
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 146, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ON A BREZIS-NIRENBERG TYPE PROBLEM

FLORIN CATRINA

Abstract. In this note we discuss the existence and symmetry breaking of

least energy solutions for certain weighted elliptic equations in the unit ball in
RN , with zero Dirichlet boundary conditions. We prove a multiplicity result,

which answers one of the questions we left open in [6] regarding a Brezis-

Nirenberg type problem.

1. Introduction

Over the last four decades, a large amount of work has been done on existence
and qualitative properties of solutions for semi-linear elliptic problems. A signifi-
cant proportion of these studies deal with positive solutions for problems that lack
compactness. The loss of compactness may be due to the existence of limiting prob-
lems which are invariant under translations or (in the case of critical nonlinearities)
under dilations. The presence of zeros or singularities in the coefficients, in many
instances plays a role in the form of the limiting problem. As a typical sample of
existence results on the whole of RN one may consult [1, 27, 25], and the references
therein.

On bounded domains in RN for N ≥ 3, it was shown by Pohozaev as early as
1965 (see [23]) that nonlinear eigenvalue problems of the form

−∆u = up−1 in Ω,

u = 0 on ∂Ω

have no positive solution if Ω is star-shaped and p ≥ 2∗ with 2∗ = 2N
N−2 the critical

Sobolev exponent.
An intriguing phenomenon was observed by Brezis and Nirenberg in [4] relative

to the problem
−∆u = u2∗−1 + λu,

u > 0 in B,

u = 0 on ∂B.

(1.1)

where B is the unit ball in RN with N ≥ 3. The authors have proved the following
theorem.
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Theorem 1.1. Let λ1 = λ1(N) be the first eigenvalue of −∆ with zero Dirichlet
boundary condition on B. Then problem (1.1) has solution if and only if

(a) N ≥ 4 and λ ∈ (0, λ1); or
(b) N = 3 and λ ∈ (λ1/4, λ1).

This started a flurry of work on problems in which the same phenomenon
was observed. That is, for some dimensions N the branch of solutions which
bifurcates from the trivial solution exists for all λ between λ1 and zero, while
for other “critical” dimensions this branch is bounded away from λ = 0 (see
[3, 5, 9, 10, 11, 12, 14, 15, 18, 24], and the references therein).

The present work is motivated by one of the questions we raised in [6]. Let B
be the unit ball in RN . Consider the problem

−div(|x|−2a∇u) = |x|−bpup−1 + λ|x|−2(a+1)+cu,

u > 0 in B, u ∈ Da(B).
(1.2)

Throughout we shall consider

2 ≤ N, a <
N − 2

2
, a < b < a + 1,

p =
2N

N − 2(a + 1− b)
, 0 < c.

(1.3)

Here Da(B) denotes the Hilbert space obtained as the completion of smooth func-
tions with compact support in B under the norm induced by the inner product

〈u, v〉 =
∫

B

|x|−2a∇u · ∇v dx.

The exponent p given in (1.3) above, is a critical exponent for the limiting problem
to (1.2) in the fact that the equation

−div(|x|−2a∇u) = |x|−bpup−1

in RN , is invariant under the (non-compact) group of dilations centered at the
origin.

In [6], we filled in a gap between results of Nicolaescu [22] and Chou and Geng
[9] by giving the exact range of existence of radial (u = u(|x|)) solutions of (1.2).
This result encompasses Theorem 1.1 for the particular values of the parameters
a = b = 0 and c = 2. To our knowledge it is one of the few situations where
an exact formula can be given for the break-down value of λ which separates the
existence and nonexistence regions. For a precise statement summarizing the results
in [22, 9, 6] see Theorem 4.1 in the concluding remarks.

In [6] we asked the following two questions.

Question 1.2. Are there cases when (1.2) has a solution, but admits no spherically
symmetric (radial) solutions?

Question 1.3. Are there cases when (1.2) has both, radial and nonradial solutions?

While we still do not have an answer to the first question, the purpose of this
paper is to answer the second question in the affirmative. Our main result is the
following theorem.



EJDE-2006/146 ON A BREZIS-NIRENBERG TYPE PROBLEM 3

Theorem 1.4. Let Z(ν) denote the first positive zero of the Bessel function of
the first kind Jν , and let γ = N−2−2a

2 . Assume 0 < b − a < 1, 0 < c < 2γ, and
γ2 > N−1

p−2 . Then for any

0 < λ <
( c

2
Z

(2
c

√
γ2 − N − 1

p− 2

))2

the least energy solution for the problem (1.2) exists and it is nonradial.

