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A QUASISTATIC UNILATERAL CONTACT PROBLEM WITH
SLIP-DEPENDENT COEFFICIENT OF FRICTION FOR

NONLINEAR ELASTIC MATERIALS

AREZKI TOUZALINE

Abstract. Existence of a weak solution under a smallness assumption of the

coefficient of friction for the problem of quasistatic frictional contact between

a nonlinear elastic body and a rigid foundation is established. Contact is
modelled with the Signorini condition. Friction is described by a slip dependent

friction coefficient and a nonlocal and regularized contact pressure. The proofs

employ a time-discretization method, compactness and lower semicontinuity
arguments.

1. introduction

Contact problems involving deformable bodies are quite frequent in industry as
well as in daily life and play an important role in structural and mechanical systems.
Because of the importance of this process a considerable effort has been made in its
modelling and numerical simulations. An early attempt to study frictional contact
problems within the framework of variational inequalities was made in [8]. The
mathematical, mechanical and numerical state of the art can be found in [12].
In this paper we investigate a mathematical model for the process of unilateral
frictional contact of a nonlinear elastic body with a rigid foundation. We assume
that slowly varying time-dependent volume forces and surface tractions act on it,
and as a result its mechanical state evolves quasistatically. The contact is modelled
with the Signorini condition and the friction is described by a slip-dependent friction
and a nonlocal and regularized contact pressure. The model of slip-dependent is
considered in geophysics and solid mechanics corresponding to a smooth dependence
of the friction coefficient on the slip uτ , i.e. µ = µ(|uτ |) . The quasistatic contact
problem with slip-dependent coefficient of friction for linear elastic materials was
studied in [5] by using a new result obtained in [11]. In [9], the contact problem
with slip-dependent coefficient of friction was studied in dynamic elasticity. By
using the Galerkin method and regularization techniques, the authors of [9] proved
the existence of a solution in the two-dimensional case (in-plane and anti-plane
problems), hence for the case one-dimensional shearing problem, the solution that
has been found in two dimensions is unique. The quasistatic problem with unilateral
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contact which used a normal compliance law has been studied in [1] by considering
incremental problems and in [10] by another method using a time regularization.
In [15] the quasistatic unilateral contact problem involving a nonlocal friction law
for nonlinear elastic materials was solved by the time-discretization method. By
using a fixed point method, Signorini’s problem with friction for nonlinear elastic
materials has been solved in [6]. The same method was used in [14] to study
the quasistatic contact problem with normal compliance and friction for nonlinear
viscoelastic materials. Here, we try to complete the study of the elastic contact
problem presented in [5]. Based on a time-discretization method, we prove the
existence of a solution for a variational formulation of the quasistatic frictional
problem, where this problem is given in terms of two variational inequalities as in
[4, 15]. Thus this method is similar to the one that has been used in [4, 13] in order
to study quasistatic contact problems for linear elastic materials. Given a time
step, we construct a sequence of quasivariational inequalities for which we pove the
existence of the solution. Then, we interpolate the discrete solution in time and,
using compactness and lower semicontinuity, we derive the existence of a solution
of the quasistatic contact problem if the coefficient of friction is sufficiently small.

2. Variational formulation

Let Ω ⊂ Rd, d = 2, 3, be the reference domain occupied by the nonlinear elastic
body. Ω is supposed to be open, bounded, with a sufficiently regular boundary Γ.
Γ is decomposed into three parts Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint
open sets. Let T > 0 and let [0, T ] be the time interval of interest. We assume
that the body is fixed on Γ1× (0, T ) where the displacement field vanishes and that
meas Γ1 > 0. The body is acted upon by a volume force of density ϕ1 on Ω× (0, T )
and a surface traction of density ϕ2 on Γ2 × (0, T ). On Γ3 × (0, T ) the body is in
unilateral contact with friction with a rigid foundation.

Under these conditions the classical formulation of the mechanical problem is
the following.

Problem (P1). Find a displacement field u : Ω× [0, T ] → Rd such that

div σ + ϕ1 = 0 in Ω× (0, T ), (2.1)

σ = F (ε(u)) in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = ϕ2 on Γ2 × (0, T ), (2.4)

