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OSCILLATION FOR FORCED SECOND-ORDER NONLINEAR
DYNAMIC EQUATIONS ON TIME SCALES

MUGEN HUANG, WEIZHEN FENG

Abstract. By means of Riccati transformation techniques, we present os-
cillation criteria for forced second-order nonlinear dynamic equations on time

scales. These results are based on the information on a sequence of subintervals

of [a,∞) only, rather than on the whole half-line.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger [6] in his Ph.D. Thesis in 1988 in order to unify continuous
and discrete analysis. A time scale T, is an arbitrary nonempty closed subset of
the reals. Many authors have expanded on various aspects of this new theory; see
the survey paper by Agarwal et al. [1] and the book by Bohner and Peterson [3]
which summarizes and organizes much of the time scale calculus. For the notion
used below we refer to the next section that provides some basic facts on time scale
extracted from [3].

There are many interesting time scales and they give rise to plenty of applica-
tions, the cases when the time scale is equal to reals or the integers represent the
classical theories of differential and of difference equations. Another useful time
scale is Pa,b = ∪∞n=0[n(a+ b), n(a+ b)+a] which is widely used to study population
in biological communities, electric circuit and so on.

In recent years, there has been much research activity concerning the oscillation
and nonoscillation of solution of various equations on time scales, and we refer the
reader to papers [2, 4, 5, 7, 8, 9] and references cited therein.

Bohner and Saker[4] considered the perturbed nonlinear dynamic equation

(α(t)(x∆)γ)∆ + F (t, xσ) = G(t, xσ, x∆), t ∈ [a, b]. (1.1)

Assuming that F (t,u)
f(u) ≥ q(t), G(t,u,v)

f(u) ≤ p(t), they change (1.1) into the inequality

(α(t)(x∆)γ)∆ + (q(t)− p(t))f(xσ) ≤ 0. (1.2)

Then using Riccati transformation techniques, they obtain sufficient conditions for
the solution to be oscillatory, or to converge to zero.

2000 Mathematics Subject Classification. 34K11, 39A10, 39A99, 34C10, 39A11.

Key words and phrases. Forced oscillation; dynamic equations; time scales.
c©2006 Texas State University - San Marcos.
Submitted August 18, 2006. Published November 26, 2006.

1



2 M. HUANG, W. FENG EJDE-2006/145

Saker [8] considered the second-order forced nonlinear dynamic equation

(a(t)x∆)∆ + p(t)f(xσ) = r(t), t ∈ [t0,∞),

assuming that
∫∞

t0
|r(s)|∆s < ∞; that is, the forcing terms are “small” enough for

all large t ∈ T. Some additional assumptions have to be imposed on the unknown
solutions. He obtained sufficient condition on the forcing terms directly, for solution
to be oscillatory or to converge to zero.

Following this trend, to develop the qualitative theory of dynamic equations on
time scales, in this paper, we consider the following second-order forced nonlinear
dynamic equation

x∆∆(t) + p(t)f(xσ(t)) = e(t), (1.3)

on the time scale interval [a,∞) = {t ∈ T, t ≥ a}, where xσ(t) = x(σ(t)), e, p ∈
Crd(T, R).

In this paper, we apply Riccati transformation technique to obtain some oscilla-
tion criteria for (1.3). Our results do not require that p(t) and e(t) be of definite
sign and are based on the information only on a sequence of subintervals of [a,∞)
rather than the whole half-line. Our results in this paper improve the results given
in [4, 8].

By a solution of (1.3), we mean a nontrivial real-valued function x satisfying
(1.3) for t ≥ a. A solution x of (1.3) is called oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is called nonoscillatory. Equation (1.3)
is called oscillatory if all solutions are oscillatory. Our attention is restricted to those
solution x of (1.3) which exist on half line [tx,∞) with sup{|x(t)| : t ≥ t0} 6= 0 for
any t0 ≥ tx.

2. Preliminaries

Let T be a time scale, we define the forward and backward jump operators by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

where inf ∅ = sup T, sup ∅ = inf T, and ∅ denotes the empty set. A nonmaximal
element t ∈ T is called right-dense if σ(t) = t and right-scattered if σ(t) > t. A
nonminimal element t ∈ T is said to be left-dense if ρ(t) = t and left-scattered if
ρ(t) < t. The graininess µ of the time scale T is defined by µ(t) = σ(t)− t.

A mapping f : T → X is said to be differentiable at t ∈ T, if there exists
b ∈ X such that for every ε > 0, there exists a neighborhood U of t satisfying
|[f(σ(t)) − f(s)] − b[σ(t) − s]| ≤ ε|σ(t) − s|, for all s ∈ U . We say that f is delta
differentiable (or in short: differentiable) on T provided f∆(t) exist for all t ∈ T.

