in Ω.

It is not hard to see that a necessary condition for the existence of such an
extension is that g, restricted to any line segment in ∂Ω, is convex. Theorem 5.2
and the subsequent remark show that this condition is also sufficient.

Uniqueness of solutions follows from a comparison principle (Theorem 4.2 below).
The existence of a solution for the special case where µ ≡ 0 on a neighborhood of ∂Ω
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is demonstrated by finding both a subsolution and a supersolution that continuously
attain the boundary data, and invoking an appropriate sub-/supersolution result.
The general case of a finite measure on Ω is then handled by approximation.

We begin by reviewing the definition and some of the basic theory of the Alek-
sandrov solution (Section 2). In Section 3, the portion of the theory of viscosity
solutions for the Monge-Ampère equation that is relevant for this problem is pre-
sented. Section 4 concerns the use of the sub-/supersolution approach and the
Perron method. The proofs of Theorems 1.1 and 5.2 are in Section 5.

2. Aleksandrov solutions

In this section, the Aleksandrov solution and its main properties are reviewed.
Most of this material can be found in Chapter 1 of [6], which includes notes on the
original sources of the results below. See also [1].

The definition of the Aleksandrov solution depends on the normal mapping of a
function. Let U ⊂ Rn, and let u : U → R. The normal map (or subdifferential) of
u at x ∈ U , denoted by ∇u(x), is the set

∇u(x) = {p ∈ Rn : u(y) ≥ u(x) + p · (y − x) ∀y ∈ U}.

The normal map of u of a set E ⊂ U , denoted by ∇u(E), is the union of the normal
maps of u at the points of E:

∇u(E) =
⋃

x∈E

∇u(x).

When U ⊂ Rn is open and u ∈ C(U), the normal map defines a Borel measure,
denoted Mu, on U by

Mu(E) = |∇u(E)|,
where | · | denotes Lebesgue measure. This measure is called the Monge-Ampère
measure associated to u, and is finite on compact subsets of U .

We can now define the Aleksandrov solution of the Monge-Ampère equation. Let
µ be a Borel measure on Ω, a bounded convex domain in Rn. A convex function
u ∈ C(Ω) is called an Aleksandrov solution of detD2u = µ in Ω if Mu = µ in Ω.
We now state a basic existence and uniqueness theorem for the Dirichlet problem.

Theorem 2.1 ([6, Theorem 1.6.2]). Let Ω be bounded and strictly convex and µ be
a finite Borel measure on Ω. Then for any g ∈ C(∂Ω), problem (1.1) has a unique
solution (in the Aleksandrov sense) in C(Ω̄).

The following estimate, due to Aleksandrov, allows for the estimation of a convex
function, vanishing on the boundary of its domain, at a point x in terms of the
distance from x to the boundary and the Monge-Ampère measure of the domain.

Theorem 2.2 ([6, Theorem 1.4.2]). If Ω ⊂ Rn is a bounded convex domain and
u ∈ C(Ω̄) is convex with u = 0 on ∂Ω, then

|u(x)|n ≤ C dist(x, ∂Ω)(diam Ω)n−1Mu(Ω)

for all x ∈ Ω, where C is a dimensional constant.

The following result will be needed to run the approximation argument in the
proof of Theorem 1.1.
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Lemma 2.3 ([6, Lemma 1.2.3]). Let Ω ⊂ Rn be a bounded convex domain. If uj is
a sequence of convex functions in Ω such that uj → u uniformly on compact subsets
of Ω, then Muj → Mu weakly in Ω, meaning that for any f ∈ C(Ω) with compact
support, we have ∫

Ω

f dMuj →
∫

Ω

f dMu.

In the paper [9] the notions of the Monge-Ampère measure of a convex function
and the related weak solution of the Monge-Ampère equation described above were
extended to arbitrary domains in Rn. Properties of these measures (and more
generally the k−Hessian measures also defined in [9]), were also studied in [10] and
[11]. For domains considered below that are not convex, we will use Mu to denote
the measure defined in [9]. See also the remarks in the next section.