σν(u) ≤ 0, uν ≤ 0, σν(u)uν = 0 on Γ3 × (0, T ), (2.5)

|στ | ≤ µ(|uτ |)|Rσν(u)|
|στ | < µ(|uτ |)|Rσν(u)| ⇒ u̇τ = 0
|στ | = µ(|uτ |)|Rσν(u)| ⇒ ∃λ ≥ 0 : στ = −λu̇τ

 on Γ3 × (0, T ), (2.6)

u(0) = u0 in Ω. (2.7)
Here (2.1) represents the equilibrium equation; (2.2) represents the nonlinear elastic
constitutive law in which F is a given function and ε(u) denotes the small strain
tensor; (2.3) and (2.4) are the displacement and traction boundary conditions on Γ1

and Γ2 respectively, in which ν denotes the unit outward normal vector on Γ and σν
represents the Cauchy stress tensor; (2.5) represent the unilateral contact boundary
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conditions. Conditions (2.6) represent the associate friction law in which στ denotes
the tangential stress, u̇τ denotes the tangential velocity on the boundary, µ is the
coefficient of friction and R is a regularization operator. Finally, (2.7) represents the
initial condition. In (2.6) and below, a dot above a variable represents its derivative
which respect to time. We denote by Sd the space of second order symmetric tensors
on Rd and it is endowed with its natural inner product. Moreover, in the sequel,
the index that follows a comma indicates a partial derivative, e.g., ui,j = ∂ui/∂xj .

Here ε and div are the deformation and divergence operators defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), div σ = (σij,j),

respectively, where we denote by u and σ the displacement and stress fields in the
body.

To proceed with the variational formulation, we consider the following spaces
(repeated convention indexes is used):

H = L2(Ω)d, H1 = H1(Ω)d,

Q = {τ = (τij); τij = τji ∈ L2(Ω)} = L2(Ω)d×d
s ,

Q1 = {σ ∈ Q; div σ ∈ H}.

The spaces H, Q and Q1 are real Hilbert spaces endowed with the inner products

〈u, v〉H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx,

〈σ, τ〉Q1 = 〈σ, τ〉Q + 〈div σ,div τ〉H .

Keeping in mind the boundary condition (2.3), we introduce the closed subspace of
H1 defined by

V = {v ∈ H1; v = 0 on Γ1}.

and K be the set of admissible displacements

K = {v ∈ V ; vν ≤ 0 on Γ3}.

Since meas Γ1 > 0, we have Korn’s inequality [8],

‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V, (2.8)

where the constant cΩ depends only on Ω and Γ1. We equip V with the inner
product

〈u, v〉V = 〈ε(u), ε(v)〉Q
and let ‖.‖V be the associated norm. It follows from Korn’s inequality (2.8) that the
norms ‖ · ‖H1and ‖ · ‖V are equivalent on V . Therefore (V, ‖ · ‖V ) is a Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which only depends on
the domain Ω, Γ3 and Γ1 such that

‖v‖L2(Γ3)d ≤ dΩ‖v‖V ∀v ∈ V. (2.9)

For every v ∈ H1, we denote by vν and vτ the normal and tangential components
of v on Γ given by

vν = v.ν, vτ = v − vνν.
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Similarly, σν and στ denote the normal and the tangential traces of a function
σ ∈ Q1. When σ is a regular function, then σν = (σν).ν, στ = σν − σνν, and the
following Green’s formula holds:

〈σ, ε(v)〉Q + 〈div σ, v〉H =
∫

Γ

σν.vda ∀v ∈ H1. (2.10)

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C([0, T ];X)
for the space of continuous functions from [0, T ] to X; C([0, T ];X) is a real Banach
space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

For p ∈ [1,∞], we use the standard notation of Lp(0, T ;V ) spaces. We also use the
Sobolev space W 1,∞(0, T ;V ) with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ),

where a dot now represents the weak derivative with respect to the time variable.
In the study of contact problem (P1) we assume that the nonlinear elasticity

operator F : Ω× Sd → Sd that satisfies:

(a) There exists L1 > 0 such that

|F (x, ε1)− F (x, ε2)| ≤ L1|ε1 − ε2|,
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(b) there exists L2 > 0 such that

(F (x, ε1)− F (x, ε2)).(ε1 − ε2) ≥ L2|ε1 − ε2|2,
for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) x → F (x, ε) is Lebesgue measurable on Ω, for all ε ∈ Sd;
(d) F (x, 0) = 0 for almost all x in Ω.

(2.11)

Remark 2.1. From the hypotheses on F we have F (x, τ(x)) ∈ Q, for all τ ∈ Q
and thus we can consider F as an operator defined from Q to Q.

The coefficient of friction satisfies
(a) µ : Γ3 × R+ → R+;
(b) there exists Lµ > 0 such that

|µ(., u)− µ(., v)| ≤ Lµ|u− v|
for all u, v ∈ R+, a.e. on Γ3

(c) There exists µ∗ > 0 such that µ(x, u) ≤ µ∗ for all u ∈ R+, a.e.
x ∈ Γ3;

(d) the function x → µ(x, u) is Lebesgue measurable on Γ3, for all
u ∈ R+.

(2.12)

We suppose that the body forces and surface tractions satisfy

ϕ1 ∈ W 1,∞(0, T ;H), ϕ2 ∈ W 1,∞(0, T ;L2(Γ2)d). (2.13)

Using Riesz’representation theorem we define the element f(t) by

〈f(t), v〉V =
∫

Ω

ϕ1(t).vdx +
∫

Γ2

ϕ2(t).vda ∀v ∈ V, t ∈ [0, T ].