A function f : T → R is called rd-continuous provided it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T.
The set of rd-continuous functions f : T → R will be denoted by Crd(T, R).

The derivative and forward jump operator σ are related by the formula

f(σ(t)) = f(t) + µ(t)f∆(t). (2.1)

Let f be a differentiable function on [a, b]. If f∆ > 0, f∆ < 0, f∆ ≥ 0, f∆ ≤ 0
for all t ∈ [a, b); then f is increasing, decreasing, nondecreasing, nonincreasing on
[a, b], respectively.
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We use the following product and quotient rules for derivative of two differen-
tiable functions f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ, (2.2)(f

g

)∆ =
f∆g − fg∆

ggσ
, (2.3)

where fσ = f ◦ σ and ggσ 6= 0.
The integration by parts formula reads∫ b

a

f∆(t)g(t)∆t = f(t)g(t)|ba −
∫ b

a

fσ(t)g∆(t)∆t, (2.4)

Chain Rule: Assume g : T → R is ∆−differentiable on T and f : R → R is
continuously differentiable. Then f ◦ g : T → R is ∆-differentiable and satisfies

(f ◦ g)∆(t) =
{∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh
}

g∆(t). (2.5)

From (2.5), we obtain (see [9]).

(xγ)∆(t) = γ

∫ 1

0

[hxσ(t) + (1− h)x(t)]γ−1dhx∆(t). (2.6)

In order to prove our main results, we need the following auxiliary result.

Lemma 2.1. If A and B are nonnegative, then

Aλ − λABλ−1 + (λ− 1)Bλ ≥ 0, λ > 1, (2.7)

and the equality holds if and only if A = B.

3. Main results

Our interest is to establish oscillation criteria for (1.3) that do not assume that
p(t) and e(t) being of definite sign. In this section, we give some new oscillation
criteria. Since we are interested in oscillatory behavior, we suppose that the time
scale T under consideration is not bounded above, i.e. it is a time scale interval of
the form [a,∞). Let

D(ai, bi) =
{
u ∈ C1

rd[ai, bi] : u(t) 6≡ 0, u(ai) = u(bi) = 0
}
, i = 1, 2.

Theorem 3.1. Let f(x)/x ≥ k > 0 for x 6= 0. Assume that for any T ≥ a, there
exist constants a1, b1, a2, b2 ∈ T such that T ≤ a1 < b1, T ≤ a2 < b2, and

p(t) ≥ 0, t ∈ [a1, b1] ∪ [a2, b2],

e(t) ≤ 0, t ∈ [a1, b1];

e(t) ≥ 0, t ∈ [a2, b2].
(3.1)

If there exists u ∈ D(ai, bi) such that∫ bi

ai

{
kp(t)u2(σ(t))− µ(t) + t− ai

4(t− ai)
[u(t) + u(σ(t))

u(σ(t))
u∆(t)

]2}∆t ≥ 0, (3.2)

for i = 1, 2, then (1.3) is oscillatory.
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Proof. Suppose, to the contrary, that x is a nonoscillatory solution of (1.3), which
is eventually positive. Say x(t) > 0, xσ(t) > 0 for t ≥ t0 ≥ a. Denote w(t) = −x∆(t)

x(t)

for t ≥ t0. It follows from (1.3) that w(t) satisfies the dynamic equation

w∆(t) = −x∆∆(t)
xσ(t)

+
x(t)
xσ(t)

[x∆(t)
x(t)

]2
=

1

1 + µ(t)x∆(t)
x(t)

w2(t) + p(t)
f(xσ(t))

xσ(t)
− e(t)

xσ(t)
.

(3.3)

By assumption, we can choose a1, b1 ∈ T such that b1 > a1 ≥ t0 and p(t) ≥ 0, e(t) ≤
0, t ∈ [a1, b1]. From (1.3), we get x∆∆(t) = e(t) − p(t)f(xσ(t)) ≤ 0 for t ∈ [a1, b1].
Therefore, we have that for t ∈ [a1, b1]

x(t) ≥ x(t)− x(a1) =
∫ t

a1

x∆(s)∆s ≥ x∆(t)(t− a1);

i.e.,
x∆(t)
x(t)

≤ 1
t− a1

, t ∈ (a1, b1]. (3.4)

Using the above inequality and f(x)
x ≥ k, (3.3) yields

w∆(t) ≥ t− a1

µ(t) + t− a1
w2(t) + kp(t). (3.5)

