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EXACT CONTROLLABILITY OF GENERALIZED
HAMMERSTEIN TYPE INTEGRAL EQUATION AND

APPLICATIONS

DIMPLEKUMAR N. CHALISHAJAR, RAJU K. GEORGE

Abstract. In this article, we study the exact controllability of an abstract
model described by the controlled generalized Hammerstein type integral equa-

tion

x(t) =

Z t

0
h(t, s)u(s)ds +

Z t

0
k(t, s, x)f(s, x(s))ds, 0 ≤ t ≤ T < ∞,

where, the state x(t) lies in a Hilbert space H and control u(t) lies another

Hilbert space V for each time t ∈ I = [0, T ], T > 0. We establish the control-
lability result under suitable assumptions on h, k and f using the monotone

operator theory.

1. Introduction

Let X and V be Hilbert spaces and I = [0, T ], where 0 < T < ∞. Let Y =
L2(0, T ;X) be the solution space and U = L2(0, T ;V ) be the control function space.
We consider the following nonlinear control problem

x(t) =
∫ t

0

h(t, s)u(s)ds +
∫ t

0

k(t, s, x)f(s, x(s))ds, 0 ≤ t ≤ T < ∞. (1.1)

Here, the state of the system x(t) ∈ X and u(t) ∈ V is the control at time t.
The nonlinear function f : I × X 7→ X and for each t, s ∈ I, x ∈ Y , the kernel
k(t, s, x) : X 7→ X and h(t, s) : V 7→ X are bounded linear operators.

Remark 1.1. In equation (1.1), the kernel k depends on the whole function x, but
not depends on pointwise. That is, the system has to be treated separately if we
consider the kernel k(t, s, x(s)).

Remark 1.2. Equation (1.1) satisfies the initial condition x(0) = 0 ∈ X, but one
can incorporate any initial state x(0) = x0 which will not alter the results.

Definition 1.3. The system (1.1)is said to be exactly controllable over the
interval [0, T ], if for any given x1 ∈ X, there exists a control u ∈ U such that the
corresponding solution x of (1.1) satisfies x(T ) = x1.
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A large amount of literature is available regarding the existence and uniqueness
of the above type of equation as well as related equations. See, Petry [19], Stuart
[22], Leggett [17], Backwinkel-Schilling [2], Srikanth-Joshi [21] to name a few and
the references therein.

The corresponding linear control system

x(t) =
∫ t

0

h(t, s)u(s)ds, 0 ≤ t ≤ T < ∞, (1.2)

is quite standard and one can give various conditions to ensure the exact controlla-
bility of the linear system (1.2). Throughout the paper, we assume that the linear
system is exactly controllable.

The exact controllability of related nonlinear systems are also available. See, for
example, [3, 4, 5] and for approximate controllability of non-autonomous semilinear
system [9]. In [13], Joshi - George established the exact controllability for nonlinear
systems in finite dimensional settings, using the monotone operator theory and
fixed point theorems. Our aim in this article is to generalize these results to infinite
dimensional systems. In this short article, we will present some abstract results
along with some useful corollaries. Numbers of well-known models of dynamical
control systems can be represented in a above frame work. The applications of
abstract results to specific examples both from ordinary and partial differential
equations are discussed.

The outlay of the paper is as follows. In Section 2, we give main assumptions
on system components and some preliminary estimates of system operators. We
transform the controllability problem to that of a solvability problem. An operator
W corresponding to the linear system will be introduced and controllability depends
on the compactness of this operator. We prove the compactness under various
sufficient conditions in Section 3. In Section 4, we establish the exact controllability
result. Finally in Section 5, we demonstrate some applications to illustrate our
theory.

2. Assumptions and Estimates

Here we provide some sets of sufficient conditions which give guarantee the ex-
istence of the solution operator W , and study its behaviour under various assump-
tions.

Define the following operators:

• for x ∈ Y , K(x) : Y 7→ Y by (K(x)y)(t) =
∫ t

0
k(t, s, x)y(s)ds;

• H : U 7→ Y by (Hu)(t) =
∫ t

0
h(t, s)u(s)ds;

• N : Y 7→ Y by (Nx)(t) = f(t, x(t)); and
• W : U 7→ Y by Wu = f(., x(.)), where x(.) is the solution of (1.1) corre-

sponding to u ∈ U .