The hypotheses on ϕ1 and ϕ2 imply that

f ∈ W 1,∞(0, T ;V ).
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Let us define the subset Ṽ of H1 by

Ṽ = {v ∈ H1; div σ(v) ∈ H}.

Similarly define

H(Γ3) = {w
∣∣
Γ3

: w ∈ H1/2(Γ), w = 0 on Γ1}

equipped with the norm of H1/2(Γ) and 〈., .〉 shall denote the duality pairing be-
tween H(Γ3) and its dual H ′(Γ3). We define the normal component of the stress
vector σν on Γ3 at time t as follows. Let u ∈ Ṽ such that div σ(u) = −ϕ1(t) in Ω
and σ(u)ν = ϕ2(t) on Γ2. Then σν(u(t)) ∈ H ′(Γ3) is given by

∀w ∈ H(Γ3) :

〈σν(u(t)), w〉 = 〈F (ε(u(t))), ε(v)〉Q − 〈f(t), v〉V ,

∀v ∈ V ; vν = w, vτ = 0 on Γ3.

(2.14)

Next we define the functional j: Ṽ × V → R by

j(u, v) =
∫

Γ3

µ(|uτ (a)|)|Rσν(u)||vτ (a)|da ∀(u, v) ∈ Ṽ × V,

and da is the surface measure on Γ3. We assume that R : H ′(Γ3) → L∞(Γ3) is a
linear and continuous mapping.

Finally we assume that the initial data u0 satisfy

u0 ∈ K ∩ Ṽ ,

〈F (ε(u0)), ε(v − u0)〉Q + j(u0, v − u0) ≥ 〈f(0), v − u0〉V ∀v ∈ K.
(2.15)

Using Green’s formula (2.10) it is straightforward to see that if u is a sufficiently
regular function which satisfy (2.1)-(2.6) then for almost all t ∈ [0, T ]:

u(t) ∈ K,

〈F (ε(u(t)), ε(v − u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ 〈f(t), v − u̇(t)〉V + 〈σν(u(t)), vν − u̇ν(t)〉 ∀v ∈ V,

〈σν(u(t)), zν − uν(t)〉 ∀z ∈ K.

Therefore, using (2.7) and the previous inequalities yields to the following varia-
tional formulation of problem (P1).

Problem (P2). Find a displacement field u ∈ W 1,∞(0, T ;V ) such that u(0) = u0

in Ω and for almost all t ∈ [0, T ], u(t) ∈ K ∩ Ṽ and

〈F (ε(u(t))), ε(v)− ε(u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ 〈f(t), v − u̇(t)〉V + 〈σν(u(t)), vν − u̇ν(t)〉 ∀v ∈ V,
(2.16)

〈σν(u(t)), zν − uν(t)〉 ∀z ∈ K. (2.17)

The main result of this paper is the following.

Theorem 2.2. Let T > 0 and assume that (2.11), (2.12), (2.13) and (2.15) hold.
Then problem (P2) has at least one solution u for a sufficiently small friction coef-
ficient.
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3. Incremental formulation

This evolution problem can be integrated in time by an implicit scheme as in
[4, 15]. We need a partition of the time interval [0, T ], 0 = t0 < t1 < · · · < tn = T ,
where ti = i∆t, 0 ≤ i ≤ n, with step size ∆t = T/n. We denote by uti the
approximation of u at the time ti and by the symbol ∆uti the backward difference
uti+1 − uti . For a continuous function w(t) we use the notation wti = w(ti). Then
we obtain a sequence of incremental problems (P ti

n ) defined for u0 = u0 by:

Problem (P ti
n ). Find uti+1 ∈ K ∩ Ṽ such that

〈F (ε(uti+1)), ε(w)− ε(uti+1)〉Q + j(uti+1 , w − uti)− j(uti+1 ,∆uti)

≥ 〈f ti+1 , w − uti+1〉V + 〈σν(uti+1), wν − uti+1
ν 〉 ∀w ∈ V,

〈σν(uti+1), zν − uti+1
ν 〉 ≥ 0 ∀z ∈ K.

Lemma 3.1. Problem (P ti
n ) is equivalent to the following problem.

Problem (Qti
n ). Find uti+1 ∈ K ∩ Ṽ such that

〈F (ε(uti+1)), ε(w)− ε(uti+1)〉Q + j(uti+1 , w − uti)− j(uti+1 ,∆uti)

≥ 〈f ti+1 , w − uti+1〉V ∀w ∈ K
(3.1)

For the proof of the lemma above, we refer the reader to [4].

Lemma 3.2. There exists µ0 > 0 such that for µ∗ < µ0, problem (Qti
n ) has a

unique solution.

