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EXPONENTIAL ATTRACTORS FOR A CAHN-HILLIARD
MODEL IN BOUNDED DOMAINS WITH PERMEABLE WALLS

CIPRIAN G. GAL

Abstract. In a previous article [7], we proposed a model of phase separation

in a binary mixture confined to a bounded region which may be contained
within porous walls. The boundary conditions were derived from a mass con-

servation law and variational methods. In the present paper, we study the

problem further. Using a Faedo-Galerkin method, we obtain the existence
and uniqueness of a global solution to our problem, under more general as-

sumptions than those in [7]. We then study its asymptotic behavior and prove
the existence of an exponential attractor (and thus of a global attractor) with

finite dimension.

1. Introduction

In this article, we are interested in the asymptotic behavior of a Cahn-Hilliard
model that was introduced in Gal [7]. The corresponding equations were studied
as an approximate problem of a system of two parabolic equations with dynamical
and Wentzell boundary conditions involving two unknowns, namely a temperature
u(x, t) at a point x and time t of a substance which can appear in different phases
and an order parameter φ(t, x), which describes the current phase at x and time
t. Such models are phase-field equations of Caginalp type. Different versions of
Cahn-Hilliard models were studied extensively by many authors in [4, 5, 14, 16,
18] and the references cited there in. For instance, Racke & Zheng [21] show
the existence and uniqueness of a global solution to the Cahn-Hilliard equation
with dynamic boundary conditions, and later Pruss, Racke & Zheng [21] study
the problem of maximal Lp-regularity and asymptotic behavior of the solution
and prove the existence of a global attractor to the same Cahn-Hilliard system.
Miranville & Zelik [16] prove the existence and uniqueness of a solution under more
general assumptions on the potential function (compared to [21, 22]) and construct
a robust family of exponential attractors to a regularized version of their problem.
We would also like to refer the reader to the papers of Wu & Zheng [25] and Chill,
Fasangova and Pruss [3]. They study the problem of convergence to equilibrium of
solutions of a Cahn-Hilliard equation with dynamic boundary conditions.
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In [7], we have proposed a model of phase separation in a binary mixture confined
to a bounded region Ω which may be contained within porous walls Γ = ∂Ω and
there we have proved the existence and uniqueness of global solutions to this model.
The course of phase separation in [7] is completely changed from the one described
by the Cahn-Hilliard equations with boundary conditions considered previously in
the cited papers. Furthermore, the system of equations in [7] was also compared
to the models studied earlier by these authors and in some cases, we showed that
the solutions of the two different systems resemble each other in suitable Sobolev
norms.

In this paper concerns the following system of initial value problems in a bounded
domain Ω ⊂ RN , N = 2, 3:

∂tφ = ∆µ in [0, T ]× Ω, (1.1)

µ = −∆φ+ f(φ) in [0, T ]× Ω, (1.2)

and

∂tφ+ b∂nµ+ cµ = 0 on [0, T ]× Γ, (1.3)

−α∆Γφ+ ∂nφ+ βφ =
µ

b
on [0, T ]× Γ. (1.4)

and φ
∣∣
t=0

= φ0, where φ and µ are unknown functions, ∆Γ is the Laplace-Beltrami
operator on the boundary, α, β, c, b are positive constants. Moreover, f is a given
nonlinear function that belongs to C2(R,R) that satisfies the following assumption:

lim
|s|→∞

inf f ′(s) > 0. (1.5)

Compared with the result obtained in Gal [7], these allows us to consider a potential
f with arbitrary growth (even in the case n = 3). The boundary condition (1.3) is
derived from mass conservation laws that include an external mass source (energy
density) on Γ. This may be realized, for example, by an appropriate choice of the
surface material of the wall, that is, the wall Γ may be replaced by a penetrable
permeable membrane. For a complete discussion of (1.3), in the context of heat
and wave equations, we refer the reader to Goldstein [10]. The condition (1.4) is
similarly derived, since the system tends to minimize its surface free energy, in the
presence of surface interactions on Γ. On the other hand, equation (1.4) can be
viewed as describing the chemical potential on the walls of the region Ω, and due
to (1.4), we assume it to be directly proportional to the driving force which equals
the left hand side of (1.4). Therefore, the occurrence of a nontrivial pore surface
phase behavior is possible. Let us also mention that this Cahn-Hilliard system is
not conservative as discussed in [7]. We note that if the value of φ(t) is known for
some value t = T , then the value of the chemical potential µ(T ) can be found from
the problem

µ(T ) = −∆φ(T ) + f(φ(T )) in Ω, (1.6)
1
b
µ(T ) = −∆Γφ(T ) + ∂nφ(T ) + βφ(T ) on Γ, (1.7)
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Similarly, if ∂tφ(T ) is known, we can solve for µ(T ) from the following elliptic
boundary value problem:

−∆µ(T ) = −∂tφ(T ) in Ω, (1.8)

b∂nµ(T ) + cµ(T ) = −∂tφ(T ) on Γ. (1.9)

Thus, we only need to find the function φ. It is in fact more convenient to introduce
new unknown functions ψ(t) := φ(t)

∣∣
Γ
, $(t) := µ(t)

∣∣
Γ

and to rewrite our system
(1.1)–(1.4) as follows:

∂tφ = ∆µ in [0, T ]× Ω, (1.10)

∂tψ + b∂nµ+ c$ = 0 on [0, T ]× Γ, (1.11)

and

µ = −∆φ+ f(φ) in [0, T ]× Ω, (1.12)
$

b
= −α∆Γψ + ∂nφ+ βψ on [0, T ]× Γ, (1.13)

with φ
∣∣
t=0

= φ0 and ψ
∣∣
t=0

= ψ0. The boundary condition (1.4) is now interpreted
as an additional elliptic equation on the boundary Γ. We note that (1.12)–(1.13)
still form elliptic boundary value problems in the sense of Agmon & Douglis &
Nirenberg [3], Hörmander [14], Peetre [22] or Vǐsik [26].

We organize our paper as follows: in Section 2, we discuss the linear problems
associated with our equations and construct the phase spaces necessary for the
study of our Cahn-Hilliard system. In Section 3, we derive uniform estimates
which are needed to study our problem and in Section 4, we discuss the existence
and uniqueness of solutions. Finally, in Section 5, we obtain the existence of global
attractors with finite dimension.

2. Preliminary results

The solvability of a similar problem to (1.1) equipped with the boundary con-
dition (1.3) was given in [6, 7]. From now on, through out the paper, we denote
the norms on Hs(Ω) and Hs(Γ) by ‖ · ‖s and ‖ · ‖s,Γ, respectively. The inner
product in these spaces will be denotes by 〈·, ·〉s and 〈·, ·〉s,Γ, respectively. The
spaces Hs, s > 0 are defined the usual way found in standard textbooks. For
example, we can define Hs(Γ), using the Laplace-Beltrami operator as follows; let
H2m(Γ) = {f ∈ L2(Γ) : ∆m

Γ f ∈ L2(Γ)} and its norm defined to be the equivalent
norm of C1‖f‖0,Γ + C2‖∆m

Γ f‖0,Γ. It follows that any space Hs(Γ), s > 0 can be
defined by interpolation. Furthermore, every product space Hs(Ω)⊕Hs(Γ) (s ∈ N)
is the completion of (u

∣∣
Ω
, u

∣∣
Γ
) ∈ Cs(Ω)×Cs(Γ) under the natural Sobolev norms on

Hs. The dynamical boundary condition (1.3) is also related to a Wentzell boundary
condition, studied by other authors (see e.g. [8, 11]). We will make this clear later
in this section. Let us consider the space H = L2(Ω, dx⊕ dS

b ) with norm

‖u‖H =
( ∫

Ω

|u(x)|2dx+
∫

Γ

|u(x)|2 dSx
b

)1/2

. (2.1)

Here we identify H with L2(Ω, dx)⊕L2(Γ, dSb ). If u ∈ C(Ω), we identify u with the
vector U = (u

∣∣
Ω
, u

∣∣
Γ
) ∈ C(Ω) × C(Γ). We define H to be the completion of C(Ω)
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with respect to the norm (2.1). For a complete discussion of this space, we refer
the reader to [6]. Let us also define, for s = 0, 1, the spaces

Vs = Cs(Ω)
‖·‖Vs

,

where the norms ‖ · ‖Vs are given by

‖(φ, ψ)‖V1 =
∫

Ω

|∇φ|2dx+
∫

Γ

α|∇Γψ|2dS +
∫

Γ

β|ψ|2dS

and
‖(φ, ψ)‖V0 =

∫
Ω

|φ|2dx+
∫

Γ

|ψ|2dS,

respectively. It easy to see that we can identify Vs with Hs(Ω)⊕Hs(Γ) under these
norms, when s = 0, 1. Moreover, V0 = H up to an equivalent inner product and
Vs is compactly embedded in Vs−1 for all s ≥ 1.