3. Viscosity solutions

Another weak solution that has been effectively used in the study of Monge-
Ampère equations is the viscosity solution (see for example, [3], [4], [5], [12]), and
in this section we review the definition and the relation between viscosity and
Aleksandrov solutions.

Let U ⊂ Rn be open and bounded. Let f ∈ C(U) be nonnegative in U . An upper
semicontinuous function v : U → R is called a viscosity subsolution of detD2u = f
in U if whenever x ∈ U and φ ∈ C2(U) are such that v − φ has a local maximum
at x0 ∈ U , then detD2φ(x0) ≥ f(x0). Similarly (but note the additional require-
ment of local convexity), a lower semicontinuous function w : U → R is called a
viscosity supersolution of detD2u = f in U if whenever x ∈ U and φ ∈ C2(U),
satisfying D2φ ≥ 0 in U , are such that w− φ has a local minimum at x0 ∈ U , then
detD2φ(x0) ≤ f(x0). A function u which is both a viscosity supersolution and a
viscosity subsolution is called a viscosity solution of det D2u = f .

The nonnegativity of f in the previous definition is required for ellipticity. With-
out the additional requirement of local convexity for test functions in the definition
of the supersolution, classical solutions may fail to be viscosity solutions (see [5] for
a simple example). As shown in [12], an equivalent formulation of viscosity solu-
tion is obtained if local convexity is required of the test functions for a subsolution
rather than supersolution.

Using viscosity solutions, we can define what it means for a continuous function
to be convex in a domain that is not convex. A function u will be said to be convex
in a domain U if it satisfies detD2u ≥ 0 in the viscosity sense in U . This is needed
in Definition 4.1 and Theorem 4.2 below. See also the remarks on p. 226 of [9] and
p. 580 of [10].

We remark that when U is convex and µ = f dx, where f ∈ C(U) is positive in
U , a function u ∈ C(U) is a viscosity solution of detD2u = f if and only if it is
an Aleksandrov solution of Mu = µ in U . See [3] or [6, Chapter 1]. Furthermore,
this equivalence of viscosity and measure-theoretic solutions (as in [9] and [10] and
mentioned at the end of Section 2) extends to domains that are not convex; see [10,
p. 586].

4. Subsolutions and supersolutions

In this section, we define appropriate sub- and superfunctions for this problem
and show that the conditions for using a Perron argument (as described in [2] and
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[8], and reviewed and modified in [7]) are met. In particular, we show that [7,
Theorem 4.8] holds. Problem (1.1) then has a solution in the Aleksandrov sense
that continuously attains its boundary values if there exist both a subsolution and
a supersolution that equal g on ∂Ω.

Let U ⊂ Rn be open and connected, and let µ be a finite Borel measure on U .
We let F denote the family of local weak solutions of Mu = µ. In other words, a
function u ∈ F if u satisfies Mu = µ in some domain D ⊂ U . We now show that
the family F satisfies the hypotheses in [7, Theorem 4.8], which consist of several
postulates.

Let B be a ball compactly contained in U , and let h ∈ C(∂B). Then by Theo-
rem 2.1, there is a unique u ∈ C(B̄) that satisfies Mu = µ in B and u = h on ∂B.
Thus Postulate 4.1 in [7] is satisfied.

Definition 4.1. A convex function (in the viscosity sense, see Section 3) v ∈ C(D)
is called a subfunction (superfunction) in D (D ⊂ U) if for any ball B ⊂ D and any
w ∈ C(∂B) for which v ≤ (≥)w on ∂B, we also have that v ≤ (≥) w in B, where
w is that element of F ∩C(B̄) with boundary values w. If D is a bounded domain
with D̄ ⊂ U and h is a bounded function on ∂D, v ∈ C(D̄) is called a subsolution
(with respect to h, F and D) if v is a subfunction in D and v ≤ h on ∂D. v ∈ C(D̄)
is called a supersolution if v is a superfunction in D and v ≥ h on ∂D.