To show this lemma, we introduce an intermediate problem. First, we define the
convex set

C∗+ = {g ∈ L2(Γ3); g ≥ 0 a.e. on Γ3}
and the function

ϕ(w) =
∫

Γ3

g|wτ |da.

We introduce the intermediate problem (Qti
ng) for g ∈ C∗+ by replacing in (3.1)

µ(|uti+1
τ |)|Rσν(uti+1)| by g as follows.

Problem (Qti
ng). Find ug ∈ K such that for all w ∈ K,

〈F (ε(ug)), ε(w)− ε(ug)〉Q + ϕ(w − uti)− ϕ(ug − uti) ≥ 〈f ti+1 , w − ug〉V . (3.2)

Then we have the following lemma.

Lemma 3.3. For any g ∈ C∗+ problem (Qti
ng) has a unique solution ug. Moreover,

there exists a constant c1 > 0 such that

‖ug‖V ≤ c1‖f ti+1‖V . (3.3)

The proof of the above lemma can be found in [15]. Now we prove the following
lemma.

Lemma 3.4. Let Ψ : C∗+ → C∗+ be the mapping defined by

Ψ(g) = µ(|ugτ |)|Rσν(ug)|.
There exists L∗1 > 0 such that if µ∗+ Lµ < L∗1, then Ψ has a fixed point g∗ and ug∗

is a solution to problem (Qti
n ).
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Proof. Since for g ∈ L2(Γ3), σν(ug) is defined on Γ3 and belongs to the dual space
H ′(Γ3), we have

‖Ψ(g1)−Ψ(g2)‖L2(Γ3) = ‖µ(|ug1τ |)|Rσν(ug1)| − µ(|ug2τ |)|Rσν(ug2)|‖L2(Γ3)

≤ ‖|µ(|ug1τ
|)− µ(|ug2τ

|)||Rσν(ug1)|‖L2(Γ3)

+ ‖µ(|ug2τ
|)(|Rσν(ug1)| − |Rσν(ug2)|)‖L2(Γ3).

Using the relation (2.14), the continuity of R and (3.3), it follows that there exists
a constant C > 0 such that

‖Rσν(ug1)‖L∞(Γ3) ≤ C‖f‖C([0,T ];V ).

Using (2.9), (2.12)(c), (2.14) and the continuity of R, yield that there exists a
constant C1 > 0 such that

‖Ψ(g1)−Ψ(g2)‖L2(Γ3) ≤ C1(µ∗ + Lµ)‖ug1 − ug2‖V .

On the other hand set v = ug1 in (Qti
ng2

) and v = ug2 in (Qti
ng1

) and adding them,
we obtain by using (2.9) and (2.11)(b), that there exists a constant C2 > 0 such
that

‖ug1 − ug2‖V ≤ C2‖g1 − g2‖L2(Γ3).

Hence we deduce

‖Ψ(g1)−Ψ(g2)‖L2(Γ3) ≤ C1C2(µ∗ + Lµ)‖g1 − g2‖L2(Γ3),

and when L∗1 = 1
C1C2

, we have for µ∗ + Lµ < L∗1, that the mapping Ψ is a con-
traction. Thus it has a fixed point g∗ and ug∗ is the solution of problem (Qti

n ).
We remark that g∗ ∈ L∞(Γ3) as Ψ(g∗) ∈ L∞(Γ3) and ug∗ ∈ K ∩ Ṽ yields that
uti+1 ∈ K ∩ Ṽ . �

Lemma 3.5. We have the following estimates: There exists a constant L∗2 > 0
such that for µ∗ + Lµ < L∗2, there exist di > 0, i = 1, 2, such that

‖uti+1‖V ≤ d1‖f ti+1‖V , (3.4)

‖∆uti‖V ≤ d2‖∆f ti‖V . (3.5)

Proof. By setting w = 0 in the inequality (3.1) we deduce the inequality

〈F (ε(uti+1)), ε(uti+1)〉Q ≤ j(uti+1 , uti+1) + 〈f ti+1 , uti+1〉V .

Using the properties of j we have

j(uti+1 , uti+1) ≤ µ∗‖Rσν(uti+1)‖L∞(Γ3)dΩ(meas Γ3)1/2‖uti+1‖V .

Then using the continuity of R and (2.14), there exists a constant c > 0 such that

‖Rσν(uti+1)‖L∞(Γ3) ≤ c(‖uti+1‖V + ‖f ti+1‖V ).