We can rewrite the equations (1.10), (1.11) as

−
(
∂tφ

∂tψ

)
= A0

(
µ

$

)
, (2.2)

where A0 is defined formally as

A0

(
µ

$

)
=

(
−∆µ

b∂nµ+ c$

)
, (2.3)

for functions (µ,$) ∈ H3/2+δ(Ω)×L2(Γ), for some δ > 0, with $ = µ
∣∣
Γ
, such that

∆µ ∈ L2(Ω). Note that $ and ∂nµ belong (in the trace sense) to H1+δ(Γ) and
L2(Γ), respectively. Here, we have also identified µ with the vector (µ,$). Next,
we consider the bilinear form:〈(µ

$

)
,

(
Ψ

Ψ
∣∣
Γ

)〉
D

=
〈
A0

(
µ

$

)
,

(
Ψ

Ψ
∣∣
Γ

)〉
H =

∫
Ω

∇µ · ∇Ψdx+
∫

Γ

c$Ψ
∣∣
Γ

dS

b
, (2.4)

for all Ψ ∈ H1(Ω). Note that Ψ
∣∣
Γ

is a well defined member of of H1/2(Γ) in the
trace sense. Define D to be the completion of C1(Ω) with respect to the inner
product (2.4). Notice that D is densely injected and continuous in H1(Ω) and in
fact, D is isometrically isomorphic to H1(Ω). It is easy to see that (2.4) defines
a closed bilinear form a(·, ·) with domain D(a(·, ·)) = H1(Ω) ⊕ L2(Γ) which can
be identified with D up to an equivalent inner product. The form is also densely
defined (D is dense in H) and nonnegative in H. Then, it is well known (see
e.g. [8]) that the bilinear form given by (2.4) defines a strictly positive self-adjoint
unbounded operator A : D(A) = {(µ,$)tr ∈ D : A(µ,$)tr ∈ H} → H such that,
for all (µ,$)tr ∈ D(A) and for any (Ψ,Ψ

∣∣
Γ
)tr ∈ D, we have:〈

A

(
µ

$

)
,

(
Ψ

Ψ
∣∣
Γ

)〉
H =

〈(µ
$

)
,

(
Ψ

Ψ
∣∣
Γ

)〉
D
. (2.5)

Clearly, we view the operator A as the self-adjoint extension of A0. Here and ev-
erywhere in the paper, the superscript “tr” will denote transposition. The operator
A is also a bijection from D(A) into H, since c > 0 and N := A−1 : H → H is a
linear, self-adjoint and compact operator on H (see [8]). In other words, we can
view the inverse operator N : D∗ → D by the condition

A
(
N

(
µ

$

))
=

(
µ

$

)
, for all

(
µ

$

)
∈ D∗,
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namely, N
(
µ2
$2

)
is the solution of the generalized problem

−∆µ = µ2 in Ω,
b∂nµ+ cµ = $2 on Γ,

hence N
(
µ2
$2

)
∈ D if (µ2, $2) ∈ H. If in addition, µ2 ∈ D = H1(Ω) (thus, by

regularity of trace theory, $2 = µ2|Γ ∈ H1/2(Γ)), standard elliptic theory implies
that N

(
µ2
$2

)
∈ H2(Ω). Furthermore, we infer from standard spectral theory that

there exists a complete ortho-normal family of eigenvectors {ηj}j with ηj ∈ D(A)
and a sequence λj , 0 < λ1 ≤ λ2 ≤ · · · ≤ λj →∞ as j →∞ and Aηj = λjηj . Also,
by spectral theory, A−s, s ∈ N is defined as an infinite series, using the standard
spectral decomposition of A. To this end, we define D(A−s) to be the completion
of H with respect to the norm

‖Θ‖2−s =
∞∑
j=1

1
λ2s
j

|〈Θ, ηj〉H|2. (2.6)

We have from (2.5) that D = D(A1/2). Furthermore, it follows from (2.5) and the
definition of the inner products in D and H, that, for any (µ,$)tr ∈ D(A) and
(Ψ,Ψ

∣∣
Γ
)tr ∈ D,∫

Ω

(Aµ)Ψdx+
∫

Γ

(Aµ)Ψ
∣∣
Γ

dSx
b

=
∫

Ω

∇µ · ∇Ψdx+
∫

Γ

c$Ψ
∣∣
Γ

dS

b
.

Integration by parts in the identity above yields for µ(= (µ,$)) ∈ D, that Aµ =
−∆µ ∈ H and ∫

Γ

−(∆µ)Ψ
∣∣
Γ

dSx
b

=
∫

Γ

b∂nµΨ
∣∣
Γ

dS

b
+

∫
Γ

c$Ψ
∣∣
Γ

dS

b
,

holds for all Ψ
∣∣
Γ
∈ H1/2(Γ). Thus, the following boundary condition holds in

H−1/2(Γ) (that is, the dual of H1/2(Γ)):

(∆µ+ b∂nµ+ cµ)
∣∣
Γ

= 0.

This is a Wentzell boundary condition for µ. Such boundary conditions have been
considered in many papers (see e.g. [6]-[10], [12], [25]). Similarly, it follows that
the eigenvector ηj satisfies Aηj = λjηj , that is,

−∆ηj = λjηj in Ω,

(∆ηj + b∂nηj + cηj)
∣∣
Γ

= 0,

where this boundary condition may be replaced by the eigenvalue dependent bound-
ary condition:

b∂nηj + (c− λj)ηj = 0 on Γ.

Such problems with explicit eigenparameter dependence in the boundary condition
were widely considered in the literature, therefore we will not dwell on this issue
any further (see [6] for further references). Furthermore, let

W =
{
u ∈ H2(Ω) : (∆u)

∣∣
Γ
∈ L2(Γ,

dS

b
), (∆u+ b∂nu+ cu)

∣∣
Γ

= 0
}
,

where the space W is endowed with the natural norm

‖u‖2W = ‖u‖22 + ‖(∆u)
∣∣
Γ
‖2
L2(Γ, dS

b )
. (2.7)
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Let us also note that the embeddings W ⊂ D ⊂ H = H∗ ⊂ D∗ ⊂ W ∗ are dense
and continuous. We can then consider D∗ endowed with the norm, for (v, ξ) ∈ H,

‖(v, ξ)‖2D∗ = ‖N 1/2

(
v

ξ

)
‖2H = 〈N

(
v

ξ

)
,

(
v

ξ

)
〉H, (2.8)

which can be defined in terms of the spectral decomposition of A (see (2.6)). It
follows that the following relations〈

A

(
µ

$

)
,N

(
φ

ψ

)〉
D

=
〈(µ
$

)
,

(
φ

ψ

)〉
D
, (2.9)

〈(µ
$

)
,N

(
φ

ψ

)〉
H =

〈(µ
$

)
,

(
φ

ψ

)〉
D∗

(2.10)

hold, for all (µ,$) ∈ D, (φ, ψ) ∈ D∗.
Having established this framework, we introduce the phase space for our problem

(1.10)–(1.13):

Y :=
{
(φ, ψ) ∈ H2(Ω)×H2(Γ) : µ ∈ H1(Ω),

$ ∈ L2(Γ,
cdS

b
), φ

∣∣
Γ

= ψ, µ
∣∣
Γ

= $
}
,

(2.11)

with the obvious norm

‖(φ, ψ)‖2Y := ‖φ‖22 + ‖ψ‖22,Γ + ‖∇µ‖20 +
c

b
‖$‖20,Γ. (2.12)

We recall that (µ,$) is computed from (φ, ψ) via (1.6), (1.7) or (1.8), (1.9).

Definition 2.1. Let us consider T > 0 be fixed, but otherwise arbitrary. By a so-
lution of (1.10)–(1.13) we mean a pair of functions (φ(t), ψ(t)) ∈ L∞([0, T ],Y) with
∂tφ ∈ L2([0, T ],H1(Ω)) and ∂tψ ∈ L2([0, T ],H1(Γ)) which satisfy the equations
in the average sense of the spaces L2([0, T ], L2(Ω)) and L2([0, T ], L2(Γ)). More-
over, since Ω ⊂ RN , N = 2, 3, we have the embedding H2 ⊂ C, therefore the
nonlinearity f in (1.12) is well defined and belongs to the space C([0, T ], L2(Ω)).
Also, by regularity theory, since (∂tφ, ∂tψ) ∈ L2([0, T ],H1(Ω) × H1(Γ)), we get
(µ,$) ∈ L2([0, T ],H2(Ω) × H3/2(Γ)) and thus the boundary conditions are well
defined.