Postulate 4.6 in [7] and the weak version of Postulate 4.2 (Comparison principles)
in [7] both hold by the following comparison principle, in which convexity of the
functions is in the viscosity sense (see Section 3). ([9, Corollary 2.4] is also used to
establish [7, Postulate 4.6].)

Theorem 4.2 ([9, Theorem 3.1]). Let u, v ∈ C(D̄) be convex and satisfy

Mu ≥ Mv in D

u ≤ v on ∂D.

Then u ≤ v in D.

We remark that by Theorem 4.2, if v is convex and Mv ≥ (≤)µ in a domain
D, then v is a subfunction (superfunction). This observation will be needed in the
next section.

Let B be a ball with B̄ ⊂ U , and let {hj} ⊂ C(∂B) be uniformly bounded,
say |hj(x)| ≤ M for all j and x ∈ ∂B. To establish [7, Postulate 4.3], we need to
demonstrate that the sequence {uj} ⊂ C(B̄) of solutions to the problems Mu = µ
in B, uj = hj on ∂B is equicontinuous. By subtracting M from hj (and hence from
uj), we may assume that hj ≤ 0. Let v ∈ C(B̄) solve

Mu = µ in B

u = −2M on ∂B.

Then, by Theorem 4.2 and the convexity of uj , v ≤ uj ≤ 0 in B̄ for all j. Now
suppose pj ∈ ∇uj(x) for some j and some x ∈ B. Then, by [6, Lemma 3.2.1],

|pj | ≤
|uj(x)|

dist(x, ∂B)
≤ |v(x)|

dist(x, ∂B)
. (4.1)

This inequality gives a uniform estimate on |pj | and implies that the uj are uni-
formly Lipschitz in compact subsets of B and hence equicontinuous.
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Let D be any bounded domain with D̄ ⊂ U and let h be a bounded function on
∂D. To verify [7, Postulate 4.4], we need to show that there exists a subsolution
and a supersolution in D. Let w(x) = const ≥ sup∂D h. Then Mw = 0, so that w
is a supersolution. Extend µ to a measure on Rn by setting µ(Rn \ U) = 0. Let
Ω0 be a strictly convex domain that contains D, and let h0 ∈ C(∂Ω0) be such that
max∂Ω0 h0 ≤ inf∂D h, and let u ∈ C(Ω̄0) solve (by Theorem 2.1)

Mu = µ in Ω0

u = h0 on ∂Ω0.

Then since u is convex, its maximum occurs on ∂Ω0, so u ≤ h on ∂D. By the com-
parison principle (Theorem 4.2), u is a subfunction in D and hence a subsolution.

Therefore all of the conditions in [7, Theorem 4.8] are met and the Perron pro-
cess can be used to produce a generalized solution in any bounded domain with
bounded boundary data. The continuous assumption of boundary data h ∈ C(∂D)
is guaranteed when a subsolution and a supersolution, both of which equal h on
∂D, exist (as is also indicated on p. 233 of [9]). In the next section, we produce a
subsolution and a supersolution for problem (1.1) both equal to g on ∂Ω when µ
vanishes on a neighborhood of ∂Ω.

5. Proof of Theorem 1.1

Because g is assumed to extend continuously to g̃, which is a convex function in
Ω, the problem

detD2u = 0 in Ω
u = g on ∂Ω

(5.1)

has a solution w ∈ C(Ω̄), that is convex in Ω (see [10, Theorem 3.5]). By Theo-
rem 4.2, w is a supersolution for problem (1.1) and w = g on ∂Ω. Since w is convex,
it agrees with its convex envelope; in other words, for all x ∈ Ω,

w(x) = sup{L(x) : L ≤ w in Ω, L affine}.