First, we reduce the controllability problem to a solvability problem. The results
on solvability crucially depend on the compactness of W . We make the following
assumptions.
Assumptions

(A1) {
∫ T

0

∫ t

0
‖k(t, s, x)‖2ds dt}1/2 ≡ k(x) < k0 < ∞.

(A2) {
∫ T

0

∫ t

0
‖h(t, s)‖2ds dt}1/2 ≡ h0 < ∞.
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(A3) The function f satisfies Caratheodory conditions. i.e., t → f(t, .) is mea-
surable and x → f(., x) is continuous.

• (A4) The function f satisfies the growth condition

‖f(t, x)‖ ≤ a0‖x‖+ b(t),

where a0 > 0 is a constant and b0(t) ≥ 0 and b0 ∈ L2(I).

Lemma 2.1. The operators K, H and N satisfy the following estimates.

‖K(x)y‖Y ≤ k‖y‖Y ∀x, y ∈ Y. (2.1)

‖Hu‖Y ≤ h‖u‖U u ∈ U. (2.2)

‖Nx‖Y ≤
√

2(a0‖x‖Y + b0) ∀x ∈ Y, (2.3)

where b0 = ‖b0‖L2(I).

Proof. The estimate (2.1) follows from Cauchy-Schwartz inequality as:

‖K(x)y‖2
Y =

∫ T

0

‖((Kx)(y)(t))‖2
Xdt

≤
∫ T

0

(
∫ t

0

‖k(t, s, x)‖ ‖y(s)‖Xds)2dt

≤
∫ T

.

(
∫ t

0

‖k(t, s, x)‖2ds)(
∫ t

0

‖y(s)‖2ds)dt

≤ k2
0‖y‖2

Y .

The inequality (2.2) follows in a similar fashion. Now

‖Nx‖2
Y =

∫ T

0

‖Nx(t)‖2
Xdt =

∫ T

0

‖f(t, x(t))‖2
Xdt

≤ 2
∫ T

0

[a2
0‖x(t)‖2 + b0(t)2]dt

≤ 2[a2
0‖x‖2

Y + b2
0]

≤ 2[a0‖x‖Y + b0]2.

Hence (2.3). �

Operator form of the equation. With the notation as earlier, we may write the
equation (1.1) as

x(t) = (Hu)(t) + (K(x)(Nx))(t) (2.4)

or, equivalently
x = Hu + K(x)(Nx). (2.5)

The following theorem gives the existence of solution x of (2.5) for a given u which
can be proved along the lines as in [13].

Theorem 2.2 (Existence and Uniqueness). Assume the following:
(AK1) There exists a constant µ > 0 such that∫ T

0

〈 ∫ t

0

k(t, s, x)x(s)ds, x(t)
〉
dt ≥ µ

∫ T

0

∥∥∫ t

0

k(t, s, x)x(s)ds
∥∥2

dt ∀x ∈ Y. (2.6)
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(AF1) The function −f is monotone in the sense that

〈f(t, x)− f(t, y), x− y〉 ≤ 0 ∀x, y ∈ X, t ∈ I. (2.7)

Then, given u ∈ U , there exists a unique solution x ∈ Y of (2.5) and x satisfies a
growth condition

‖x‖Y ≤ b0

µ
+

(b0

µ
+ 1

)
h0‖u‖U . (2.8)

Lemma 2.3. Under the assumptions (AK1), (AF1) and the assumptions (A1)–
(A4), the Nemytskii operator W is well-defined and continuous. Moreover it satis-
fies the following growth condition:

‖Wu‖Y ≤
√

2
(b0

µ
+ 1

)
a0h0‖u‖U +

√
2(

1
µ

+ 1)b0. (2.9)

The proof of the above lemma follows from the assumptions and estimate (2.8).

3. Compactness of the operator W

We make the following further assumptions in this section to guarantee the
compactness of W .
Assumptions

(B1) There exists k̃ > 0 such that∥∥∫ t

s

k(t, τ, x)x(τ)dτ
∥∥

X
≤ k̃(t− s)‖x‖Y , 0 ≤ s < t ≤ T.

(B2) There exists h̃ > 0 such that∥∥∫ t

s

h(t, τ)u(τ)dτ
∥∥

X
≤ h̃(t− s)‖u‖U , 0 ≤ s < t ≤ T.