We close this section with the definition of the weak energy space X := D∗ for
our problem (1.10)–(1.13) through the norm given by

‖(φ, ψ)‖X := ‖(φ, ψ)‖D∗ (2.13)

where D∗ is endowed with the inner product given by (2.8).

3. Uniform a priori estimates

In this section, we derive several estimates for the solutions of the problem
(1.10)–(1.13) which are necessary for the study of the asymptotic behavior. In the
first step, we obtain dissipative estimates for solutions in the spaces X and Y.

But before we derive our estimates, it is convenient to rewrite our system of
equations in a different manner, as follows:

−
(

∆φ
bα∆Γψ + b∂nφ+ bβψ

)
+

(
f(φ)

0

)
=

(
µ

$

)
, (3.1)
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with the obvious coupling ψ(t) := φ(t)
∣∣
Γ
, $(t) := µ(t)

∣∣
Γ
, where the vector (µ,$)tr

is given by (2.2) via the operator N = A−1, that is,(
µ

$

)
= −N

(
∂tφ

∂tψ

)
. (3.2)

Then (3.1) becomes the following functional equation:

N
(
∂tφ

∂tψ

)
−

(
∆φ

bα∆Γψ + b∂nφ+ bβψ

)
+

(
f(φ)

0

)
= 0, ψ(t) = φ(t)

∣∣
Γ
. (3.3)

Let us define the following function F (v) =
∫ v
0
f(s)ds. Without loss of generality,

we let α = β = 1 for the rest of this section. We have the following result.

Proposition 3.1. Let the nonlinearity f satisfy (1.5) and let (φ(t), ψ(t)) be a given
solution of (3.3). Then

‖(φ(t), ψ(t))‖2X +
∫ t+1

t

(‖φ(s)‖21 + ‖ψ(s)‖21,Γ)ds+
∫ t+1

t

‖F (φ(s))‖L1(Ω)ds

≤ C1‖(φ(0), ψ(0))‖2Xe−ρt + C2,

(3.4)

where C1, C2, ρ are positive constants independent of t.

Proof. First, we take the inner product in H of (3.3) with the vector (φ(t), ψ(t))tr,
and use the fact that −(µ(t), $(t))tr = N (∂tφ(t), ∂tψ(t))tr. Then, relation (2.8)
and integration by parts yield the following equation:

1
2
d

dt
[‖(φ(t), ψ(t))‖2D∗ ] + ‖∇φ(t)‖20 + ‖∇Γψ(t)‖20,Γ

+ ‖ψ(t)‖20,Γ + 〈f(φ(t)), φ(t)〉0 = 0.
(3.5)

Due to assumption (1.5), we have

1
2
|f(v)|(1 + |v|) ≤ f(v)v + Cf , (3.6)

for each v ∈ R. Here Cf is a positive, sufficiently large constant. Moreover, by the
obvious inequality ‖φ‖21 ≤ C(‖∇φ‖20 + ‖ψ‖21,Γ), we obtain from (3.5):

d

dt

[
‖(φ(t), ψ(t))‖2D∗

]
+ ρ(‖φ(t)‖21 + ‖ψ(t)‖21,Γ) + ‖∇φ(t)‖20

+ ‖∇Γψ(t)‖20,Γ + 〈f(φ(t)), φ(t)〉0 = 0.
(3.7)

Consequently, the inequality ‖φ‖21 + ‖ψ‖21,Γ ≥ C‖(φ, ψ)‖2H ≥ C̃‖(φ, ψ)‖2D∗ , (3.6)
and (3.7) yield

‖(φ(t), ψ(t))‖2D∗ +
∫ t+1

t

(‖φ(s)‖21 + ‖ψ(s)‖21,Γ)ds+
∫ t+1

t

(|f(φ(s))|, (1 + |φ(s)|))0ds

≤ C1‖(φ(0), ψ(0))‖2D∗e−ρt + C2.

(3.8)
To deduce (3.4) from (3.8), we observe that the assumption (1.5) also implies that
|F (v)| −C ≤ |f(v)|(1 + |v|), for some positive constant C and all v ∈ R. The proof
is complete. �
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Proposition 3.2. Let the assumptions of Proposition 3.1 hold and let (φ(t), ψ(t))
be a solution of (3.3). Then, the following estimate holds:

‖(φ(t), ψ(t))‖2Y +
∫ t

0

(‖∂tφ(s)‖21 + ‖∂tψ(s)‖21,Γ)ds ≤ Q(‖(φ(0), ψ(0))‖Y)eMt, (3.9)

where the positive constant M and the monotonic function Q are independent of t.

Proof. We give a formal derivation of (3.9), which can be justified by a standard
regularization of the solution, that is, we can define φ̂(t) :=

∫∞
0
Kr(t − s)φ(s)ds,

where Kr is smooth and suppKr ⊂ [0, r],
∫∞
0
Kr(s)ds = 1. Then passing to the

limit r → 0, we have φ̂(t) → φ(t). Therefore, without loss of generality, we can
(and do) differentiate (3.3) and define

(u(t), p(t), v(t), q(t)) := (∂tφ(t), µt(t), ∂tψ(t), $t(t)).

Then, we have

N
(
ut(t)
vt(t)

)
−

(
∆u(t)

bα∆Γv(t) + b∂nu(t) + bβv(t)

)
+

(
f ′(φ(t))u(t)

0

)
= 0, (3.10)

where u(t)
∣∣
Γ

= v(t) and p(t)
∣∣
Γ

= q(t). The identity (3.2) implies −(p(t), q(t))tr =
N (ut(t), vt(t))tr. Taking the inner product in H of (3.10) with (u, v)tr and inte-
grating by parts again (as in (3.5)), we deduce

1
2
d

dt

[
‖(u(t), v(t))‖2X

]
+ ‖∇u(t)‖20 + ‖∇Γv(t)‖20,Γ

+ ‖v(t)‖20,Γ + 〈f ′(φ(t))u(t), u(t)〉0 = 0.
(3.11)

Due to assumption (1.5), we have f ′(v) ≥ −M , for some positive constant M and
each v ∈ R. Consequently, applying Gronwall’s inequality on (3.11) and then using
the interpolation inequality ‖(u, v)‖2H ≤ C‖(u, v)‖X‖u‖H1(Ω), we obtain,

‖(u(t), v(t))‖2X +
∫ t

0

(‖∇u(s)‖20 + ‖∇Γv(s)‖20,Γ + ‖v(s)‖20,Γ)ds

≤ C3‖(u(0), v(0))‖2XeM2t,

(3.12)

where C3 andM2 are positive constants independent of t. Recall that (u(t), v(t))tr =
−A(µ(t), $(t))tr, since u(t) = ∂tφ(t) and v(t) = ∂tψ(t). Thus, using the relations
(2.4)–(2.10), we can rewrite (3.12) as

‖∇µ(t)‖20 +
c

b
‖$(t)‖20,Γ +

∫ t

0

(‖∂tφ(s)‖21 + ‖∂tψ(s)‖21,Γ)ds

≤ C3e
M2t(‖∇µ(0)‖20 +

c

b
‖$(0)‖20,Γ).

(3.13)

To obtain estimate (3.9), it remains to deduce an estimate for ‖φ‖22 and ‖ψ‖22,Γ.
The required estimates for the H2-norms of φ and ψ can be obtained by rewriting
our problem (1.10)–(1.13) as a second order nonlinear elliptic problem where the
chemical potentials are considered as external forces. We have

−∆φ+ f(φ) = g1(t) := µ(t) in Ω, φ
∣∣
Γ

= ψ (3.14)

−∆Γψ + βψ + ∂nφ = g2(t) :=
$(t)
b

in Γ, µ
∣∣
Γ

= $. (3.15)
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We note that the estimates (3.12) and (3.13) imply

‖g1(t)‖20 + ‖g2(t)‖20,Γ ≤ C3‖(φ(0), ψ(0))‖2YeM2t. (3.16)

Applying now the maximum principle [17, Lemma A.2] to the problem (3.14),
(3.15), we obtain

‖φ(t)‖2∞ + ‖ψ(t)‖2∞,Γ ≤ Cf + ‖g1(t)‖20 + ‖g2(t)‖20,Γ
≤ C4(1 + ‖(φ(0), ψ(0))‖2Y)eM2t.