As the existence of radial solutions has been discussed in [6] (see also Theorem 4.1
in the concluding remarks), we obtain the following corollary.

Corollary 1.5. In the range of parameters stated in Theorem 1.4, the problem
(1.2) has a (higher energy) radial and a (ground state) nonradial solution.

In the case N ≥ 3, a = b = 0 and c = 2, one has p = 2N
N−2 = 2∗, the critical

exponent for the Sobolev imbedding D0(RN ) ⊂ Lp(RN ), and the problem under
study (1.2) becomes exactly (1.1). Due to a well known result of Gidas, Ni and
Nirenberg (see [16]) every solution of (1.1) is radial. Therefore in this case, the study
of the ODE obtained by symmetry reduction answers our questions completely in
form of Theorem 1.1. Chou and Geng in [9], extend the moving plane method of
[16], and they obtain that for 3 ≤ N , 0 ≤ a < N−2

2 , every solution of (1.2) is radial.
Hence, again the ODE results settle the questions.

We remark that in the range a < 0, the method of moving planes breaks down.
It is in this range where Theorem 1.4 applies. Indeed, since 2∗ > p > 2 one has
from γ2 > N−1

p−2 that γ2 > N−1
2∗−2 . This leads to

√
N − 2(

√
N − 2 −

√
N − 1) > 2a

which forces a to be negative.
The fact that the problem may admit both radial and non-radial solutions for

certain values of the parameters is somewhat expected in view of the symmetry
breaking phenomenon of the least energy solutions observed in [7]. Combined with
the existence result for radial solutions in Theorem 4.1, the symmetry breaking of
the ground state for problem (1.2) guarantees the existence of at least two solutions.
Hence our theorem in the present article should be viewed both, as a symmetry
breaking result and a multiplicity theorem.

The main novelty in Theorem 1.4 is to give an explicit range of parameters in
which the ground state (least energy solution) is nonradial. The existence of the
ground state is based on Lemma 1 in [2]. In order to apply this Lemma we need
a precise estimate on the decay at infinity of solutions of a related problem in RN

which we establish in Lemma 3.3. For this we employ Harnack inequality as it is
presented in the Section 11 in the Lecture Notes [20]. For the symmetry breaking
part, we employ the technique of [26] which originated in the work [19].

The paper is organized as follows. In Section 2 we introduce an equivalent prob-
lem, which we find more convenient to work with, and we gather some preliminary
results. Section 3 contains the proof of Theorem 1.4. The paper ends with a short
section of concluding remarks.
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2. Preliminaries

For u ∈ Da(B) \ {0}, consider the energy

E(u) = Ea,b,c,λ(u) =

∫
B

|x|−2a|∇u|2 − λ|x|−2(a+1)+cu2 dx( ∫
B

|x|−bp|u|p dx
)2/p

,

and denote
J = J(a, b, c, λ) = inf

u∈Da(B)\{0}
E(u).

Note that solutions of (1.2) are critical points of E. Conversely, if the infimum J
of E is positive and it is achieved by some function u in Da(B) \ {0}, then after an
eventual multiplication by a constant, u is solution of (1.2).

As in [7], consider the cylinder C = R × SN−1 ⊂ RN+1. Define the conformal
diffeomorphism

ϑ : RN \ {0} → C given by ϑ(x) =
(
− ln |x|, x

|x|

)
= (t, θ)

Note that ϑ takes B\{0} diffeomorphically into the half cylinder Ω = (0,∞)×SN−1.
The transformation

Υa : Ha(Ω) → Da(B) Υav = u with u(x) = |x|−γv(ϑ(x))

is a Hilbert space isomorphism. Here Ha(Ω) is obtained by completion of smooth
functions with compact support in Ω under the norm

‖v‖2 =
∫

Ω

|∇v|2 + γ2v2 dµ

We remark that as a function space, Ha(Ω) is independent of a. We keep the index
a however, to indicate which inner product is used.

If u is solution of (1.2) then v = Υ−1
a u satisfies the equation

−∆v + γ2v = vp−1 + λe−ctv,

v > 0 in Ω, v ∈ Ha(Ω)
(2.1)

One can check that for any v ∈ Ha(Ω) and Υ(v) = u ∈ Da(B), we have

E(u) = F (v) :=

∫
Ω

|∇v|2 + (γ2 − λe−ct)v2 dµ( ∫
Ω

|v|p dµ
)2/p

;

therefore
J = inf

u∈Da(B)\{0}
E(u) = inf

v∈Ha(Ω)\{0}
F (v).