(B3) The operators k and h satisfy the uniform continuity in the following sense:
Given ε > 0 there exists h > 0 small such that

‖k(r + h, s, x)− k(r, s, x)‖BL(X) ≤ ε

and

‖h(r + h, s)− h(r, s)‖BL(X) ≤ ε, 0 ≤ r < r + h ≤ T.

(B4) There exists a space X̂ such that X 7→ X̂ is a compact imbedding.
(B5) Assume that f can be extended to I× X̂ 7→ X such that f is Caratheodory

and x 7→ f(., x(.)) is continuous from L2(I; X̂) 7→ L2(I;X).

Theorem 3.1. Under the Assumptions (B1)–(B5), the operator W is compact.

Proof. Let {un} be a bounded sequence in U . We have to show that {Wun} =
{f(., xn(.))} has a convergent subsequence. First of all {f(., xn(.))} is bounded in
Y by Lemma 2.3. Therefore there exists a constant M > 0 such that∫ T

0

‖f(t, xn(t))‖2
Xdt ≤ M2,

where, xn is the solution of (1.1) corresponding to un. We show that the family
{xn(.)} is equicontinuous in C(I;X).

xn(t) =
∫ t

0

k(t, τ, xn)f(τ, xn(τ))d(τ) +
∫ t

0

h(t, τ)un(τ)d(τ)
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Let t = r + h0. We have

‖xn(t)− xn(r)‖ ≤ ‖
∫ r

0

{k(t, τ, xn)− k(r, τ, xn)}f(τ, xn(τ))dτ‖

+ ‖
∫ t

r

k(t, τ, xn)f((τ, xn(τ))dτ‖

+ ‖
∫ r

0

{h(t, τ)− h(r, τ)}un(τ)dτ‖+ ‖
∫ t

r

h(t, τ)un(τ)dτ‖

= I1 + I2 + I3 + I4.

Now by (B3) and (B1) respectively, we get

I1 ≤ ε

∫ r

0

‖f(τ, xn(τ))‖Xdτ ≤ εr1/2M ≤ εMT 1/2

and
I2 ≤ k̃ h0‖f(., xn(.))‖Y .

Similarly I3 and I4 can be estimated as

I3 ≤ εT 1/2‖un‖U and I4 ≤ h̃h0‖un‖U .

The above estimates shows that {xn(.)} is equicontinuous in C(I;X) as ‖un‖ is
bounded. Further, {xn(.)} is also uniformly bounded in C(I;X). Now, using the
compact inclusion X ↪→ X̂ and applying general form of Arzela-Ascoli theorem [1],
we deduce that {xn(.)} is relatively compact in C(I; X̂). Thus along a subsequence
{xnk

} converges in C(I; X̂) and so converges in L2(0, T ; X̂).
Then from the assumption (B5), it follows that f(., xnk

(.)) converges in Y =
L2(0, T ;X). Thus the operator is compact and the proof is complete. �

Remark 3.2. If h(t, s) is a compact operator, then it is easy to show that W is
compact. In such situations, the exact controllability in the whole space may be
impossible [24, 20] for different conditions to ensure the compactness of W with
non-compact h(t, s).

Also, it is possible to give various more specific conditions under which the
operator W is compact.

When W is assumed to be compact, the assumption [AK1] can be weakened by
imposing strong monotonicity on f . i.e. by making [AK1] stronger which is shown
in the following Lemma.

(AK2)
∫ T

0
〈
∫ t

0
k(t, s, x)x(s)ds, x(t)〉Xdt ≥ 0 for all x ∈ Y .

(AF2) There exists a constant β > 0, such that

〈f(t, x)− f(t, y), x− y〉 ≥ β‖x− y‖2

(AF3) Assumptions of are satisfied.

Lemma 3.3. Assume (AK2), (AF2), (B1)–(B5). Then the operator W is well
defined and continuous. Further it satisfies the growth condition

‖Wu‖ ≤ C0 + C‖u‖U ,

where C0 = b0 + a0mbTema0T and C = a0h0Tema0T , with m is a positive constant
satisfying

‖k(t, s, x)‖ ≤ m(x) < m ∀t, s ∈ I
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Proof. By hypotheses, the operators K(x) and N satisfy

〈K(x)x, x〉Y ≥ 0, 〈Nx−Ny, x− y〉 ≥ β‖x− y‖2 ∀x, y ∈ Y

Also (AF3) implies that K(xn)Nxn has a convergent subsequence for every bounded
sequence un, where xn is the solution of (1.1) corresponding to un. Now the proof
follows from and Grownwall’s inequality and [9, Lemma 2.2 of] and then use the
similar argument given in the Theorem (2.2) and Lemma 2.3. �

When f is Lipschitz continuous, we have the following Lemma giving different
conditions to guarantee that W is well defined and Lipschitz continuous. The proof
of it follows from [9] and [13].