Finally, applying the above estimate combined with a H2-regularity theorem [17,
Lemma A.1] to the elliptic boundary value problem above, but with the nonlinearity
f acting as an external force, we easily deduce that

‖φ(t)‖22 + ‖ψ(t)‖22,Γ ≤ Q(‖(φ(0), ψ(0))‖Y)eM2t,

where Q is a monotonic function independent of t. The proof is complete. �

In the second step, we state additional smoothing properties for the solutions of
(1.10)–(1.13).

Proposition 3.3. Let the assumptions of Proposition 3.1 hold and let (φ(t), ψ(t))
be a solution of (1.10)–(1.13). Then, we have the estimate

‖(φ(t), ψ(t))‖2Y ≤ Ct0Q(‖(φ(0), ψ(0))‖2X), (3.17)

for every t ∈ [t0, 1], where t0 is a fixed value in (0, 1) and the positive constant Ct0
and Q are independent of t, but depend on t0.

Proof. We take the inner product in H of (3.3) with (∂tφ(t), ∂tψ(t))tr, then using
the expressions for µ(t) and $(t), and integrating by parts, we obtain

‖(∂tφ(t), ∂tψ(t))‖2X = −〈
(
µ(t)
$(t)

)
,

(
∂tφ(t)
∂tψ(t)

)
〉H

= −1
2
d

dt

[
‖φ(t)‖21 + ‖ψ(t)‖21,Γ + 2〈F (φ(t)), 1〉0

]
.

It follows that
d

dt

[1
2
‖φ(t)‖21 +

1
2
‖ψ(t)‖21,Γ + 〈F (φ(t)), 1〉0

]
+ 2‖(∂tφ(t), ∂tψ(t))‖2X = 0.

Multiplying the above identity by t and integrating over [0, t], t ∈ [0, 1], we have

t[‖φ(t)‖21 + ‖ψ(t)‖21,Γ + 〈F (φ(t)), 1〉0] + 2
∫ t

0

s‖(∂tφ(s), ∂tψ(s))‖2Xds

=
∫ t

0

[
‖φ(s)‖21 + ‖ψ(s)‖21,Γ + 2〈F (φ(s)), 1〉0

]
ds.

We estimate the term on the right hand side of the above equation, using the
estimate (3.4) and obtain∫ t

0

s‖(∂tφ(s), ∂tψ(s))‖2Xds ≤ C‖(φ(0), ψ(0))‖2X + C∗,

where C,C∗ are independent of the solution (φ, ψ). It is an easy consequence of the
above, that there exists t ∈ (t0/2, t0) such that we have

‖(∂tφ(t), ∂tψ(t))‖2X ≤
C

t0
[1 + ‖(φ(0), ψ(0))‖2X]. (3.18)
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Arguing exactly as in the derivation of (3.4), we can verify that (3.18) holds for
every t ∈ [t0, 1]. Using now the relations (2.8) − (2.10) and (3.2), we can rewrite
the left hand side of (3.18) and have

‖µ(t)‖21 ≤ C
(
‖∇µ(t)‖20 +

c

b
‖$(t)‖20,Γ

)
≤ C

t0

[
1 + ‖(φ(0), ψ(0))‖2X

]
. (3.19)

Now, we may proceed as in (3.14)–(3.15) to obtain the L∞ bound for the solution
(φ(t), ψ(t)) which together with the H2-elliptic estimate of [17, Lemma A.1] yields

‖φ(t)‖22 + ‖ψ(t)‖22,Γ ≤
C

t0
Q

(
‖(φ(0), ψ(0))‖2X

)
, (3.20)

for a suitable monotonic function Q. Finally, the estimates (3.19) and (3.20) yield
the conclusion (3.17). This concludes the proof. �

The next theorem follows as consequence of the estimate (3.9) for t ≤ 1 and
estimates (3.4), (3.17) for t ≥ 1.

Theorem 3.4. Let the assumptions of Proposition 3.1 hold. Then, every solution
of (1.10)–(1.13) satisfies the following dissipative estimate

‖(φ(t), ψ(t))‖2Y ≤ Q
(
‖(φ(0), ψ(0))‖2Y

)
e−ρt + C4, (3.21)

where the positive constants C4, ρ and the monotonic function Q are independent
of t.

We close this section with a theorem that gives uniform bounds for solutions
(φ, ψ) and µ of our problem in H3(Ω)×H3(Γ) and W respectively.

Theorem 3.5. Let the assumptions of Proposition 3.1 hold and let γ ∈ [0, 1/2).
Then, every solution of (1.10)–(1.13) satisfies the following dissipative estimates:

‖φ(t)‖23+γ + ‖ψ(t)‖23+γ,Γ ≤
1
t
Q1(‖(φ(0), ψ(0))‖2Y) + C5, t ≥ t0, (3.22)

‖µ(t)‖2W ≤ 1
t
Q1(‖(φ(0), ψ(0))‖2Y), t ≥ t0, (3.23)

where C5, ρ > 0, t0 > 0 and the monotonic function Q1 are independent of t, φ(t),
ψ(t) and µ(t), $(t).

Proof. Taking the inner product in H of (3.3) with (∂tφ(t), ∂tψ(t))tr, we obtain

d

dt

[
‖φ(t)‖21 + ‖ψ(t)‖21,Γ + 〈F (φ(t)), 1〉0

]
+ ‖(∂tφ(t), ∂tψ(t))‖2X = 0. (3.24)

Integrating over [0, t], and using (3.21), we deduce∫ t

0

‖(∂tφ(s), ∂tψ(s))‖2Xds ≤ Q1

(
‖(φ(0), ψ(0))‖2Y

)
, (3.25)

for a suitable monotonic function Q1 independent of t and the solution (φ(t), ψ(t)).
Furthermore, multiplying (3.24) by t and then integrating over [0, t], we deduce
that

t[‖φ(t)‖21 + ‖ψ(t)‖21,Γ + 〈F (φ(t)), 1〉0] +
∫ t

0

s‖(∂tφ(s), ∂tψ(s))‖2Xds

=
∫ t

0

[
‖φ(s)‖21 + ‖ψ(s)‖21,Γ + 〈F (φ(s)), 1〉0

]
ds.
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Using (3.4) to estimate the right hand side term in the above relation, we obtain∫ t

0

s‖(∂tφ(s), ∂tψ(s))‖2Xds ≤ C‖(φ(0), ψ(0))‖2Xe−ρt + C, (3.26)

for some positive constant C and ρ. Recall that by (3.10), we have

N
(
ut(t)
vt(t)

)
−

(
∆u(t)

bα∆Γv(t) + b∂nu(t) + bβv(t)

)
+

(
f ′(φ(t))u(t)

0

)
= 0, (3.27)

where u(t)
∣∣
Γ

= v(t) and p(t)
∣∣
Γ

= q(t). Taking the inner product of (3.27) with
(u(t), v(t))tr in H and integrating by parts again, we deduce

1
2
d

dt
‖(u(t), v(t))‖2X + ‖∇u(t)‖20 + ‖∇Γv(t)‖20,Γ

+ ‖v(t)‖20,Γ + 〈f ′(φ(t))u(t), u(t)〉0 = 0.
(3.28)

Due to assumption (1.5), we have f ′(v) ≥ −N , for some N > 0 and v ∈ R. We
estimate the last term in (3.28) as follows:

|〈f ′(φ(t))u(t), u(t)〉0| ≤ N‖u(t)‖20 ≤ N‖(u(t), v(t))‖2H
≤ C‖(u(t), v(t))‖X‖u(t)‖1

≤ C

2
‖(u(t), v(t))‖2X +

1
2
‖u(t)‖21,

(3.29)

Here, we have used the fact that ‖u‖20 ≤ C‖(u, v)‖2H ≤ C̃‖u‖1‖(u, v)‖X and D =
H1(Ω). Multiplying (3.28) by t, integrating (3.28) over [0, t], and using the above
estimates together with (3.25), (3.26), we obtain∫ t

0

s[‖u(s)‖21 + ‖v(s)‖21,Γ]ds+ t‖(u(t), v(t))‖2X ≤ Q2(‖(φ(0), ψ(0))‖2Y), (3.30)

for t ∈ [0, T ], where Q2 is independent of t.
Finally, taking the inner product in H of (3.27) with (ut(t), vt(t))tr, then multi-

plying the resulting equation by t2, we have

t2‖(ut(t), vt(t))‖2X +
1
2
d

dt
(t2‖u(t)‖21 + t2‖v(t)‖21,Γ) + t2〈f ′(φ(t))u(t), ut(t)〉0

= 2t[‖u(t)‖21 + ‖v(t)‖21,Γ].
(3.31)