Let u(t) ∈ D(a1, b1) be as in the hypothesis. Multiply both sides of (3.5) by u2(σ(t))
and integrate it from a1 to b1, we obtain∫ b1

a1

u2(σ(t))w∆(t)∆t ≥
∫ b1

a1

[
λ1(t)w2(t)u2(σ(t)) + kp(t)u2(σ(t))

]
∆t, (3.6)

where λ1(t) = t−a1
µ(t)+t−a1

. Using the integration by parts, (2.4), and u(a1) = u(b1) =
0, we have

0 = w(t)u2(t)|b1a1

≥
∫ b1

a1

[(u(t) + u(σ(t)))u∆(t)w(t) + λ1(t)w2(t)u2(σ(t)) + kp(t)u2(σ(t))]∆t

=
∫ b1

a1

[
(λ1(t))1/2u(σ(t))w(t) +

u(t) + u(σ(t))
2(λ1(t))1/2u(σ(t))

u∆(t)
]2

∆t

+
∫ b1

a1

[
kp(t)u2(σ(t))− (u(t) + u(σ(t))2

4λ1(t)u2(σ(t))
(u∆(t))2

]
∆t

>

∫ b1

a1

[
kp(t)u2(σ(t))− (u(t) + u(σ(t))2

4λ1(t)u2(σ(t))
(u∆(t))2

]
∆t,

(3.7)

which contradicts (3.2).
In the case of x(t) < 0 for t ≥ t0 ≥ a, we use the function y = −x as a

positive solution of the dynamic equation x∆∆(t)+p(t)f(xσ(t)) = −e(t) and repeat
the above procedure on the interval [a2, b2]. This completes the proof of theorem
3.1. �
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Theorem 3.2. Let xf(x) > 0 for x 6= 0 and |f(x)| ≥ |x|r for r > 1. Assume, in
addition, that for any T ≥ a, there exist constants a1, b1, a2, b2 ∈ T such that (3.1)
holds. If there exists u(t) ∈ D(ai, bi) such that∫ bi

ai

{
r(r − 1)

1−r
r p1/r(t)|e(t)|

r−1
r u2(σ(t))

− µ(t) + t− ai

4(t− ai)
[u(t) + u(σ(t))

u(σ(t))
u∆(t)

]2}∆t ≥ 0,

(3.8)

for i = 1, 2, then (1.3) is oscillatory.

Proof. As before, we suppose x(t) > 0, t ≥ t0 ≥ a, be a nonoscillatory solution of
(1.3). Let A = p1/r(t)xσ(t), B =

(−e(t)
r−1

)1/r. By the assumption, we can choose
a1, b1 ∈ T such that b1 > a1 ≥ t0 ≥ a and p(t) ≥ 0, e(t) ≤ 0 for t ∈ [a1, b1]. Hence,
A > 0, B > 0 for r > 1. From lemma 2.1, we obtain

p(t)xr(σ(t))− e(t) ≥ r(r − 1)
1−r

r p1/r(t)|e(t)|
r−1

r x(σ(t))

= λ2p
1/r(t)|e(t)|

r−1
r x(σ(t)),

(3.9)

where λ2 = r(r − 1)
1−r

r is a constant. By (1.3) and (3.9), we obtain

x∆∆(t) + λ2p
1/r(t)|e(t)|

r−1
r x(σ(t)) ≤ 0. (3.10)

Let w(t) = x∆(t)/x(t) and use (2.1), (2.3) and (3.4), then

w∆(t) =
x∆∆(t)
xσ(t)

− x(t)
xσ(t)

[
x∆(t)
x(t)

]2 ≤ −λ2p
1/r(t)|e(t)|

r−1
r − λ1(t)w2(t), (3.11)

where λ1(t) = t−a1
µ(t)+t−a1

. Let u(t) ∈ D(a1, b1), product both sides of (3.11) by
u2(σ(t)) and integrate it from a1 to b1, we get∫ b1

a1

u2(σ(t))w∆(t)∆t ≤
∫ b1

a1

[
−λ1(t)w2(t)u2(σ(t))−λ2p

1/r(t)|e(t)|
r−1

r u2(σ(t))
]
∆t.