It is known (see [7]) that on the whole cylinder C, the functional

G(u) =

∫
C |∇u|2 + γ2u2 dµ( ∫

C |u|p dµ
)2/p

has a positive infimum S achieved by a positive function U ∈ H1(C) which satisfies

−∆U + γ2U = Up−1, (2.2)
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and so,

S = S(N, a, b) = inf
u∈H1(C)

G(u) = G(U) =
( ∫

C
Up dµ

)(p−2)/p

In [7] we also discussed the symmetry of U . While for some values of the parameters,
S is achieved by the radial solutions

U(t) =
(γ2p

2

) 1
p−2

(
cosh

(p− 2
2

γt
))− 2

p−2
,

for other values we proved that the ground state is not radial anymore (see [13] for
an improvement of the range obtained in [7]). We have however that eventually after
a translation we can assume that U(t, θ) = U(−t, θ) for any t ∈ R and θ ∈ SN−1.

We shall prove Theorem 1.4 by showing the corresponding result for the equiv-
alent problem (2.1). That is, we prove the following result.

Theorem 2.1. Assume 0 < b− a < 1, 0 < c < 2γ, and γ2 > N−1
p−2 . Then for any

0 < λ <
( c

2
Z

(2
c

√
γ2 − N − 1

p− 2

))2

problem (2.1) has both, a radial and a nonradial solution.

3. Existence and Multiplicity

We employ Lemma 1 in [2] to show that J = inf F is achieved. Then we prove
the symmetry breaking part, from which Theorem 2.1 follows. Lemma 1 in [2]
translates to our situation step by step to give the following lemma.

Lemma 3.1. If J < S then J is achieved.

We shall also need the following decay result.

Lemma 3.2. For any positive solution U of (2.2) which is in H1(C), there exists
a constant C > 0 such that 1

C e−γ|t| ≤ U(t, θ) ≤ Ce−γ|t| for all t ∈ R and θ ∈ SN−1.

Proof. Let U be a positive solution of (2.2), which without loss of generality we
can assume even in t, i.e. U(−t, θ) = U(t, θ). For any t ∈ (−∞,∞), let

f(t) =
∫

SN−1
U(t, θ) dθ, and h(t) =

∫
SN−1

Up−1(t, θ) dθ.

Making the necessary modifications to Moser’s proof of Harnack inequality [21],
one can prove that there is a positive constant C0 (depending on U) such that

1
C0

<
U(t, θ)
f(t)

< C0 for all (t, θ) ∈ C. (3.1)

This can be done by adapting the proof of Theorem 8.20 in [17] to the cylinder, or
more directly one can follow the last section in [20]. We justify (3.1) by the fact
that U satisfies

∆U ≥ −qU,

with q = Up−2 ∈ L∞(C), and
∆U ≤ γ2U.

One can then apply Lemma 11.1 and Lemma 11.2 in [20] to conclude Harnack’s
inequality in our setting.
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Integrating (2.2) on SN−1 with respect to the variable θ, we get that the function
f is a positive solution in H1(R) for the ODE

−ftt + γ2f = h

which can be rewritten as

− d

dt

(
e−2γt d

dt
(eγtf(t))

)
= e−γth(t).

It follows that
d

dt
(eγtf(t)) = e2γt

∫ ∞

t

e−γsh(s) ds.

Hence

eγtf(t) =
∫ t

−∞
e2γr

∫ ∞

r

e−γsh(s) ds dr.

Since eγtf(t) is increasing, there exists C1 = 1
f(0) > 0 such that 1

C1
e−γt ≤ f(t) for

all t ≥ 0. We now prove that

C2 =
∫ ∞

−∞
e2γr

∫ ∞

r

e−γsh(s) ds dr < ∞; (3.2)

therefore
eγtf(t) ≤ C2, hence f(t) ≤ C2e

−γt.

Multiply (2.2) by Up−2(t, θ) to get

−∆Up−1

p− 1
+ (p− 2)Up−3|∇U |2 + γ2Up−1 = U2p−3.

Hence
−∆Up−1 + (p− 1)(γ2 − Up−2)Up−1 ≤ 0. (3.3)

From (3.1) we have that for any ε > 0, there exists t0 sufficiently large, such that
if t ≥ t0 then Up−2(t, θ) < ε. Let

0 < ε < γ2 p− 2
p− 1

and so γ < α =
√

(p− 1)(γ2 − ε).