Estimating the last term on the right hand side of (3.30) as in (3.29), we obtain

t2|〈f ′(φ(t))u(t), ut(t)〉0|
≤ Ct2‖f ′(φ(t))u(t)‖1‖(ut(t), vt(t))‖X

≤ t2

2
‖(ut(t), vt(t))‖2X +

Ct2

2
Q3(‖φ(t)‖22)‖u(t)‖21,

(3.32)

for a suitable function Q3 independent of t. Integrating (3.31) now over [0, t], and
inserting relation (3.32), we obtain

t2[‖u(t)‖21 + ‖v(t)‖21,Γ] +
∫ t

0

s2‖(ut(s), vt(s))‖2Xds

≤ Ct

∫ t

0

Q3(‖φ(s)‖22)s‖u(s)‖21ds+
∫ t

0

s[‖u(s)‖21 + ‖v(s)‖21,Γ]ds.
(3.33)
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Furthermore, estimating the terms on the right hand side of (3.33) using (3.17) and
(3.30), and the fact that u(t) = ∂tφ(t), v(t) = ∂tψ(t), we deduce that

‖∂tφ(t)‖21 + ‖∂tψ(t)‖21,Γ ≤
t+ 1
t2

Q4(‖(φ(0), ψ(0))‖2Y), (3.34)

for t > 0 and a suitable monotonic function Q4 independent of t.
To deduce estimate (3.23), it remains to write (1.10), (1.11) as an elliptic bound-

ary value problem for the chemical potential µ, that is, we have
−∆µ = −∂tφ in Ω,

b∂nµ+ c$ = −∂tψ on Γ, $ = µ
∣∣
Γ
.

(3.35)

Thus, we have the estimate

‖µ(t)‖22 ≤ C
(
‖∂tφ(t)‖20 + ‖µ(t)‖21 + ‖∂tψ(t)‖21

2 ,Γ

)
. (3.36)

Consequently, a classical trace theorem and estimate (3.36), imply

‖µ(t)‖22 + ‖$(t)‖23
2 ,Γ

≤ t+ 1
t2

Q4(‖(φ(0), ψ(0))‖2Y). (3.37)

As in the proof of Proposition 3.2, we now rewrite problem (1.12), (1.13) as an
elliptic boundary-value problem:

−∆φ = g1(t) := µ(t)− f(φ) in Ω, φ
∣∣
Γ

= ψ

−∆Γψ + βψ + ∂nφ = g2(t) :=
$(t)
b

in Γ, µ
∣∣
Γ

= $.
(3.38)

Applying the Hs-elliptic estimate of [17, Lemma A.1], with s ∈ R, s + 1/2 /∈ N,
but with the nonlinear term f acting as an external force, we deduce from known
embedding theorems:

‖φ(t)‖23+γ + ‖ψ(t)‖23+γ,Γ ≤ C(‖µ(t)‖21+γ + ‖$(t)‖21+γ,Γ + ‖f(φ)‖21+γ).

Combining the estimate (3.37) and the fact that H3/2(Γ) ⊂ H1+γ(Γ), H2(Ω) ⊂
H1+γ(Ω), for γ ∈ [0, 1/2), H2 ⊂ C together with (2.2), (3.19), we easily verify our
conclusion. Thus Theorem 3.5 is proven. �

4. Existence and uniqueness of solutions

The existence of solutions to our problem (1.10)–(1.13) or equivalently (3.3) can
be proved in a standard way, based on the a priori estimates derived in Section
3 and on a standard Faedo-Galerkin approximation scheme. To this end, let us
consider the operator B : H → H given formally by

B
(
φ

ψ

)
=

(
−∆φ

−bα∆Γψ + b∂nφ+ bβψ

)
.

Then, according to [8], [21], B defines a positive self-adjoint operator on H such
that D(B) = {H2(Ω) × H2(Γ) : φ

∣∣
Γ

= ψ}. Thus, for i ∈ N, we take a complete
system of eigenfunctions {Φi = (φi, ψi)}i of the problem BΦi = λiΦi in V∗

1 with
Φi ∈ D(B). According to the general spectral theory, the eigenvalues λi can be
increasingly ordered and counted according to their multiplicities in order to form
a real divergent sequence. Moreover, the respective eigenvectors turn out to form
an orthogonal basis both in V1 and V0 = H and may be assumed to be normalized
in the norm of X. At this point, we set the spaces

Kn = span{Φ1,Φ2, . . . ,Φn}, K∞ = ∪∞n=1Kn.
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Clearly, K∞ is a dense subspace of both V1 and V2. For any, n ∈ N, we look for
functions of the form

Φ = Φn =
n∑
i=1

ci(t)Φi (4.1)

solving the approximate problem that we will introduce below. Note that Λn =
(µn, $n) can be found in terms of Φn from (1.6) − (1.7). That is, as mentioned
previously, it is enough to solve for Φn. Note that in the definition of Φn, ci(t)
are sought to be suitably regular real valued functions. As approximations for the
initial data Φ0 = (φ0, ψ0), we take

Φn0 ∈ Y such that lim
n→∞

Φn0 = Φ0 in Y.

The problem that we must solve is given by (Pn), for any n ≥ 1,

〈∂t(NΦn),Φ〉H + 〈BΦn,Φ〉H + 〈F(Φn),Φ〉H = 0, (4.2)

and
〈Φn(0),Φ〉H = 〈Φn0,Φ〉H,

for all Φ = (φ, ψ) ∈ Kn. Here the operator F : H → H is given by F(Φ) =
(f(φ), 0)tr.

We aim to apply the standard existence theorems for ODE’s. For this purpose,
if n is fixed, let us choose Φ = Φj , 1 ≤ j ≤ n and substitute the expressions (4.1)
to the unknowns Φn in (4.2). Performing direct calculations, we actually derive the
equation:

n∑
i=1

〈Φi,Φj〉X
dci(t)
dt

+
n∑
i=1

〈BΦi,Φj〉Hci(t) + F̃j(ci(t)) = 0, (4.3)

for 1 ≤ j ≤ n, where

F̃j(ci(t)) = 〈F(
n∑
i=1

ci(t)Φi),Φj〉H = 〈f(
n∑
i=1

ci(t)Φi), φj〉0.

Note that the matrix coefficient of c′(t) in (4.3) is symmetric and positive-definite,
hence, non-singular. Since the bilinear form 〈BΦi,Φj〉H = 〈Φi,Φj〉V1 = λi〈Φi,Φj〉H
is V1-coercive and f ∈ C2(R), applying Cauchy’s theorem for ODE’s, we find a
small time tn ∈ (0, T ) such that (4.3) holds for all t ∈ [0, tn]. This gives the desired
local solution Φ to our problem (4.2), since Φn satisfies (4.3). Now, based on the
uniform a priori estimates with respect to t, derived for the solution Φ of (3.3), we
obtain, in particular, that any local solution is a actually a global solution that is
defined on the whole interval [0, T ]. It remains then to pass to the limit as n→∞.

According to the a priori estimates derived in Section 3, we have

‖Φn‖L∞([0,T ];V2) + ‖Φn‖L2([0,T ];V3) + ‖∂tΦn‖L2([0,T ];V1) ≤ C,

and for Λn = (µn, $n), n ∈ N,

‖Λn‖L∞([0,T ];H1(Ω)×H1/2(Γ)) + ‖Λn‖L2([0,T ];W×H3/2(Γ)) ≤ C,

where C depends on Ω, Γ, T , Φ0, but is independent of n and t. From this point on,
all convergence relations will be intended to hold up to the extraction of suitable
subsequences, generally not labelled. Thus, we observe that weak and weak star
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compactness results applied to the above sequences Φn and Λn entail that there
exist Φ = (φ, ψ) and Λ = (µ,$) such that as n→∞, the following properties hold:

Φn → Φ weakly star in L∞([0, T ]; V2),

Φn → Φ weakly in L∞([0, T ]; V3),

∂nΦn → ∂tΦ weakly in L2([0, T ]; V1)

and

Λn → Λ weakly star in L∞([0, T ];H1(Ω)×H1/2(Γ)),

Λn → Λ weakly in L2([0, T ];W ×H3/2(Γ)),

where recall that ‖u‖W = ‖u‖2 + ‖(1/b)(∆u)
∣∣
Γ
‖0,Γ. Then, standard interpolation

(for instance, H2−δ ⊂ C, for δ ∈ (0, 1/2), since Ω ⊂ RN with N ≤ 3) and compact
embedding results for vector valued functions [7, Lemma 10] ensure that

Φn → Φ strongly in C([0, T ];C(Ω)× C(Γ)). (4.4)

Standard arguments and (4.4) imply that Φ(0) = Φ0. By the Lipschitz continuity
of f , the converges above allows us to infer that

F(Φn) → F(Φ) strongly in C([0, T ];H).