Using integration by parts formula (2.4), and u(a1) = u(b1) = 0, we have

0 = w(t)u2(t)|b1a1

≤
∫ b1

a1

[
(u(t) + u(σ(t)))u∆(t)w(t)− λ1(t)w2(t)u2(σ(t))

− λ2p
1/r(t)|e(t)|

r−1
r u2(σ(t))

]
∆t

= −
∫ b1

a1

[
(λ1(t))1/2u(σ(t))w(t)− u(t) + u(σ(t))

2(λ1(t))1/2u(σ(t))
u∆(t)

]2

∆t

+
∫ b1

a1

[ (u(t) + u(σ(t)))2

4λ1(t)u2(σ(t))
(u∆(t))2 − λ2p

1/r(t)|e(t)|
r−1

r u2(σ(t))
]
∆t

<

∫ b1

a1

[ (u(t) + u(σ(t)))2

4λ1(t)u2(σ(t))
(u∆(t))2 − λ2p

1/r(t)|e(t)|
r−1

r u2(σ(t))
]
∆t,

which contradicts (3.8). �
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Theorem 3.3. Let xf(x) > 0 for x 6= 0 and |f(x)| ≥ k|x|r. Suppose, furthermore,
that for any T ≥ a, there exist constants a1, b1, a2, b2 ∈ T such that (3.1) holds. If
µ(t) ≤ k′t and there exists u(t) ∈ D(ai, bi) such that∫ bi

ai

[
kp(t)u2(σ(t))− 1

4M

(u(t) + u(σ(t))
u(σ(t))

u∆(t)
)2

]
∆t ≥ 0,

for i = 1, 2 and M,k, k′ are some positive constants, then

(1) every unbounded solution of (1.3) with r > 1 is oscillatory.
(2) every bounded solution of (1.3) with 0 < r < 1 is oscillatory.

Proof. As before, we assume x(t) > 0, x(σ(t)) > 0, t ≥ t0 ≥ a, be a nonoscillatory
solution of (1.3). Let w(t) = −x∆(t)

xr(t) for t ≥ t0. It follows from (1.3), the condition
f(x) ≥ kxr(t) and (2.6) that w(t) satisfies

w∆(t) = − x∆∆(t)
xr(σ(t))

+
(x∆(t))2

xr(t)xr(σ(t))
r

∫ 1

0

[hx(σ(t)) + (1− h)x(t)]r−1dh

= p(t)
f(x(σ(t)))
xr(σ(t))

− e(t)
xr(σ(t))

+ r
(x∆(t))2

xr(t)xr(σ(t))

∫ 1

0

[hx(σ(t)) + (1− h)x(t)]r−1dh.

(3.12)

By the assumption, we can choose a1, b1 ∈ T such that b1 > a1 ≥ t0 ≥ a and
p(t) ≥ 0, e(t) ≤ 0 for t ∈ [a1, b1]. Then x∆∆(t) = e(t) − p(t)f(xσ(t)) ≤ 0 for
t ∈ [a1, b1], and (3.12) satisfies

w∆(t) ≥ kp(t) + r
(x∆(t))2

xr(t)xr(σ(t))

∫ 1

0

[hx(σ(t)) + (1− h)x(t)]r−1dh. (3.13)

There are three cases to be considered
(i) x∆(t) ≥ 0, t ∈ [a1, b1]. Then we obtain∫ 1

0

[hx(σ(t)) + (1− h)x(t)]r−1dh ≥
∫ 1

0

xr−1(t)dh = xr−1(t). (3.14)

Using (3.14) and (3.4), (3.13) yields

w∆(t) ≥ kp(t) + rxr−1(t)
[ x(t)
x(σ(t))

]r
w2(t)

≥ kp(t) + r
[ t− a1

µ(t) + t− a1

]r
xr−1(t)w2(t)

= kp(t) + rλr
1(t)x

r−1(t)w2(t), t ∈ [a1, b1],

(3.15)

where λ1(t) = t−a1
µ(t)+t−a1

.
(ii) x∆(t) < 0, t ∈ [a1, b1]. Then we get∫ 1

0

[hx(σ(t)) + (1− h)x(t)]r−1dh ≥
∫ 1

0

xr−1(σ(t))dh = xr−1(σ(t)). (3.16)



EJDE-2006/145 OSCILLATION FOR DYNAMIC EQUATIONS 7

Using (3.16) and (3.4), (3.13) yields

w∆(t) ≥ kp(t) + rxr−1(t)
x(t)

x(σ(t))
w2(t)

≥ kp(t) + r
t− a1

µ(t) + t− a1
xr−1(t)w2(t)

= kp(t) + rλ1(t)xr−1(t)w2(t), t ∈ [a1, b1].