For x ∈ Ω̄, define

U(x) = sup{L(x) : L ≤ g on ∂Ω, L affine}. (5.2)

We now show that U = w. Suppose the affine function L satisfies L ≤ w in Ω. Then
by the continuity of L and w and since w = g on ∂Ω, L ≤ g on ∂Ω, so w ≤ U . Now
suppose that L ≤ g on ∂Ω and L is affine. Then since det D2L = det D2w = 0 in Ω
and L ≤ w on ∂Ω, we get by Theorem 4.2 that L ≤ w, so that U ≤ w. Therefore w
is given by the following formula (and this formula extends to ∂Ω, see Theorem 5.2
below), which will be needed in the proof of Lemma 5.1 below:

w(x) = sup{L(x) : L ≤ g on ∂Ω, L affine}. (5.3)

Because Ω is convex the function dist(·, ∂Ω) is concave in Ω. Then for any
constant K ≥ 0,

wK(x) = w(x)−K dist(x, ∂Ω) (5.4)

is convex in Ω, continuous in Ω̄, and equal to g on ∂Ω. By choosing K sufficiently
large, wK can be made as small as desired on any compact subset of Ω.

Now suppose that µ ≡ 0 on a neighborhood of ∂Ω, and let Ω1 be a compact
subset of Ω that contains the support of µ. Let Ω0 be a strictly convex domain that
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contains Ω, and extend µ to Ω0 by defining µ(Ω0 \ Ω) ≡ 0. Let v ∈ C(Ω̄0) be the
unique Aleksandrov solution of

det D2u = µ in Ω0

u = 0 on ∂Ω0,

which exists by Theorem 2.1. Let vK1 = v−K1 where K1 is chosen so that vK1 < g
on ∂Ω, and note that det D2v = det D2vK1 . Let K in (5.4) be chosen so that
wK < vK1 in Ω1. For x ∈ Ω̄, define

u(x) = max{wK(x), vK1(x)}.

Then u ∈ C(Ω̄), u = g on ∂Ω and since it is the maximum of two convex functions,
u is convex in Ω. We claim that u is a subsolution. Let E ⊂ Ω be a Borel set. Let
E1 = E ∩ Ω1 and E2 = E ∩ (Ω \ Ω1). Let p ∈ ∇v(x) for some x ∈ E1. Then

vK1(y) ≥ vK1(x) + p · (y − x)

for all y ∈ Ω0. We have that u(x) = vK1(x) and that u ≥ vK1 in Ω, so

u(y) ≥ u(x) + p · (y − x),

for all y ∈ Ω, implying that p ∈ ∇u(x) and ∇v(E1) ⊂ ∇u(E1), and hence that
Mv(E1) ≤ Mu(E1). Therefore,

Mu(E) = Mu(E1) + Mu(E2)

≥ Mv(E1) + Mu(E2)

= µ(E1) + Mu(E2)

= µ(E) + Mu(E2) ≥ µ(E).

By the remark following Theorem 4.2, this proves that u is a subsolution. Note
that Mu may be singular outside of the support of µ, but that this does not matter
in the construction of the subsolution u.

Thus, by Section 4, the conclusion of Theorem 1.1 holds when µ is compactly
supported in Ω. To handle the general case, we use the following approximation
lemma, see [6, Lemma 1.6.1] for the corresponding result for strictly convex do-
mains.

Lemma 5.1. Let Ω ⊂ Rn be a bounded convex domain, and let µ be a finite Borel
measure on Ω. Suppose g ∈ C(∂Ω) and that there exists a sequence of convex
functions uj ∈ C(Ω̄) such that:

(1) uj = g on ∂Ω,
(2) µj = Muj → µ weakly in Ω, and
(3) µj(Ω) ≤ A < ∞ for all j.

Then there exists a convex function u ∈ C(Ω̄) and a subsequence of the uj that
converges uniformly to u on compact subsets of Ω, such that Mu = µ in Ω and
u = g on ∂Ω.