Let us make the following assumptions on f .

(AF4) There exists α > 0 such that

‖f(t, x)− f(t, y)‖ ≤ α‖x− y‖ ∀x, y,∈ X, t ∈ I

(AF5) There exists β > 0 such that

〈f(t, x)− f(t, y), x− y〉 ≤ −β‖x− y‖2 ∀x, y ∈ X, t ∈ I

Lemma 3.4. In each of the following cases, the solution operator W is well defined
and Lipschitz continuous.

(i) Assumption (AF4) holds with k0α < 1
(ii) Assumption (AF4) and (AF5) hold with β > k0α

2

(iii) Assumption (AF4) hold with ‖k(t, s, x)‖ ≤ m(x) < m ∀t, s ∈ I,m > 0
(iv) Assumption (AF4) holds.

Further the Lipschitz constants for W in the above cases are respectively,

αk0h0

1− k0α
,

k0α
3h0

β(β − k0α2)
, αTh0e

ma0T ,
k0h0α

1− α
,

where ε > 0 is an arbitrary small constant.

Remark 3.5. Here (AF4) is sufficient to prove the existence of W and Lipschitz
continuity of W . The additional assumptions only give better estimation on the
Lipschitz constant of the solution operator W .

When f is locally Lipschitz continuous, then also we can show that W is well-
defined, shown in the following Lemma. The proof follows along the same line as
in the proof of [9, Lemma 2.4].

(i) There exists a constant α(r) such that

‖f(t, x)− f(t, y)‖ ≤ α(r)‖x− y‖ ∀x, y ∈ X

such that ‖x‖ ≤ r, ‖y‖ ≤ r.
(ii) There exists m > 0 such that ‖k(t, s, x)‖ ≤ m for all t, s ∈ I
(iii) f satisfies the growth condition (A4).

Lemma 3.6. Under assumptions (i)–(iii) above, the operator W is well-defined
and continuous. Moreover, W satisfies a growth condition (A4),

‖Wu‖Y ≤ (b0 + a0mbTema0T ) + a0h0Tema0T ‖u‖U
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Proof. Since, by the local Lipschitz condition, there exists a unique solution to (1.1)
in a maximal interval [0, tmax], tmax ≤ t. If tmax < t then limt7→tmax ‖x(t, s)‖X =
∞(refer [23]). In other words, if limt7→tmax ‖x(t, s)‖X = ∞, then ∃ a unique solution
in the interval [0, t]. We have already shown in the proof of Lemma 3.3 that
‖x(t, s)‖X < ∞ for each u. Thus W is well-defined and the growth condition
follows from the proof of Lemma 3.3. �

We now move on to the exact controllability under the assumption that the
operator W is compact.

4. Exact controllability

We, first reduce the controllability problem to a solvability problem which in
turn imply the conditions for controllability of system (1.1). Define an operator
C : U 7→ X by

Cu =
∫ T

0

h(T, s)u(s) ds. (4.1)

The operator C is bounded linear and in fact, is known as the control operator for
the linear system

x(t) =
∫ t

0

h(t, s) u(s) ds, x(0) = 0. (4.2)

Let N(C) = {u ∈ U : Cu = 0} be the null space and

Z = [N(C)]⊥ = {u ∈ U : 〈u, v〉 = 0 for all v ∈ N(C)}.

Definition 4.1. We call a bounded linear operator S : X 7→ Z, a Steering
Operator if S steers the linear system (4.2) from 0 to x1. In other words, if
u = Sx1, (x1 ∈ X), then

x(T ) =
∫ T

0

h(T, s)(Sx1)(s)ds = x1.

Clearly CS = I, the identity operator on X. Thus, if there exists a steering
operator S, then u = Sx1 acts as a control and the linear system (4.2) is controllable.
Conversely, if the linear system is controllable, then for any x1 ∈ X there exists
u ∈ U such that Cu = x1, i.e., C is onto. Thus, we can define a generalized inverse
C# = (C|Z)−1 : X 7→ Z and S = C# will be a steering operator. Thus, one gets
the following result.