(3.17)

(iii) there exist a1 < c1 < b1 (c1 ∈ T) such that x∆(t) ≥ 0, t ∈ [a1, c1] and
x∆(t) < 0, t ∈ (c1, b1]. Proceeding as in the proof of (i) and (ii), we obtain that

w∆(t) ≥ kp(t) + rλr
1(t)x

r−1(t)w2(t), t ∈ [a1, c1], (3.18)

w∆(t) ≥ kp(t) + rλ1(t)xr−1(t)w2(t), t ∈ (c1, b1]. (3.19)

Next, we consider the following two cases
(I) If x is an unbounded nonoscillatory solution of (1.3) with r > 1. Since µ(t) ≤ k′t
for k′ > 0 is a positive constant, then there exists a positive constant 0 < k′′ < 1

k′+1

such that k′′ < t−a1
µ(t)+t−a1

≤ 1 for t large enough, from (3.15), (3.17), (3.18), and
(3.19), we get

w∆(t) ≥ kp(t) + rλr
1(t)x

r−1(t)w2(t). (3.20)
Since x∆∆(t) ≤ 0, t ∈ [a1, b1], then there exists a constant M1 > 0 such that
x(t) ≥ M1 on [a1, b1], such that

rλr
1(t)x

r−1(t) ≥ rλr
1(t)M

r−1
1 ≥ M, t ∈ [a1, b1], (3.21)

where M > 0 is a constant. Using (3.20) and (3.21), and proceeding as in the proof
of theorem 3.1, we obtain the desired contradiction.
(II) If x is a bounded nonoscillatory solution of (1.3) with 0 < r < 1 on [a1, b1].
Since 0 < k′′ < t−a1

µ(t)+t−a1
≤ 1 for t large enough, from (3.15), (3.17), (3.18), and

(3.19), we obtain
w∆(t) ≥ kp(t) + rλ1(t)xr−1(t)w2(t).

Since x∆∆(t) ≤ 0, t ∈ [a1, b1], then there exists a constant M2 > 0 such that
x(t) ≤ M2 on [a1, b1], hence

rλ1(t)xr−1(t) ≥ rλ1(t)Mr−1
2 ≥ M ′, t ∈ [a1, b1],

where M ′ > 0 is a constant. The rest of the proof is similar to that in the previous
case and we obtain the desired contradiction. �

4. Example

Since the time scale Pa,b = ∪∞n=0[n(a + b), n(a + b) + a] can be used to study
many models of real world, for instance, population in biological communities,
electric circuit and so on, we give an example in such a time scale to demonstrate
how the theory may be applied to specific problems.

Consider the forced second order dynamic equation

x∆∆(t) + msintx(σ(t)) = cos t, for t ∈ Pπ,π = ∪∞n=0[2nπ, (2n + 1)π], (4.1)

with the transition condition

x(2nπ) = x((2n− 1)π), n ≥ 1, (4.2)

where m > 0 is a constant, p(t) = m sin t, e(t) = cos t, f(x(σ(t))) = x(σ(t)). For
any T ≥ 0, if we choose a1 = 2nπ + π

2 , b1 = 2nπ + 3π
4 , a2 = 2nπ + π

4 , b2 = 2nπ + π
2 ,
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(ai, bi ∈ Pπ,π, i = 1, 2) such that ai ≥ T for sufficiently large n, i = 1, 2, then we
have p(t) ≥ 0 for t ∈ [a1, b1]

⋃
[a2, b2], e(t) ≤ 0 for t ∈ [a1, b1], and e(t) ≥ 0 for

t ∈ [a2, b2]. Choose u(t) = sin2tcos2t, then u(t) ∈ D(ai, bi), i = 1, 2. Furthermore,
we have σ(t) = t, µ(t) = 0 for t ∈ [ai, bi], i = 1, 2. Noting that for i = 1, 2,∫ bi

ai

{
kp(t)u2(σ(t))− µ(t) + t− ai

4(t− ai)
[u(t) + u(σ(t))

u(σ(t))
u∆(t)

]2}∆t

=
∫ bi

ai

[
p(t)u2(t)− (u′(t))2

]
dt

=
∫ bi

ai

m sin t sin2(2t) cos2(2t)− 4 cos2(4t)
]
dt.

On the other hand, we have ∫ bi

ai

4 cos2(4t)dt =
π

2
,

and ∫ bi

ai

m sin t sin2(2t) cos2(2t)dt =
√

2
2

m
[1
8
− 1

9× 16
+

1
7× 16

]
.

Then,
∫ bi

ai
m sin t sin2(2t) cos2(2t)dt ≥ π/2 for sufficiently large m, hence (3.2) holds.

By Theorems 3.1, we obtain that (4.1) and (4.2) is oscillatory. However, the results
in Saker [8] and Bohner and Saker [4] cannot be applied the oscillation of (4.1) and
(4.2).
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