Proof. We use an argument similar to the one in [6]. By hypothesis, g must extend
as a C(Ω̄) function that is convex in Ω. Therefore, the Dirichlet problem with zero
right-hand side and boundary data g (problem (5.1)) has a solution w ∈ C(Ω̄).
By the comparison principle (Theorem 4.2), uj ≤ w in Ω̄ for all j, so the uj are
uniformly bounded above.
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The next step is to show the uj are bounded below. Let ξ ∈ ∂Ω and let ε > 0.
Then there exists an affine function L such that L ≤ g on ∂Ω and L(ξ) ≥ g(ξ)− ε
(see (5.3) and Theorem 5.2 below). Let vj = uj−L. Then vj is convex in Ω, vj ≥ 0
on ∂Ω, and Mvj = Muj . If vj ≥ 0 in Ω for all j, then uj ≥ L for all j, and we
have our lower bound. If vj(x) < 0 for any x ∈ Ω, we can then apply Theorem 2.2
to vj in the convex set Ω̃ ⊂ Ω where vj < 0:

(−vj(x))n ≤ C dist(x, ∂Ω̃)(diam(Ω̃))n−1Mvj(Ω̃)

≤ C dist(x, ∂Ω)(diam(Ω))n−1Mvj(Ω)

≤ C dist(x, ∂Ω)(diam(Ω))n−1A.

Therefore,

vj(x) ≥ −C(dist(x, ∂Ω))1/n(diam(Ω))(n−1)/nA1/n ≡ F (x).

Therefore uj ≥ F + L in Ω̃. Since uj ≥ L in Ω \ Ω̃ and F ≤ 0, we have that
uj ≥ F + L in Ω, and the uj are uniformly bounded below.

Using (4.1), one easily sees that the uj are locally uniformly Lipschitz in Ω.
Then by Arzela-Ascoli, there is a subsequence of the uj that converges uniformly
on compact sets to a function u ∈ C(Ω). Since the uj are convex, so is u. By
Lemma 2.3 the measures Muj converge weakly to Mu in Ω, but by hypothesis,
Muj → µ weakly in Ω, so Mu = µ.

It remains to show that u ∈ C(Ω̄) and that u = g on ∂Ω. For all j and any
x ∈ Ω,

w(x) ≥ uj(x) ≥ F (x) + L(x),
so that

w(x) ≥ u(x) ≥ F (x) + L(x).
If x → ξ, w(x) → w(ξ) = g(ξ), F (x) → 0 and L(x) → L(ξ) ≥ g(ξ)− ε. Since ε > 0
is arbitrary, u ∈ C(Ω̄) and u = g on ∂Ω. This completes the proof of Lemma 5.1.

We now use Lemma 5.1 to complete the proof of Theorem 1.1. Let Ωj be a
sequence of domains compactly contained in Ω that increase to Ω. Given a finite
Borel measure µ on Ω, define µj = χΩj µ, where χΩj is the characteristic function
of Ωj . Then µj vanishes on a neighborhood of ∂Ω, so by the previous argument,
the problem

detD2u = µj in Ω
u = g on ∂Ω.

has a solution uj ∈ C(Ω̄). Then all the conditions of Lemma 5.1 are met (with
A = µ(Ω)), and we obtain a convex function u ∈ C(Ω̄) that satisfies detD2u = µ
and is equal to g on ∂Ω. �

We now give a necessary and sufficient condition for the extendability of g as a
convex function, and justify the remark preceding (5.3).

Theorem 5.2. Let Ω ⊂ Rn be a bounded convex domain. g ∈ C(∂Ω) can be
extended to a function g̃ ∈ C(Ω̄), convex in Ω, if and only if the function U , defined
by (5.2), is continuous in Ω̄ and U = g on ∂Ω.

Proof. Note that U , being the supremum of bounded convex functions, is convex
in Ω. Therefore, if U is continuous in Ω̄ with boundary values g, g extends as a
convex function.
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Now suppose that g extends to a convex function g̃ ∈ C(Ω̄). Then if T is a flat
portion of ∂Ω, g|T must be convex. We saw earlier that U agrees with the solution
v of problem (5.1) in Ω, so it only remains to check that U is continuous up to ∂Ω
and that U = g on ∂Ω. Let ξ ∈ ∂Ω and suppose {xn} ⊂ Ω is such that xn → ξ.
Since U = v in Ω, v = g on ∂Ω and v ∈ C(Ω̄), we have U(xn) → g(ξ). Therefore,
if U = g on ∂Ω we are done.