Using (2.11)(b) and (2.9), there exists a constant c1 > 0 such that

L2‖uti+1‖2
V ≤ dΩµ∗c(meas Γ3)1/2‖uti+1‖2

V + c1‖f ti+1‖V ‖uti+1‖V ,

from which we deduce if we take

µ1 =
L2

2dΩc(meas Γ3)1/2
,
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that for µ∗ + Lµ < µ1, there exists d1 > 0 such that (3.4) hold. To show the
inequality (3.5) we consider the translated inequality of (3.1) at the time ti, that
is

〈F (ε(uti)), ε(w)− ε(uti)〉Q + j(uti , w − uti−1)− j(uti , uti − uti−1)

≥ 〈f ti , w − uti〉V ∀ w ∈ K.
(3.6)

By setting w = uti in (3.1) and w = uti+1 in (3.6) and adding them up, we obtain
the inequality

− 〈F (ε(uti+1))− F (ε(uti)), ε(∆uti)〉Q − j(uti+1 ,∆uti)

+ j(uti , uti+1 − uti−1)− j(uti , uti − uti−1)

≥ 〈−∆f ti ,∆uti〉V .

Then using the inequality

||uti+1
τ − uti−1

τ | − |uti
τ − uti−1

τ || ≤ |uti+1
τ − uti

τ |,

we have
j(uti , uti+1 − uti−1)− j(uti , uti − uti−1) ≤ j(uti ,∆uti).

Therefore,

〈F (ε(uti+1))− F (ε(uti)), ε(∆uti)〉Q − j(uti ,∆uti) + j(uti+1 ,∆uti)

≤ 〈∆f ti ,∆uti〉V .
(3.7)

Using the hypothesis (2.11) (b) on µ, inequality (2.9) and the properties of j, there
exist two positive constants c2 and c3 such that

| − j(uti ,∆uti) + j(uti+1 ,∆uti)| ≤ c2(µ∗ + Lµ)‖∆uti‖2
V + c3‖∆f ti‖V ‖∆uti‖V .

Then using the hypothesis (2.10)(b) on F , we obtain from the previous inequality
that

L2‖∆uti‖2
V ≤ c2(µ∗ + Lµ)‖∆uti‖2

V + c3‖∆f ti‖V ‖∆uti‖V .

Then if we take µ2 = L2
2c2

, for µ∗ + Lµ < µ2, there exists d2 > 0 such that

‖∆uti‖V ≤ d2‖∆f ti‖V .

and the lemma is proved with L∗2 = min(µ1, µ2). �

4. Existence

In this section we prove our main result, Theorem 2.2, which guarantees the
existence of a weak solution for problem (P2) obtained as a limit of the interpolate
function in time of the discrete solution. For thus, we shall define the following
sequence of functions un in [0, T ] → V by

un(t) = uti +
(t− ti)

∆t
∆uti on [ti, ti+1], i = 0, ..., n− 1.

As in [15] we have the following lemma.

Lemma 4.1. There exists u ∈ W 1,∞(0, T ;V ) and a subsequence of the sequence
(un), still denoted (un), such that

un → u weak ∗ in W 1,∞(0, T ;V ).
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Proof. As in [15], from (3.4) we deduce that the sequence (un) is bounded in
C([0, T ];V ) and there exists c3 > 0 such that

max
0≤t≤T

‖un(t)‖V ≤ c3‖f‖C([0,T ];V ).

From (3.5) we deduce that the sequence (u̇n) is bounded in L∞(0, T ;V ) and that
there exists c4 > 0 such that

‖u̇n‖L∞(0,T ;V ) = max
0≤i≤n−1

‖∆uti

∆t
‖V ≤ c4‖ḟ‖L∞(0,T ;V ).

Consequently the sequence (un) is bounded in W 1,∞(0, T ;V ). Therefore, there
exists a function u in W 1,∞(0, T ;V ) and a subsequence, still denoted by (un), such
that

un → u weak ∗ in W 1,∞(0, T ;V ) as n →∞ satisfying

‖u‖W 1,∞(0,T ;V ) ≤ c5‖f‖W 1,∞(0,T.V ),

with c5 = max(c3, c4). �

Let us introduce the following piecewise constant functions ũn : [0, T ] → V ,
f̃n : [0, T ] → V defined as follows

ũn(t) = uti+1 , f̃n(t) = f(ti+1), ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1.

We have the following result.

Lemma 4.2. Passing to a subsequence again denoted (ũn) we have
(i) ũn → u weak ∗ in L∞(0, T ;V ),
(ii) ũn(t) → u(t) weakly in V a.e. t in [0, T ],
(iii) u(t) ∈ K ∩ Ṽ a.e. t ∈ [0, T ].

Proof. From (3.1) we deduce that the sequence (ũn) is bounded in L∞(0, T ;V ).
Then, there exists a subsequence still denoted (ũn) which converges weakly ∗ in
L∞(0, T ;V ). On the other hand as in [11] we deduce for every t ∈ (0, T ) the
inequality

‖un(t)− ũn(t)‖V ≤ T

n
‖u̇n(t)‖V , (4.1)

from which we deduce

‖un(t)− ũn(t)‖L∞(0,T ;V ) ≤ c4
T

n
‖ḟ‖L∞(0,T ;V ).