Theorem 4.2. The linear system (4.2) is exactly controllable if and only if there
exists a steering operator.

Here we note that C#Cu = u for ∀u ∈ z and C#Cu = v for u ∈ U , where v is
the projection of u on z.

We now assume the controllability of the linear system and proceed to prove the
exact controllability of the nonlinear system. Define an operator F : Z 7→ X by

Fu =
∫ T

0

k(T, s, x)(Wu)(s)ds,

where, x is the solution of the system (1.1) corresponding to the control u. Let S be
the steering operator of the linear system. Let x1 ∈ X and u0 = Sx1 be the control
which steers the linear system from 0 to x1. The exact controllability of (1.1) is
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equivalent to the existence of u ∈ Z (let x be the solution of (1.1) corresponding
to u) such that

x1 = x(T ) =
∫ T

0

k(T, s, x)(Wu)(s)ds +
∫ T

0

h(T, s)u(s)ds.

That is,
x1 = Fu + Cu.

Applying S on both sides, we get

u0 = SFu + u.

in z, where u0 is the control, steering the linear system from 0 to x1.
Thus, the problem of controllability reduces to solvability problem of the operator

equation: Solve for u ∈ Z,
(I + SF )u = u0. (4.3)

We now state our controllability result. For the sake of generality, we state the
theorem by imposing indirect conditions on W and F . The explicit conditions on
k, h, f can be given to verify the conditions on W and F . The corollaries follow are
direct verfication of the conditions of the main theorem.

Theorem 4.3. Assume the linear system (4.2) is exactly controllable with the
steering operator S. Further assume that the operator W is well defined and compact
and satisfies

‖SFu‖ ≤ a0‖u‖+ b0, with a0 < 1, b0 ≥ 0

Then the system (4.3) is solvable in Z.

Proof. We look for the solvability of the operator R : Z 7→ U , where

Ru = [I + SF ]u.

Then
〈Ru, u〉 = 〈u, u〉+ 〈SFu, u〉 ≥ ‖u‖2 − a0‖u‖ − b0‖u‖,

which implies

lim
‖u‖→∞

〈Ru, u〉
‖u‖

= ∞.

Thus, R is coercive operator. Again compactness of W implies that SF is compact.
Now, R is compact perturbation of the identity operator and hence R is of type

(M). See [12] for a definition of type(M). Since any coercive operator of type (M)
is onto [12], the proof of the theorem is complete. �

Corollary 4.4. Assume the linear system is exactly controllable with a steering
operator S. Assume the conditions (AK1) and (AF1) and the assumptions (B1)–
(B5). Then the nonlinear system (1.1) is controllable if

‖S‖k0(b0 + µ)a0h0 < µ.

Theorem 4.5. Suppose that the system (1.1) satisfies:
(1) The linear part is exactly controllable.
(2) W is well defined and compact.
(3) SF is uniformly bounded i.e. |SFu| ≤ C, for some C > 0.

Then the system (1.1) is exactly controllable.
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Proof. Let R be the operator defined in the proof of the Theorem 4.3. We have

〈Ru, u〉 > ‖u‖2 − C‖u‖ ⇒ lim
‖u‖7→∞

〈Ru, u〉 = ∞

By following the same argument as in the proof of Theorem 4.3, we have that R is
a coercive operator of type (M) and hence it is onto. This completes the proof. �

In the above result we do not require the Lipschitz continuity of W but we need
F to be uniformly bounded. If f is uniformly bounded then it is not hard to show
that SF is also uniformly bounded. When f is uniformly bounded, we have the
following result which follows as particular case of Theorem 4.5.

Corollary 4.6. Suppose that the linear system (4.2) is exactly controllable( i.e
linear part of (1.1) is exactly controllable) and the nonlinear term f is uniformly
bounded. Further suppose that the assumptions in Theorem 2.2, Lemma 2.3 and
assumptions (B1)–(B5) hold. Then the system (1.1) is exactly controllable.

When f is Lipschitz continuous, we have the following result.

Theorem 4.7. Suppose that the system (1.1) satisfies the following two conditions:

(1) The linear part is exactly controllable.
(2) There exists α ∈ (0, 1) such that ‖SFu−SFv‖ ≤ α‖u− v‖ for all u, v ∈ Z.