By definition, U ≤ g on ∂Ω. Suppose that there exists ξ ∈ ∂Ω for which
U(ξ) < g(ξ), and let ε = g(ξ)−U(ξ) > 0. Either ξ ∈ T , where T is a flat portion of
∂Ω, or ξ is a point of strict convexity, meaning that there exists an affine function
P : Rn → R such that P (ξ) = 0 and P > 0 in Ω \ ξ. The same argument as that
on pp. 17-18 of [6] can be used to show that if η is a point of strict convexity, then
U(η) = g(η), so ξ must lie in a line segment contained in ∂Ω.

There exists an affine function P such that P (ξ) = 0 and P ≥ 0 in Ω̄. Let
T = Ω̄ ∩ {P (x) = 0}. Let 0 < m < n be the dimension of T . Write a point
x ∈ Rn as (x1, x2, . . . , xn). We may assume Ω̄ ⊂ {xn ≥ 0} and T is a subset of
{xm+1 = xm+2 = · · · = xn = 0}, which we identify with Rm. Identifying points of
T with their projection into Rm, there exists p ∈ Rm such that

g(y) ≥ g(ξ) + p · (y − ξ) (5.5)

for all y ∈ T . We now claim that there exists δ > 0 such that

g(x) ≥ g(ξ) + p · (y − ξ)− ε/2 (5.6)

for all x ∈ ∂Ω∩{P (x) ≤ δ}, where y is the projection of x into Rm. If (5.6) does not
hold for any δ > 0, then there is a decreasing sequence δn → 0 and a corresponding
sequence of points xn such that

xn ∈ ∂Ω ∩ {P (x) ≤ δn},
g(xn) < g(ξ) + p · (yn − ξ)− ε/2.

(5.7)

Passing to a subsequence if necessary, we get xn → x ∈ ∂Ω. Since δn ≥ P (xn) ≥ 0
and P is continuous, we get that P (x) = 0 and x ∈ T . On the other hand, from
(5.7) we conclude that

g(x) ≤ g(ξ) + p · (y − ξ)− ε/2

contradicting (5.5). Therefore, we have (5.6) for some δ > 0. Let

L(x) = g(ξ) + p · (y − ξ)− ε/2− CP (x)

where C ≥ 0 is a constant to be chosen and x = (y, z) ∈ Rm × Rn−m. Then,
regardless of the choice of C ≥ 0, L is an affine function for which L(ξ) = g(ξ) −
ε/2 > U(ξ) and L ≤ g in ∂Ω ∩ {P (x) ≤ δ}. If C can be chosen such that L ≤ g on
the rest of ∂Ω, this will contradict the definition of U(ξ) and we will obtain U = g
on ∂Ω and U ∈ C(Ω̄). If C ≥ 0, then for any x ∈ ∂Ω with P (x) ≥ δ, we have that

L(x) ≤ g(ξ) + p · (y − ξ)− ε/2− Cδ.

Let M = max∂Ω(p · (y − ξ)− g(x)). Since Ω is bounded and g is continuous, M is
finite. Choose

C ≥ max
{g(ξ)− ε/2 + M

δ
, 0

}
.

Then for any x ∈ ∂Ω, with P (x) ≥ δ, we have L(x) ≤ g(x), and hence L ≤ g on
∂Ω, and the proof of Theorem 5.2 is complete. �
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We remark that the preceding argument shows that g ∈ C(∂Ω) can be extended
as a convex function, continuous in Ω̄ if and only if g, restricted to any portion of
a hyperplane that lies in ∂Ω, is convex. In particular, there is no restriction on g
at any point of strict convexity.
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