Thus, passing to the limit in (4.2) and using the above convergence properties,
we immediately have that the solution Φ satisfies (3.3) in the sense introduced in
Definition 2.1, Section 2.

Thus, we have the following result on the solvability of our problem (1.10)–(1.13).
Let T > 0 be fixed, but otherwise arbitrary.

Theorem 4.1. Let (φ0, ψ0) ∈ X and suppose that the nonlinearity f satisfies as-
sumption (1.5). Then, the problem (1.10)–(1.13) has a unique solution in the sense
of the Definition 2.1 in Section 2. Moreover, the solution (φ(t), ψ(t)) belongs to the
space C([0, T ],X) ∩ L∞loc((0, T ],Y).

Proof. It remains to verify only the uniqueness. Suppose that (φ1(t), ψ1(t)) and
(φ1(t), ψ1(t)) are two solutions of (3.3) with same initial data. We set

(u(t), p(t)) := (φ1(t)− φ2(t), µ1(t)− µ2(t))

(v(t), q(t)) := (ψ1(t)− ψ2(t), $1(t)−$2(t))

These functions satisfy the equation

N
(
ut(t)
vt(t)

)
−

(
∆u(t)

bα∆Γv(t) + b∂nu(t) + bβv(t)

)
+

(
f(φ1(t))− f(φ2(t))

0

)
= 0, (4.5)

where ψ(t) = φ(t)
∣∣
Γ
. Taking the inner product in H of (4.5) with (u(t), v(t))tr and

using the relations (2.2)–(2.10), we deduce
1
2
d

dt
[‖(u(t), v(t))‖2X] + ‖∇u(t)‖20 + ‖∇Γv(t)‖20,Γ

+ ‖v(t)‖20,Γ + 〈f(φ1(t))− f(φ2(t)), u(t)〉0 = 0.
(4.6)

Due to assumption (1.5), we have f ′(v) ≥ −M , for some positive constant M .
Consequently, (4.6) implies

d

dt
[‖(u(t), v(t))‖2X] + 2‖∇u(t)‖20 + 2‖∇Γv(t)‖20,Γ

+ 2‖v(t)‖20,Γ ≤ 2M‖u(t)‖20.
(4.7)
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Using now the interpolation inequality ‖(u, v)‖2H ≤ C‖(u, v)‖X‖(u, v)‖D, the obvi-
ous inequality ‖u‖0 ≤ C‖(u, v)‖H and the fact D = H1(Ω) up to an equivalent
norm ‖u‖1, in order to estimate the term on the right hand side of (4.7), and
applying Gronwall’s inequality, we obtain

‖(u(t), v(t))‖2X ≤ C‖(u(0), v(0))‖2XeM3t, (4.8)

where the positive constants C, M3 are independent of t and the norm of initial
data. This finishes the proof of the uniqueness.

As we mentioned already, the existence of solutions in the phase space Y (in the
sense of Definition 2.1) can be verified in a standard way, whenever (φ(0), ψ(0)) ∈ Y.
Thus, problem (1.10)–(1.13) generates a semiflow

S(t) : Y → Y,

such that
S(t)(φ(0), ψ(0)) = (φ(t), ψ(t)),

where (φ(t), ψ(t)) is the unique solution of (1.10)–(1.13) with initial data in Y.
Moreover, by estimate (4.8), we have the Lipschitz continuity (with respect to the
initial data) in the X-norm:

‖S(t)(φ1, ψ1)− S(t)(φ2, ψ2)‖X ≤ CeMt‖(φ1 − φ2, , ψ1 − ψ2)‖X, (4.9)

for all (φi, ψi) ∈ Y, i = 1, 2. In what follows, we extend this semigroup, which we
still denote by S(t), in a unique way by continuity such that it maps X into Y. For
this purpose, let (φ(0), ψ(0)) ∈ X. By the obvious dense injection Y ↪→ X, we can
construct a sequence (φn, ψn) ∈ Y such that (φn, ψn) → (φ(0), ψ(0)) in the norm
of X. Therefore, we extend S(t) to the semigroup

S(t)(φ(0), ψ(0)) := lim
n→∞

S(t)(φn, ψn), (4.10)

where the convergence takes place in X. Since the solutions (φn, ψn) ∈ C([0, T ],Y),
(and clearly, Y ⊂ X), we get that the limit solution (φ(t), ψ(t)) = S(t)(φ(0), ψ(0))
belongs to the space C([0, T ],X), and it satisfies the same estimates as in Section
3. Thus, passing to the limit as n→∞, for each t > 0, we have S(t) : X → Y and
(φ(t), ψ(t)) satisfies the equations (1.10)–(1.13) in the sense defined in Section 2.
The proof is complete. �

5. Exponential attractors

In this section, we shall prove the existence of global attractors for the
semiflow T in Y and moreover, the existence of a semiflow and of a global attractor
in X will also be obtained as a consequence. The existence of a global attractor to
our problem (1.8)− (1.11) can be deduced as a result of the uniform and dissipative
estimates of our semiflow obtained in Section 3.

Recall that the compact setA ⊂ V is called the global attractor for the semigroup
S(t) on V if it is invariant by S(t), that is,

S(t)A = A, for t ≥ 0 (5.1)

and it attracts the bounded subsets of V as t → ∞, that is, for every bounded
B ⊂ V,

lim
t→∞

dist V (S(t)B,A) = 0,

where distV is the Hausdorff semi-distance in V .
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According to the abstract attractor existence theorem in [2], [22], it suffices to
verify that the operators S(t) : Y → Y are continuous for each t ≥ 0 and that
the semigroup S(t) possesses an attracting set B in Y and that the orbits are pre-
compact in Y.

To this end, we introduce the following ball B with sufficiently large radius R in
the space H3(Ω)×H3(Γ):

BR = {(φ, ψ) ∈ H3(Ω)×H3(Γ) : ‖(φ, ψ)‖H3(Ω)×H3(Γ) ≤ R}. (5.2)

Then obviously, BR ⊂ Y by (3.22), (3.23). Moreover, due to the dissipative esti-
mates (3.21), (3.22) and the smoothing property (3.17), there exist sufficiently large
R (≥ C6) and T0 = T0(ρ,R) such that B := BR is an absorbing set for the semigroup
S(t) acting on Y and S(t)(B) ⊂ B for t ≥ T0. The continuity of the semigroup S(t)
was actually verified in Theorem 5.1. It remains to prove the relative compactness
of orbits (φ, ψ) in Y. This property follows thanks to the estimates of Theorem
3.5 and the compact embedding H3 ⊂ H2. Thus, the semigroup S(t) possesses a
compact global attractor A ⊂ B ⊂ Y. Due to the parabolic nature of the problem
(1.10)–(1.13), we have the standard smoothing property for its solutions as given
by Proposition 3.1, Theorem 3.4, 3.5 and 5.1 and the concrete choice of the space
Y is not essential and can be replaced by the weak energy space X. In fact, in
Section 4, we have extended the unique solution (φ, ψ)(t) = S(t)(φ0, ψ0), for every
(φ0, ψ0) = (φ(0), ψ(0)) ∈ Y by continuity, to the semigroup S(t) : X → X which
possesses the smoothing property S(t) : X → Y for each fixed t > 0. Consequently,
we have proved the following result.

Theorem 5.1. The semigroup S(t) defined by (4.10) possesses a compact global
attractor A ⊂ Y which has the following structure

A = I0K,
where K denotes the set of all complete bounded trajectories of the semigroup S(t),
that is,

K =
{
(φ, ψ) ∈ Cb(R,X) : S(t)(φ, ψ) = (φ(t+ h), ψ(t+ h))

for t ∈ R, h ≥ 0, ‖(φ, ψ)‖X ≤ Cφ,ψ
}
,

and I0(φ, ψ) ≡ (φ(0), ψ(0)).

Remark 5.2. Recall that Ω ⊂ Rn, n = 2, 3. Then Theorem 5.1 and the continuous
embedding of V2 ⊂ C(Ω) imply that for each t > 0, we have the following regularity:

S(t) : X →C(Ω) and A ⊂ C(Ω).