Then the system (1.1) is exactly controllable. Further, if u0 is the steering control
for the linear system (4.2), to steer the system from 0 to x1; then the control u,
approximated from the following iterative scheme, steers the state of the nonlinear
system (1.1) from 0 to x1 in the same time interval [0, T ],

u(n+1) = u0 − SFu(n)

u(0) = u0.

Proof. Since SF is a contraction, the solvability of (4.3) and the approximating
scheme follow from Banach Contraction Principle [12]. �

The next corollary follows from Theorem 4.7 using Lemma 3.4.

Corollary 4.8. Suppose that the linear system (4.2) is exactly controllable with
steering operator S. Then under each of the following cases the nonlinear system
(1.1) is exactly controllable.

(i) Assumption (AF4) holds with k(x)α < 1 and αk0h0k0‖S‖ < (1− k0α)
(ii) Assumption (AF4) and (AF5) hold with β > k0α

2 and ‖S‖.k0k0h0α
3 <

β(β − k0α
2)

(iii) Assumption (AF4) hold with ‖k(t, s, x)‖ ≤ m for all t, s ∈ I, m > 0 and

‖S‖k0k0h0αema0T < 1

(iv) Assumption (AF4) folds with ‖S‖.k0k0h0α < (1− ε) where ε > 0 being an
arbitrary small constant.

Proof. The proof of all the cases follow by using proof of respective cases of the
Lemma 3.3 and by using [9]. �
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5. Applications

One can put nonlinear evolution systems with internal control in above frame
work to study the exact controllability. It is also possible to use the above results
to study the exact controllability problems associated with the partial differential
equations with boundary controls.

(a) Nonlinear evolution system with internal control.
dx

dt
= A(t)x + B(t)u + f(t, x), 0 < t ≤ T < ∞

x(0) = 0
(5.1)

where, A(t) is a linear operator for each t ∈ [0, T ], but not necessarily bounded,
B(t) is a bounded linear operator and f is a nonlinear operator in a suitable Hilbert
space. Let X and U be the state space and space of control functions, respectively.
Assume that, for each t ∈ [0, T ], A(t) generates a strongly continuous evolution
system Φ(t, s) on X. By using the variation of constant formula, a mild solution of
(5.1) can be written as as follows [18, pp.106]:

x(t) =
∫ t

0

Φ(t, s)f(s, x(s))ds +
∫ t

0

Φ(t, s)B(s)u(s)ds . (5.2)

This equation is in the form of (1.1) and can be written in the form

u + K(x)Nx = 0, (5.3)

with k(t, s, x) = Φ(t, s) and h(t, s) = Φ(t, s)B(s). We apply our main result to
deduce controllability. In this case it is easy to show that the linear part of (5.1) is
exactly controllable if and only if there exists λ > 0 such that〈 ∫ T

0

Φ(T, s)B(s)B∗(s)Φ∗(T, s)vds, v
〉
≥ λ‖v‖2 ∀v ∈ X

where Φ∗(t, s), B∗(s) are the adjoint operators of Φ(t, s) and B(s), respectively.

Lemma 5.1. Under the condition 〈−A(t)x, x〉X ≥ µ‖x‖2 for all x ∈ D(A(t)), the
reduced form of the assumption [AK1], that is

(AK3)
∫ T

0

〈
∫ t

0

Φ(t, s)x(s)ds, x(t)〉Xdt ≥ µ

∫ T

0

‖
∫ t

0

Φ(t, s)x(s)ds‖2dt, ∀x ∈ Y

holds good for (5.5)

Proof. Let

f(t) =
∫ t

0

Φ(t, s)x(s), x ∈ Y (5.4)

Then f ′(t) = x(t) + A(t)
∫ t

0
Φ(t, s)x(s)ds. Therefore,∫ T

0

〈
∫ t

0

Φ(t, s)x(s)ds, x(t)〉Xdt =
∫ T

0

〈f(t), f ′(t)−A(t)
∫ t

0

Φ(t, s)x(s)ds〉dt

=
∫ T

0

〈f(t), f ′(t)〉dt +
∫ T

0

〈f(t),−A(t)f(t)〉dt

(5.5)
However, ∫ T

0

〈f(t), f ′(t)〉dt = 〈f(t), f(t)〉|T0 −
∫ T

0

〈f ′(t), f(t)〉dt
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implies ∫ T