This inequality proves that

ũn → u weak ∗ in L∞(0, T ;V ),

whence (i) follows. To prove (ii), since W 1,∞(0, T ;V ) ↪→ C([0, T ];V ), we have
un(t) → u(t) weakly in V , for all t ∈ [0, T ], and from (4.1) we have immediately
(ii). We turn now to the proof of (iii). To this end we remark that we have
ũn(t) ∈ K a.e. t ∈ [0, T ], so we deduce that u(t) ∈ K a.e. t ∈ [0, T ]. Then it
suffices only to show that u(t) ∈ Ṽ a.e. t ∈ [0, T ]. Indeed, from the inequality (3.1)
we deduce the inequality

〈F (ε(ũn(t))), ε(w)− ε(ũn(t))〉Q + j(ũn(t), w − ũn(t))

≥ 〈f̃n(t), w − ũn(t)〉V , ∀w ∈ K, a.e. t ∈ (0, T ).



10 A. TOUZALINE EJDE-2006/144

From this inequality we deduce that for a fixed t ∈ (0, T ), div σ(ũn(t)) is bounded
in H and so we can extract a subsequence again denoted div σ(ũn(t)) such that it
converges weakly in H. Since div σ(ũn(t)) → div σ(u(t)) in the sense of distributions
we conclude that div σ(u(t)) ∈ H a.e. t ∈ [0, T ]. Then u(t) ∈ Ṽ a.e. t ∈ [0, T ],
which concludes that u(t) ∈ K ∩ Ṽ a.e. t ∈ [0, T ]. �

Remark 4.3. Since f ∈ W 1,∞(0, T ;V ), it follows that

f̃n → f strongly in L2(0, T ;V ). (4.2)

Now we have all the ingredients to prove the following proposition.

Proposition 4.4. The sequence (ũn) converges strongly to u in L2(0, T ;V ) and u
is a solution to problem (P2) if the coefficient of friction is sufficiently small.

Proof. To show the strong convergence of the sequence (ũn) in L2(0, T ;V ) we con-
sider the following inequality deduced from inequality (3.1):

〈F (ε(uti+1)), ε(v)− ε(uti+1)〉Q + j(uti+1 , v − uti+1) ≥ 〈f ti+1 , v − uti+1〉V ∀v ∈ K.

Whence we get the inequality

〈F (ε(ũn(t))), ε(v)− ε(ũn(t))〉Q + j(ũn(t), v − ũn(t)) ≥ 〈f̃n(t), v − ũn(t)〉V (4.3)

for all v ∈ K, a. e. t ∈ [0, T ]. Also we shall consider the inequality

〈F (ε(ũn+m(t))), ε(v)− ε(ũn+m(t))〉Q + j(ũn+m(t), v − ũn+m(t))

≥ 〈f̃n+m(t), v − ũn+m(t)〉V ∀v ∈ K, a.e. t ∈ [0, T ].
(4.4)

In the next, setting v = ũn(t) in (4.4) and v = ũn+m(t) in (4.3) and adding them,
we obtain by using the hypothesis (2.12)(b) on µ the inequality

〈F (ε(ũn+m(t)))− F (ε(ũn(t))), ε(ũn(t))− ε(ũn+m(t))〉Q

+ 2µ∗
∫

Γ3

|ũn+m
τ (t)− ũn

τ (t)|da

≥ −〈f̃n+m(t)− f̃n(t), ũn+m(t)− ũn(t)〉V .

Therefore, there exists a constant C3 > 0 such that

‖ũn+m(t)− ũn(t)‖2
V

≤ C3(2µ∗‖ũn+m
τ (t)− ũn

τ (t)‖L2(Γ3)d + ‖f̃n+m(t)− f̃n(t)‖2
V ).

To complete the proof we refer the reader to [15, Proposition 4.5] and conclude that

ũn → u strongly in L2(0, T ;V ). (4.5)
Now to prove that u is a solution of problem (P2), in the first inequality of problem
(P ti

n ), for v ∈ V set w = uti + v∆t and divide by ∆t; we obtain the inequality:

〈F (ε(uti+1)), ε(v)− ε(
∆uti

∆t
)〉Q + j(uti+1 , v)− j(uti+1 ,

∆uti

∆t
)

≥ 〈f(ti+1), v −
∆uti

∆t
〉V + 〈σν(uti+1), vν −

∆uti
ν

∆t
〉.