The fact that this global attractor A has finite fractal dimension in the topology
of H2(Ω)×H2(Γ) will be a consequence of the existence of the exponential attractor
below (see Proposition 5.3). But first, let us recall that a compact set M ⊂ V is
called an exponential attractor for the semigroup on V , if it is semi-invariant, that
is,

S(t)M⊂M, for t ≥ 0 (5.3)
and it attracts exponentially all bounded subsets of V , that is, there is a constant
η > 0, such that for every bounded B ⊂ V , we have

lim
t→∞

|distV (S(t)B,M) ≤ Q(‖B‖V )e−ηt,

and it has finite fractal dimension in V , that is, d(M, V ) <∞.
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Since, we lose the invariance for the semigroup, that is, the assumption (5.3)
instead of (5.1), then the exponential attractor is not necessarily unique. However,
we always have A ⊂ M. The following proposition gives sufficient conditions for
the existence of an exponential attractor in Banach spaces (see [4]).

Proposition 5.3. Let H and H1 be two Banach spaces and H1 compactly embedded
in H. Let E be a bounded subset of H. We consider a nonlinear map L : E → E
such that L can be decomposed in the sum of two maps

L = L0 + L1 with Li : E → H (i = 0, 1),

where L0 is a contraction, that is,

‖L0(x1)− L0(x2)‖H ≤ k‖x1 − x2‖H , (5.4)

for any x1, x2 ∈ E with k ≤ 1/2 and L1 satisfies the condition

‖L1(x1)− L1(x2)‖H1 ≤ C‖x1 − x2‖H , (5.5)

for all x1, x2 ∈ E. Then the map L possesses an exponential attractor M∗.

To verify the conditions (that is the assumption (5.4) and (5.5)) of Proposition
5.3, we need to decompose the solution in a sum of two components. To this end,
we decompose the vector function (φ(t), ψ(t)) = (φ̂(t), ψ̂(t)) + (φ̃(t), ψ̃(t)) into the
sum of an exponentially decaying and a smoothing part, where the vector functions
(φ̂(t), ψ̂(t)) and (φ̃(t), ψ̃(t)) satisfy the equations:

N
(
φ̂t(t)
ψ̂t(t)

)
−

(
∆φ̂(t)

bα∆Γψ̂(t) + b∂nφ̂(t) + bβψ̂(t)

)
= 0,(

φ̂(0), ψ̂(0)
)

=
(
φ(0), ψ(0)

)
,

(5.6)

and

N
(
φ̃t(t)
ψ̃t(t)

)
−

(
∆φ̃(t)

bα∆Γψ̃(t) + b∂nφ̃(t) + bβψ̃(t)

)
+

(
f(φ̂(t) + φ̃(t))

0

)
= 0, (5.7)

with (φ̃(0), ψ̃(0)) = (0, 0), respectively.
We prove our required estimates in the next lemma. Recall that S(t)(B) ⊂ B for

t ≥ T0, where B was introduced in (5.2).

Lemma 5.4. Let (φ1(0), ψ1(0)) and (φ2(0), ψ2(0)) belong to B. The corresponding
solutions of equation (5.6) and (5.7) satisfy the following two estimates:

‖φ̂1(t)− φ̂2(t)‖21 + ‖ψ̂1(t)− ψ̂2(t)‖21,Γ

≤ C1
e−αt

t
‖φ1(0)− φ2(0), ψ1(0)− ψ2(0)‖2X,

(5.8)

and
‖φ̃1(t)− φ̃2(t)‖21 + ‖ψ̃1(t)− ψ̃2(t)‖21,Γ

≤ C2
eKt

t
‖φ1(0)− φ2(0), ψ1(0)− ψ2(0)‖2X,

(5.9)

for t > 0, where C1, C2 > 0 are independent of b, t.
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Proof. We first note that, due to the estimates (3.20) and (5.2), we have

‖φi(t)‖2 + ‖ψi(t)‖2,Γ ≤ C, (5.10)

for t ≥ 0, i = 0, 1, where the C is independent of t and depends at most on R.
Here, φ0 := φ̂, φ1 := φ̃ and ψ0 := ψ̂, ψ1 := ψ̃ respectively. Due to the continuous
embedding H2 ⊂ C, we have analogous estimates for L∞ norms of the solution
(φi, ψi), which are necessary in order to handle the nonlinear term f . We now set
(Φ(t),Ψ(t))tr := (φ̂1(t) − φ̂2(t), ψ̂1(t) − ψ̂2(t))tr. Then this vector-valued function
(Φ(t),Ψ(t))tr satisfies (5.6). Taking the inner product of (5.6) with the vector
(Φ(t),Ψ(t))tr in H and integrating by parts, we deduce

1
2
d

dt
[‖Φ(t),Ψ(t)‖2X] + ‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ = 0. (5.11)

Consequently, the inequality ‖Φ‖21 + ‖Ψ‖21,Γ ≥ C‖(Φ,Ψ)‖2H ≥ C̃‖(Φ,Ψ)‖2X and
relation (5.11) yield

‖Φ(t),Ψ(t)‖2X +
∫ t

0

(
‖Φ(s)‖21 + ‖Ψ(s)‖21,Γ

)
ds ≤ Ce−ρt‖Φ(0),Ψ(0)‖2X, (5.12)

for some positive constants ρ, C independent of t. Similarly, we take the inner
product in H of (5.6) with t(Φt(t),Ψt(t))tr and integrate by parts. Consequently,
we obtain

t‖Φt(t),Ψt(t)‖2X +
1
2
d

dt
[t(‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ)] =

1
2
(‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ). (5.13)

Integrating now (5.13) over [0, t] and using estimate (5.12), we deduce

t(‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ) +
∫ t

0

s‖Φt(s),Ψt(s)‖2Xds ≤ Ce−ρt‖Φ(0),Ψ(0)‖2X.

This last estimate yields our conclusion (5.8). In order to verify estimate (5.9), we
will use (5.10). We define

(Φ(t),Ψ(t))tr := (φ̃1(t)− φ̃2(t), ψ̃1(t)− ψ̃2(t))tr.

This vector-valued function satisfies (5.7). Arguing as in the derivation of the
estimate (5.12), we similarly deduce that

1
2
d

dt
[‖Φ(t),Ψ(t)‖2X] + ‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ

= −〈f(φ̂1(t) + φ̃1(t))− f(φ̂2(t) + φ̃2(t)),Φ(t)〉0.
(5.14)

In contrast to the proof of Proposition 3.1, we can not estimate the nonlinear term
f using assumption (1.5), so then instead we use the uniform estimate (5.10) and
the analogous L∞−estimates. We have

−〈f(φ̂1(t) + φ̃1(t))− f(φ̂2(t) + φ̃2(t)),Φ(t)〉0 ≤ C‖Φ(t)‖20. (5.15)

Using now the obvious interpolation inequality

‖Φ(t)‖20 ≤ C‖(Φ(t),Ψ(t))‖2H ≤ Ĉ‖(Φ(t),Ψ(t))‖D‖(Φ(t),Ψ(t))‖X (5.16)
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and the fact D = H1(Ω) (up to an equivalent norm), we deduce from (5.14), (5.15)
and Gronwall’s inequality that

‖(Φ(t),Ψ(t))‖2X +
∫ t

0

(‖Φ(s)‖21 + ‖Ψ(s)‖21,Γ)ds

≤ eKt‖(φ1(0)− φ2(0), ψ1(0)− ψ2(0))‖2X.
(5.17)

Arguing as in (5.13), we deduce

t‖(Φt(t),Ψt(t))‖2X +
1
2
d

dt
[t(‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ)]

= −〈f(φ̂1(t) + φ̃1(t))− f(φ̂2(t) + φ̃2(t)), tΦt(t)〉0

+
1
2
(‖Φ(t)‖21 + ‖Ψ(t)‖21,Γ).

(5.18)

We estimate the first term on the right hand side of (5.18), using (5.10), as follows:

− 〈f(φ̂1(t) + φ̃1(t))− f(φ̂2(t) + φ̃2(t)), tΦt(t)〉0

≤ Ct‖Φ(t)‖21 +
1
2
t‖(Φt(t),Ψt(t))‖2X,

(5.19)

where we have used again the interpolation inequality (5.16) and the L∞-norm
estimates for Φ and Φ. Gronwall’s lemma and the estimates (5.17)–(5.19) then
yield the final conclusion (5.9), which finishes the proof of the lemma. �

Let us now fix t∗ ≥ T0. It is left to observe that for every (φ1(0), ψ1(0)) and
(φ2(0), ψ2(0)) belonging to B, the functions Φ and Ψ (defined in the proof of Lemma
5.4 satisfy the following smoothing estimate:

‖Φ(t∗)‖21 + ‖Ψ(t∗)‖21,Γ ≤ CT ‖φ1(0)− φ2(0), ψ1(0)− ψ2(0)‖2X, (5.20)

where CT depends on T . Obviously, V1 = H1(Ω)×H1(Γ) is compactly embedded in
X, since V1 is compactly injected in H and the definition of the norm of X is based
on that of H (see (2.6), (2.7)). It follows that the assumption (5.5) of Proposition
5.3 is verified. Moreover, due to the decaying estimate (5.8), the functions Φ and
Ψ satisfy

‖(Φ(t∗),Ψ(t∗))‖2X ≤ k‖φ1(0)− φ2(0), ψ1(0)− ψ2(0)‖2X, (5.21)
where k < 1/2 (note that it is possible to do this, thanks to the estimate (5.8) and
obvious inequality C̃‖(·, ·)‖X ≤ ‖(·, ·)‖H ≤ C‖(·, ·)‖H1(Ω)×H1(Γ)). Thus, assumption
(5.4) is also verified.