0

〈f(t), f ′(t)〉dt =
1
2
‖f(t)‖2 ≥ 0

Therefore, the right-hand side of (5.5) is greater than or equal to∫ T

0

〈f(t),−A(t)f(t)〉dt ≥ µ

∫ T

0

‖f(t)‖2 (by hypothesis)

≥ µ

∫ T

0

〈
∫ t

0

Φ(t, s)x(s)ds,

∫ t

0

Φ(t, s)x(s)ds

Hence,∫ T

0

〈
∫ t

0

Φ(t, s)x(s)ds, x(t)〉dt ≥ µ

∫ T

0

‖
∫ t

0

Φ(t, s)x(s)ds‖2dt; ∀x ∈ Y

This completes the proof. �

Similarly one can impose other conditions on A(t), B(t), f(t, x) to verify that the
assumptions made on system (5.1) are not redundant. Thus by using the main the-
orem, one can obtain different sets of verifiable conditions for exact controllability
of the nonlinear system (5.1).

(b) The autonomous parabolic system with boundary control.

dx

dt
= Ax + f(t, x) on [0, T ]× Ω

βx = u

x(0) = 0

(5.6)

where, A is an elliptic differential operator (eg. second order or fourth order), f is a
nonlinear operator and β is a boundary operator(eg. Dirichlet or Neumann) in some
appropriate space. Here u is the boundary control. Ω is a bounded open domain
in Rn with boundary ∂Ω. Assume that D(A) includes homogeneous boundary
conditions βx = 0. Let L2(Ω) be the state space X and L2(Γ) be the control space
V for some choice of Γ ⊂ ∂Ω. Assume that 0 is not an eigenvalue of A.

Define a Green’s operator D : V 7→ X with Ax = 0, βx = u. Now the standard
trace and regularity theory for these elliptic operators implies that AθD : V 7→ X
is bounded for θ < 3/4. Using the variation of parameter formula, solution of (5.6)
can be written as

x(t) =
∫ t

0

Φ(t− s)f(s, x(s))ds +
∫ t

0

Φ(t− s)ADu(s)ds

where Φ(t − s) is the strongly continuous semigroup generated by the elliptic
operator A. Thus the system (5.6) can be represented in the form (5.1) with
k(t, s, x) = Φ(t − s) and h(t, s) = Φ(t − s)AD. Hence we can make the use of the
main results of Section 4 to obtain controllability criterion for (5.6).
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(c) Nonlinear Euler-Bernoulli equation with boundary control.

∂2

∂t2
w(t, y) = ∆2w(t, y) + g(t, w(t, y), wt(t, y)) in [0, T ]× Ω

w(0, y) = wt(0, y) = 0 in Ω

w|Σ = u1 in
∑

≡ [0, T ]× Γ

∆w|Σ = u2 in Σ

(5.7)

where Ω is an open and bounded domain of Rn with sufficiently smooth boundary
Γ. Here u1 and u2 are the boundary controls.

Let A1 : L2(Ω) 7→ L2(Ω) be the positive self-adjoint operator defined by

A1h = ∆2h, with D(A1) = {h ∈ H4(Ω) : h|Γ = ∆h|Γ = 0}

So that A
1/2
1 h = −∆h and A1h = ∆2h. Let X = D(A1/2

1 )×L2(Ω),whereD(A1/2
1 ) =

H2(Ω) ∩H0(Ω). Define Green’s operators G1 and G2 as follows:
G1 : Hs(Γ) 7→ Hs+1/2(Ω) is continuous such that

G1u1 = h

∆2h = 0 in Ω
h = u1 on Γ
∆h = 0 on Γ.

G2 : Hs(Γ) 7→ Hs+5/2(Ω) is continuous such that

G2u2 = y

∆2y = 0 in Ω
y = 0 in Γ

∆y = u2 in Γ.

Define on operator B as

B

[
u1

u2

]
=

[
0

A1(G1u1 + G2u2)

]
The operator −A1 generates a strongly continuous cosine operator C(t) on L2(Ω)

with S(t) =
∫ t

0
C(τ)dτ . Define the operator A as follows:

A =
[

0 I
−A1 0

]
where D(A) = D(A1)×D(A1/2

1 ). A generates a unitary strongly continuous semi-
group eAt given by

eAt =
[

C(t) S(t)
−A1S(t) C(t)

]
Using variation of constant formula, the solution of (5.7), can be written in the
form (5.2), where

x(t) =
[

w(t)
wt(t)

]
, u(t) =

[
u1(t)
u2(t)

]
, f(t, x(t)) =

[
0

g(t, w, wt)

]
h(t, s)u = eA(t−s)Bu =

[
S(t− s)A1(G1u1 + G2u2)
C(t− s)A1(G1u1 + G2u2)

]
,
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It is well-known that the linear part is exactly controllable [15]. Thus by using the
main results of Section 4, one can obtain verifiable assumptions on g to achieve
exact controllability for (5.7).