Whence for any v ∈ L2(0, T ;V ), we have

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Q + j(ũn(t), v(t))− j(ũn(t), u̇n(t))

≥ 〈f̃n(t), v(t)− u̇n(t)〉V + 〈σν(ũn(t)), vν(t)− u̇n
ν (t)〉, a.e. t ∈ [0, T ].
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Integrating both sides of the previous inequality on (0, T ), we obtain∫ T

0

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Qdt

+
∫ T

0

j(ũn(t), v(t))dt−
∫ T

0

j(ũn(t), u̇n(t))dt

≥
∫ T

0

〈f̃n(t), v(t)− u̇n(t)〉V dt +
∫ T

0

〈σν(ũn(t)), vν(t)− u̇n
ν (t)〉dt.

(4.6)

�

Lemma 4.5. We have the following properties:

lim
n→∞

∫ T

0

〈F (ε(ũn(t))), ε(v(t))− ε(u̇n(t))〉Qdt

=
∫ T

0

〈F (ε(u(t))), ε(v(t))− ε(u̇(t))〉Qdt ∀v ∈ L2(0, T ;V ),

(4.7)

lim inf
n→∞

∫ T

0

j(ũn(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt, (4.8)

lim
n→∞

∫ T

0

j(ũn(t), v(t))dt =
∫ T

0

j(u(t), v(t))dt ∀v ∈ L2(0, T ;V ), (4.9)

lim
n→∞

∫ T

0

〈f̃n(t), v(t)− u̇n(t)〉V dt =
∫ T

0

〈f(t), v(t)− u̇(t)〉V dt (4.10)

for all v ∈ L2(0, T ;V ).

Proof. For the proof of (4.7), we refer the reader to [15]. To prove (4.8) we write

j(ũn(t), u̇n(t)) =
∫

Γ3

(µ(|ũn
τ |)− µ(|uτ |))|Rσν(ũn)||u̇n

τ |da

+
∫

Γ3

µ(|uτ |)(|Rσν(ũn)| − |Rσν(u)|)|u̇n
τ |da + j(u(t), u̇n(t)).

Using hypothesis (2.12)(b) on µ, we obtain∣∣ ∫
Γ3

(µ(|ũn
τ |)− µ(|uτ |))|Rσν(ũn)||u̇n

τ |da
∣∣ ≤ Lµ

∫
Γ3

|ũn
τ − uτ ||Rσν(ũn)||u̇n

τ |da,

which implies ∣∣ ∫
Γ3

(µ(|ũn
τ |)− µ(|uτ |))|Rσν(ũn)||u̇n

τ |da
∣∣

≤ Lµ‖ũn
τ − uτ‖L2(Γ3)d‖Rσν(ũn)‖L∞(Γ3)‖u̇

n
τ ‖L2(Γ3)d .

Now, the continuity of R and the relation (2.14) imply that there exists a constant
C4 > 0 such that

‖R(σν(ũn))‖L∞(Γ3) ≤ C4‖f‖W 1,∞(0,T ;V ).

Therefore, using ‖u̇n‖L∞(0,T ;V ) ≤ c5‖f‖W 1,∞(0,T.V ), we find from (2.9) that∣∣ ∫ T

0

∫
Γ3

(µ(|ũn
τ |)− µ(|uτ |))|Rσν(ũn)||u̇n

τ |da dt
∣∣

≤ C5‖f‖2
W 1,∞(0,T.V )‖ũ

n − u‖L2(0,T ;V ),
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where C5 > 0. As previously the continuity of R and the relation (2.14) yield that
there exists a constant C6 > 0 such that

‖R(σν(ũn(t))− σν(u(t)))‖L∞(Γ3) ≤ C6

(
‖ũn(t)− u(t)‖V + ‖f̃n(t)− f̃(t)‖V

)
,

a.e. t ∈ (0, T ). So, we deduce that there exists a constant C7 > 0 such that∣∣ ∫ T

0

∫
Γ3

µ(|uτ |)(|Rσν(ũn)| − |Rσν(u)|)|u̇n
τ | da dt

∣∣
≤ C7‖f‖W 1,∞(0,T.V )(‖ũn − u‖L2(0,T ;V ) + ‖f̃n − f̃‖L2(0,T ;V )

)
.

Hence using (4.2) and (4.5), we get

lim
n→+∞

∫ T

0

∫
Γ3

µ(|uτ |)(|Rσν(ũn)| − |Rσν(u)|)|u̇n
τ | da dt = 0,

lim
n→+∞

∫ T

0

∫
Γ3

(µ(|ũn
τ |)− µ(|uτ |))|Rσν(ũn)||u̇n

τ | da dt = 0.

Finally as by Mazur’s lemma we have

lim inf
n→+∞

∫ T

0

j(u(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt,

then we obtain

lim inf
n→+∞

∫ T

0

j(ũn(t), u̇n(t))dt ≥
∫ T

0

j(u(t), u̇(t))dt.