Integrate on SN−1 in (3.3) to obtain, for t ≥ t0, −htt(t) + α2h(t) < 0; i.e.,

− d

dt

(
e−2αt d

dt
(eαth(t))

)
< 0,

hence e−2αt d
dt (e

αth(t)) is increasing for t ≥ t0. If d
dt (e

αth(t)) = A > 0 for some
t = t1 ≥ t0, we obtain

d

dt
(eαth(t)) > Ae2αt, i.e. h(t) >

A

2α
eαt + Be−αt,

for all t > t1. But this contradicts the fact that h is bounded. Therefore,
d
dt (e

αth(t)) ≤ 0, and so eαth(t) is non-increasing. Letting A = eαt0h(t0), we obtain
h(t) ≤ Ae−αt for all t ≥ t0. Since γ < α we have that∫ ∞

−∞
eγsh(s) ds = B < ∞, i.e.

∫ ∞

−∞
e−γsh(s)

∫ s

−∞
e2γr dr ds =

B

2γ
= C2 < ∞.

Reversing the order of integration, we obtain (3.2). The lemma now follows from
(3.1) by taking C = max{C0C1, C0C2}. �

Lemma 3.3. For any 0 < b− a < 1, 0 < c < 2γ, and λ > 0, we have J < S.
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Proof. We construct test functions v such that J ≤ F (v) < S. Let ϕ ∈ C∞
0 (Ω) be

a cut-off function, with 0 ≤ ϕ(t, θ) ≤ 1, ϕ(t, θ) ≡ 1 for t ≥ 1, and |∇ϕ(t, θ)| ≤ 2 for
all (t, θ) ∈ Ω. For τ > 0, let Uτ (t, θ) = U(t− τ, θ) and take vτ = ϕUτ . Then

F (vτ ) =

∫
Ω

U2
τ |∇ϕ|2 +∇Uτ · ∇(Uτϕ2) + γ2U2

τ ϕ2 − λe−ctU2
τ ϕ2

( ∫
Ω

Up
τ ϕp

)2/p

=

∫
Ω

U2
τ (|∇ϕ|2 − λe−ctϕ2) + Uτϕ2(−∆Uτ + γ2Uτ )( ∫

Ω

Up
τ ϕp

)2/p

=

∫
Ω

U2
τ (|∇ϕ|2 − λe−ctϕ2) + Up

τ ϕ2

( ∫
Ω

Up
τ ϕp

)2/p
.

We use the following estimates∫
Ω

U2
τ (|∇ϕ|2 − λe−ctϕ2) + Up

τ ϕ2

≤ ‖Uτ‖p
p −

∫
C\Ω

Up
τ + 4

∫
[0,1]×SN−1

U2
τ −

∫
[1,∞)×SN−1

λe−ctU2
τ

≤ ‖Uτ‖p
p − C1 exp(−pγτ) + C2 exp(−2γτ)− C3 exp(−cτ)

and ∫
Ω

Up
τ ϕp ≥ ‖Uτ‖p

p −
∫

(−∞,1]×SN−1
Up

τ ≥ ‖Uτ‖p
p − C4 exp(−pγτ),

with C1, C2, C3, and C4 positive constants independent of τ . Therefore, if τ is
sufficiently large, and since c < 2γ we have

J ≤ F (vτ ) <
‖Uτ‖p

p

(‖Uτ‖p
p)2/p

= S .

�

Under conditions (1.3) and c < 2γ, from Lemma 3.1 and Lemma 3.3 we have
that for λ > 0, J is achieved. If we also assume λ < λ1(N, a, c) = ( c

2Z( 2γ
c ))2, then

J is positive and after an eventual multiplication by a constant, the function that
achieves J solves (2.1).

The following lemma will prove that for certain values of γ and λ, the least
energy solutions obtained above are nonradial. The argument is similar to that of
[26], or Theorem 3, part c) in [19].