Thus, according to the conclusion of Proposition 5.3, the operator L = S(t∗)
possesses an exponential attractor M∗ on B. Since, B is an absorbing set for this
semigroup on X, then these attractors attract exponentially all the bounded subsets
of X with respect to the metric of X. Moreover, the fractal dimension of M∗ is
finite, that is,

dimF (M∗,X) <∞.

Next, using a standard formula, we define the desired exponential attractor by

M = ∪t∈[0,T ] S(t)M∗. (5.22)

The semi-invariance (5.3) is then an immediate consequence of the semi-invariance
of M∗ and the definition (5.22). The exponential attraction

lim
t→∞

dist X(S(t)B,M) ≤ Q(‖B‖X)e−ηt, t ≥ 0,
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(for every bounded subset B ⊂ X) follows from the fact that B defined by (5.2) is
an absorbing set for S(t) (due to (3.12)) and from the uniform Lipschitz continuity
(with respect to the initial data) due to (4.9). Thus, there only remains to verify
that M has finite fractal dimension. Nevertheless, since the map S(t) is uniformly
Hölder continuous on [0, T ] × B in the norm of X, it follows that M is still a
compact set with finite fractal dimension that will be exponentially attracting for
the semiflow S(t) on B. The Lipschitz continuity with respect to the initial data
was verified in (4.9) and the Hölder continuity with respect to t follows from the
fact that (∂tφ(t), ∂tψ(t)) is in X if (φ(t), ψ(t)) is in Y. This result is given below in
the following corollary.

Corollary 5.5. The semigroup S(t) defined in (4.10) is Holder continuous on
[0, T ]× B in the topology of X, (B is defined in (5.2)), that is,

‖S(t2)(φ1
0, ψ

1
0)− S(t1)(φ2

0, ψ
2
0)‖X

≤ C(R, T )[‖(φ1
0 − φ2

0, ψ
1
0 − ψ2

0)‖X + |t2 − t1|1/2],

for (φi0, ψ
i
0) ∈ B and ti ∈ [0, T ]. Moreover, the constant C(R, T ) is independent of

t.

Proof. The uniform Lipschitz continuity of S with respect to the initial data in the
metric of X was actually verified in (4.9). It is left to verify the Hölder continuity
with respect to t. Arguing as in the proof of Theorem 5.1, (3.25), we obtain∫ T+1

T

‖(∂tφ(s), ∂tψ(s))‖2Xds ≤ Q(‖(φ(0), ψ(0))‖2Y) ≤ C(R), (5.23)

(for a suitable monotonic function Q) if (φ0, ψ0) ∈ B. Moreover, for every t1,
t2 ∈ [0, T ],

‖(φ, ψ)(t1)− (φ, ψ)(t2)‖X = ‖
∫ t2

t1

∂t(φ(s), ψ(s))ds‖X

≤
∫ t2

t1

‖(∂tφ(s), ∂tψ(s))‖Xds

≤
( ∫ t2

t1

‖(∂tφ(s), ∂tψ(s))‖2Xds
)1/2

|t2 − t1|1/2

≤
√
C(R)|t2 − t1|1/2.

�

Thus, we have constructed the exponential attractor M for the metric of X such
that we have

dimF (M,X) ≤ dimF (M∗,X) + 2.
To obtain the attractor M with the respect of the metric in H2(Ω)×H2(Γ), it is
enough to note that the semigroup S(t) possesses smoothing properties according
to Theorem 3.4 and 3.5 and use the following interpolation inequality:

‖(φ, ψ)‖H2(Ω)×H2(Γ) ≤ C‖(φ, ψ)‖1/6X ‖(φ, ψ)‖5/6B , (5.24)

for some positive constant C independent of the solution. Thus, arguing as in [5],
[16], [17], we can extend the above result to the case when the norm of X is replaced
by H2(Ω)×H2(Γ). We summarize this final result of this section in the following
theorem on the existence of exponential attractors for problem (1.10)–(1.13).
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Theorem 5.6. There exists a compact set M ⊂ Y which satisfies the following
properties:

(1) The fractal dimension of M is finite, that is, dimF (M,H2(Ω)×H2(Γ)) <
∞.

(2) Semi-invariance: S(t)(M) ⊂M, t ≥ 0.
(3) There exists a positive constant ρ and a monotonic function Q, such that

for every bounded subset B of X, we have:

lim
t→∞

distH2(Ω)×H2(Γ)(S(t)B,M) ≤ Q(‖B‖X)e−ρt, t ≥ 0.

6. Final remarks and open questions

In this section, let us consider a conserved version of the Cahn-Hilliard equation
(1.1)–(1.4), that is,

∂tφ = ∆µ in [0, T ]× Ω, (6.1)

µ = −∆φ+ f(φ) in [0, T ]× Ω, (6.2)

and

∂tψ + b∂nµ = 0 on [0, T ]× Γ, (6.3)

−α∆Γψ + ∂nφ+ βψ =
$

b
on [0, T ]× Γ, (6.4)

with ψ = φ
∣∣
Γ
, $ = µ

∣∣
Γ

and initial conditions φ(0, x) = φ0(x), ψ(0, x) = ψ0(x). We
note that due to the divergence theorem and equations (6.1), (6.3), we have

d

dt

( ∫
Ω

φ(t, x)dx+
∫

Γ

ψ(t, x)
dS

b

)
= 0,

hence the total mass∫
Ω

φ(t, x)dx+
∫

Γ

ψ(t, x)
dS

b
=

∫
Ω

φ0(x)dx+
∫

Γ

ψ0(x)
dS

b
(6.5)

is conserved for all time t > 0. We also observe that the boundary condition (6.3)
is the same as (1.3), if c = 0. This case becomes more difficult to treat since
the operator defined by (2.4)–(2.5) may not be invertible on H. Nevertheless, we
may construct such an invertible operator N , if we restrict the vectors (φ(t), ψ(t))
to a subspace of H such that (φ(t), ψ(t)) satisfy the conservation property (6.5).
Moreover, it is apparent from the results of Section 3, that the estimates for the
solution (φ, ψ) satisfying (6.1)–(6.4) are uniform with respect to the parameter b.
We could then regard the coefficient b in the boundary conditions (6.3) and (6.4)
as a parameter and consider the parameter dependent solution of this system, and
construct a nonlinear semigroup Sb(t) = S(t, b) : Y(b) → Y(b), t > 0, for each
b ∈ [b0,+∞) with b0 > 0. Here the space Y(b) will depend explicitly on the
parameter b (also, see (2.11)). When b→ +∞, the boundary conditions (6.3) and
(6.4) become formally a homogeneous Neumann condition for the chemical potential
µ and a homogeneous boundary condition of second order for φ, respectively. Hence,
we formally obtain the limiting system of equations:

∂tφ = ∆µ in [0, T ]× Ω, (6.6)

µ = −∆φ+ f(φ) in [0, T ]× Ω, (6.7)
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and

∂nµ = 0 on [0, T ]× Γ, (6.8)

−α∆Γψ + ∂nφ+ βψ = 0 on [0, T ]× Γ. (6.9)

Such a system was considered and studied in [21, Section 7]. We note that (6.6),
(6.7) imply that the mass ∫

Ω

φ(t, x)dx =
∫

Ω

φ0(x)dx (6.10)

is conserved for all time t > 0. Notice that (6.5) becomes (6.10) when b = +∞.
The fundamental question that arises from these initial observations is whether

we may be able to construct a family of robust exponential attractors Mb for the
semi-flow Sb(t) associated with this problem (6.1)–(6.4), whenever b ∈ [b0,+∞).
Thus, if the uniform and decaying estimates in Theorem 3.5 and its supporting
lemmas hold, it is natural to ask whether the sets Mb tend to the limit set M∞ as
b→ +∞ in the following sense:

distX(Mb;M∞) → 0,

where distX denotes the Hausdorff distance in the topology of a suitable metric
space X. We will investigate such a problem in a forthcoming article.
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