Remark 5.2. As a particular case of the above example, one can consider the
following nonlinear Euler-Bernoulli equations with boundary control only in ∆w|Σ,

∂2

∂t2
w(t, y) = ∆2w(t, y) + g(t, w(t, y), wt(t, y)) in (0, T )× Ω

w(0, y) = wt(0, y) = 0 inΩ

w|Σ = 0 in (0, T )× Γ = Σ

∆w|Σ = u in Σ,

(5.8)

where Ω is an open bounded domain in Rn with sufficiently smooth boundary
∂Ω = Γ. Here u is the only boundary control. As in the case of above example,
controllability of the linear part is established in Lasiecka and Triggiani [16].

Using the main result in Section 4, we can get the verifiable assumptions on g
to achieve exact controllability for the system (5.8).

Remark 5.3. We consider the system governed by parabolic initial boundary-value
problem

∂

∂t
y(t, x) + Ay(t, x) = u(t, x) + g(t, y(t, x), yt(t, x)) in Q = (0, t)× Ω

y(·, x) = 0 on
∑

= (0, T )× ∂Ω

y(0) = y0 on Ω,

(5.9)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω. y0 ∈ H1
o (Ω) and

u ∈ L2(Q). Let A be the second order elliptic differential operator given by

Ay = −
d∑

i,j=1

∂

∂xi

(
ai,j(x)

∂y

∂xj

)
+ c(x)y

with the assumptions that c ≥ 0 on Ω and the matrix (aij(x)) is symmetric and
positive definite.

As an exact controllability problem of linear part of system (5.9), Cao and Gun-
zburger [6] proved that for given function y0, ŷ ∈ L2(Ω), a function y = y(t, x) and
a control u(t, x) both defined for (t, x) ∈ Q such that y, u satisfy (5.9) together with
y(T, x) = ẏ(x) for x ∈ Ω.

For the nonlinear portion, we can follow the method given in example (c).

(d). Consider the partial functional integro-differential system of the form

xt(y, t) = xyy(y, t) + e(t−s)u(y, t) +
∫ t

0

(t− s){e−
R 1
0 ‖x(u)‖du}p(s, x(y, s))ds

0 < y < 1, t ∈ I = [0, 1]

x(0, t) = x(1, t) = 0, t > 0,

(5.10)
where u ∈ L2(I, V ) and X = L1[(0, 1);R].
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Let f(t, w(t))(y) = p(t, w(t, y)), 0 < y < 1 and Let A : X → X be defined by
Aw = w′′ with domain D(A) defined as D(A) = {w ∈ X : w,w′ are absolutely
continuous, w” ∈ X, w(0) = w(1) = 0}. Then

Aw =
∞∑

n=1

−n2(w,wn)wn w ∈ D(A).

where wn(s) =
√

2 sinns, n = 1, 2, 3, . . . is the orthogonal sets of eigenvectors of A.
(w,wn) is the Fourier expansion of w′′. Here A is an infinitesimal generator of an
analytic semigroup T (t); t ≥ 0 in X and is given by

T (t)w =
∞∑

n=1

exp(−n2t)(w,wn)wn;w ∈ X

where T (t) satisfies |T (t)| ≤ M1e
ωt; t ≥ 0 for some M1 ≥ 1, ω ∈ R. Here h(t, s) =

e(t−s) and k(t, s, x) = (t − s){e−
R 1
0 ‖x(u)‖du}. Further function p : J × R 7→ R is

continuous, bounded and strongly measurable such that

‖p(t, w(t, y))‖ ≤ a(t)‖w(t, y)‖+ b(t); a > 0, b(·) = ‖b(·)‖L2(I).

Thus all the conditions of our main theorem are satisfied. Hence system (5.8) is
exactly controllable on I.

Acknowledgements. The authors would like to express their sincere gratitude to
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this paper.
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