Lemma 3.4. If the least energy solution is V = V (t) (independent of θ), then

0 ≥
∫ ∞

0

V 2
t +

(
−N − 1

p− 2
+ γ2 − λe−ct

)
V 2
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Proof. For some h ∈ Ha(Ω), let f(s) = F (V + sh). Since V is a local minimum of
F , it follows that f ′′(0) ≥ 0. This implies

2
( ∫

Ω

|∇h|2 + (γ2 − λe−ct)h2
)( ∫

Ω

V p
)2/p

≥ 2
( ∫

Ω

|∇V |2 + (γ2 − λe−ct)V 2
)

[
(p− 1)

( ∫
Ω

V p
) 2

p−1( ∫
Ω

V p−2h2
)
− (p− 2)

( ∫
Ω

V p
) 2

p−2( ∫
Ω

V p−1h
)2] (3.4)

By taking h(t, θ) = V (t)Y (θ), with Y (θ) a first harmonic, from

−∆SN−1Y = (N − 1)Y, and
∫

SN−1
Y (θ) dθ = 0

we get that (3.4) simplifies to∫ ∞

0

V 2
t + (N − 1 + γ2 − λe−ct)V 2 ≥ (p− 1)

∫ ∞

0

V 2
t + (γ2 − λe−ct)V 2

from which the conclusion of the lemma follows. �

For γ2 > N−1
p−2 and 0 < λ < λ̃1(N, a, b, c) = ( c

2Z( 2
c

√
γ2 − N−1

p−2 ))2 we have that∫ ∞

0

w2
t + (−N − 1

p− 2
+ γ2 − λe−ct)w2 > 0,

for any radial w = w(t) ∈ Ha(Ω). Therefore in this range, and assuming 0 < c < 2γ,
we have that J is achieved by a function which according to Lemma 3.4 cannot be
radial. We therefore conclude the proof of Theorem 2.1.

4. Concluding Remarks

For the reader’s convenience, and to put things in perspective, we present the
situation of radial solutions of (1.2). Recall that Z(ν) denotes the first positive
zero of the Bessel function of the first kind Jν , and

γ = γ(N, a) =
N − 2− 2a

2
.

The results in [22, 9, 6], imply the following theorem.

Theorem 4.1. Let λ1 = λ1(N, a, c) = ( c
2Z( 2γ

c ))2 and

µ1 = µ1(N, a, c) = (
c

2
Z(−2γ

c
))2.

Then problem (1.2) has a radial solution if and only if
(a) 0 < c ≤ 2γ and λ ∈ (0, λ1); or
(b) c > 2γ and λ ∈ (µ1, λ1).

Note that when looking only for radial solutions of (1.2), one can assume a
slightly larger range for b, and the variational setting works the same way (see [6])
for

−γ = a− N − 2
2

< b < a + 1.

In closing we make several remarks. We believe that the existence of nonradial
solutions is due to symmetry breaking, where the least energy solutions bifurcate
from the radial solutions of (2.1) as b − a is fixed and γ increases. It would be
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interesting to find the exact values λ = λ(N, a, b, c) where bifurcation occurs. It is
not difficult to see that in this range of the parameters one can construct multi-
bump solutions (similar to [8]), and hence to conclude that the number of essentially
distinct solutions of (2.1) tends to infinity as γ increases to infinity. For questions
of a similar nature on a related problem in S3 (but qualitatively different solutions)
see [5].

It remains an interesting problem to investigate what happens in the “critical”
case b = a (therefore p = 2∗) for N ≥ 3, and the situation when c ≥ 2γ. We
emphasize the fact that the nonexistence results for c ≥ 2γ stated in Theorem 4.1
refer only to radial solutions of (1.2). One would like to either have an existence
theorem, or to be able to extend the nonexistence results to nonradial functions.

Acknowledgment. The author would like to thank the referee for useful com-
ments and suggestions.

References

[1] G. Bianchi and H. Egnell; A variational approach to the equation ∆u + Ku(n+2)/(n−2) = 0

in Rn, Arch. Rational Mech. Anal., 122 (1993) 159-182.

[2] H. Brezis, Elliptic equations with limiting Sobolev exponents - the impact of topology, Comm.
Pure Appl. Math., 39 (1986) S17-S39.

[3] H. Brezis, L. Dupaigne and A. Tesei; On a semilinear elliptic equation with inverse-square

potential, Selecta Math., 11 (2005) 1-7.
[4] H. Brezis and L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical

Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) 437-477.

[5] H. Brezis and L. A. Peletier; Elliptic equations with critical exponent on S3: New non-
minimising solutions, C. R. Math. Acad. Sci. Paris, 339 (2004) 391-394.

[6] F. Catrina and R. Lavine; Radial solutions for weighted semilinear equations, Commun.
Contemp. Math., 4 (2002) 529-545.

[7] F. Catrina and Z.-Q. Wang; On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants,

existence (and nonexistence) and symmetry of extremal functions, Comm. Pure and Appl.
Math., 54 (2001) 229-258.

[8] F. Catrina and Z.-Q. Wang; Positive bound states having prescribed symmetry for a class

of nonlinear elliptic equations in RN , Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001)
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