To prove (4.9) and (4.10) it suffices to use (4.5) and (4.2), and (4.2) respectively. �

Now passing to the limit in inequality (4.6), we obtain the inequality:∫ T

0

(〈F (ε(u(t))), ε(v(t))− ε(u̇(t))〉Q + j(u(t), v(t))− j(u(t), u̇(t)))dt

≥
∫ T

0

〈f(t), v(t)− u̇(t)〉V dt +
∫ T

0

〈σν(u(t)), vν − u̇ν(t)〉dt.

(4.11)

If we set in (4.11) v ∈ L2(0, T ;V ) defined by:

v(s) =

{
w for s ∈ (t, t + λ)
u̇(s) elsewhere,

we obtain the inequality

1
λ

∫ t+λ

t

(〈F (ε(u(s))), ε(w)− ε(u̇(s))〉Q + j(u(s), w)− j(u(s), u̇(s)))ds

≥ 1
λ

∫ t+λ

t

〈f(s), w − u̇(s)〉V ds +
1
λ

∫ t+λ

t

〈σν(u(s)), wν − u̇ν(s)〉ds.

Passing to the limit, one obtains that u satisfies the inequality (2.16) and conse-
quently u is a solution of problem (P2). To complete the proof, integrate both sides
of (4.3); that is,∫ T

0

〈F (ε(ũn(t))), ε(v(t))− ε(ũn(t))〉Qdt +
∫ T

0

j(ũn(t), v(t)− ũn(t))dt

≥
∫ T

0

〈f̃n(t), v(t)− ũn(t)〉V dt

(4.12)
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for all v ∈ L2(0, T ;V ) such that v(t) ∈ K a.e. t ∈ [0, T ]. Passing to the limit in the
above inequality, with (4.2) and (4.5), we obtain the inequality∫ T

0

〈F (ε(u(t))), ε(v(t))− ε(u(t))〉Qdt +
∫ T

0

j(u(t), v(t)− u(t))dt

≥
∫ T

0

〈f(t), v(t)− u(t)〉V dt ∀v ∈ L2(0, T ;V ); v(t) ∈ K, a.e. t ∈ [0, T ].

Proceeding in a similar way, we deduce that u satisfies the inequality

〈F (ε(u(t))), ε(w)− ε(u(t))〉Q + j(u(t), w − u(t)) ≥ 〈f(t), w − u(t)〉V
for all w ∈ K a.e. t ∈ [0, T ]. Using Green’s formula in the above inequality, as in[4],
we obtain that u satisfies the inequality (2.17) and consequently u is a solution of
problem (P2).

Remark 4.6. We can state another variational formulation of the problem (P1)
defined as follows

Problem (P3). Find a displacement field u ∈ W 1,∞(0, T ;V ) such that u(0) = u0

in Ω and for almost all t ∈ [0, T ], u(t) ∈ K ∩ Ṽ and

〈F (ε(u(t))), ε(v)− ε(u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ 〈f(t), v − u̇(t)〉V + 〈θσν(u(t)), vν − u̇ν(t)〉Γ ≥ 0 ∀v ∈ V,

〈θσν(u(t)), zν − uν(t)〉Γ ≥ 0 ∀z ∈ K.

Here, R : H− 1
2 (Γ) → L∞(Γ3) is a linear and continuous mapping and 〈., .〉Γ denotes

the duality pairing on H− 1
2 (Γ) × H1/2(Γ). The cut-of function θ ∈ C∞0 (Rd) has

the property that θ = 1 on Γ3 and θ = 0 on S2 with S2 an open subset such that
for all t ∈ [0, T ] suppϕ2(t) ⊂ S2 ⊂ S2 ⊂ Γ2.

Conclusion. In this paper we have shown the existence of a solution of the qua-
sistatic unilateral contact problem of slip-dependent coefficient of friction for non-
linear elastic materials under a smallness assumption of the friction coefficient. The
important question of uniqueness of the solution, as far as we know still remains
open.
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Corrigendum posted February 8, 2007

The author would like to correct the following misprints:
Page 5, Line 24: The last line of the displayed equation should be

〈σν(u(t)), zν − uν(t)〉 ≥ 0 ∀z ∈ K.

Page 5: Equation (2.17) should be

〈σν(u(t)), zν − uν(t)〉 ∀z ∈ K. (2.17)

Page 9, Line 27: The argument (t) should be deleted; so that the inequality
becomes

‖un − ũn‖L∞(0,T ;V ) ≤ c4
T

n
‖ḟ‖L∞(0,T ;V ).

Page 13: The symbol “≥ 0” should be delteted in both inequalitites: This is,
〈F (ε(u(t))), ε(v)− ε(u̇(t))〉Q + j(u(t), v)− j(u(t), u̇(t))

≥ 〈f(t), v − u̇(t)〉V + 〈θσν(u(t)), vν − u̇ν(t)〉Γ ∀v ∈ V,

〈θσν(u(t)), zν − uν(t)〉Γ ∀z ∈ K.

End of corrigendum.
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