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OPTIMAL REGULARIZATION METHOD FOR ILL-POSED
CAUCHY PROBLEMS

NADJIB BOUSSETILA, FAOUZIA REBBANI

Abstract. The goal of this paper is to give an optimal regularization method

for an ill-posed Cauchy problem associated with an unbounded linear operator
in a Hilbert space. Key point to our proof is the use of Yosida approximation

and nonlocal conditions to construct a family of regularizing operators for
the considered problem. We show the convergence of this approach, and we

estimate the convergence rate under a priori regularity assumptions on the

problem data.

1. Introduction and motivation

Throughout this paper H will denote a Hilbert space, endowed with the inner
product (·, ·) and the norm ‖ · ‖, L(H) denotes the Banach algebra of bounded
linear operators on H.

Consider the backward Cauchy problem

u′(t) +Au(t) = 0, 0 < t < T, u(T ) = ϕ, (1.1)

where A is a positive (A ≥ γ > 0) self-adjoint (A = A∗), unbounded linear operator
on H, and ϕ ∈ H.

The problem is to determine u(t) for 0 ≤ t < T from the knowledge
of the final value u(T ) = ϕ.

Such problems are not well-posed in the Hadamard sense [18], that is, even if a
unique solution exists on [0, T ] it need not depend continuously on the final value
ϕ.

Physically, problems of this nature arise in different contexts. Beyond their in-
terest in connection with standard diffusion problems [15] (then A is usually the
Laplace operator −∆), they also appear, for instance, in some deconvolution prob-
lem, such as deblurring processes [7] (A is often a fractional power of −∆), material
sciences [35], hydrology [19, 38] and also in many other practical applications of
mathematical physics and engineering sciences.

In the mathematical literature various methods have been proposed for solving
backward Cauchy problems. We can notably mention the method of quasi-solution
(Q.S.-method) of Tikhonov [39], the method of quasi-reversibility (Q.R.-method)
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of Lattès and Lions [25], the method of logarithmic convexity [1, 8, 23, 26, 31],
the it iterative procedures of Kozlov and Maz’ya [5, 24], the quasi boundary value
method (Q.B.V.-method) [9, 13, 22, 37] and the C-regularized semigroups technique
[3, 10, 12, 27, 28, 34].

In the method of quasi-reversibility, the main idea consists in replacing A in
(1.1) by Aα = gα(A). In the original method [25] Lattès and Lions have proposed
gα(A) = A−αA2, to obtain a well-posed problem in the backward direction. Then,
using the information from the solution of the perturbed problem and solving the
original problem, we get another well-posed problem and this solution sometimes
can be taken to be the approximate solution of the ill-posed problem (1.1).

Difficulties may arise when using the method of quasi-reversibility discussed
above. The essential difficulty is that the order of the operator is replaced by
an operator of second order, which produces serious difficulties on the numerical
implementation, in addition, the error (e(α)) introduced by small change in the
final value ϕ is of the order e

T
4α .

In the Gajewski and Zaccharias quasi-reversibility method [17] (see also [6, 14,
20, 30, 36], gα(A) = A(I+αA)−1. The advantage of this perturbation lies in the fact
that this perturbation is bounded (Aα ∈ L(H)), which gives a well-posedness in the
forward and backward direction for the perturbed problem, the second advantage
is that, this perturbation produces a best and significant approximate solution by
comparison with the method proposed by Lattès and Lions. But the amplification
factor of the error resulting from the approximated problem, remains always of the
order e

T
α .

In the method developed by G.W. Clark and S.F. Oppenheimer [9] (see also
[13, 22, 37], they approximate problem (1.1) by

vt(t) +Av(t) = 0, 0 < t < T,

βv(0) + v(T ) = ϕ,

where β > 0. This method is called quasi-boundary value method (Q.B.V.-method).
We note here that this method gives a better approximation than many other quasi-
reversibility type methods and the error (e(β)) introduced by small change in the
final value ϕ is of the order 1

β .
In this paper, We combine the nice smoothing effect of Yosida approximation

with advantages of quasi-boundary value method, to build an optimal approxima-
tion to problem (1.1).

2. Preliminaries and basic results

In this section we present the notation and the functional setting which will be
used in this paper and prepare some material which will be used in our analysis.

If B ∈ L(H) we denote by N (B) the kernel of B and by R(B) the range of B.
We denote by {Eλ, λ ≥ γ > 0} the spectral resolution of the identity associated to
A.

We denote by S(t) = e−tA =
∫∞

γ
e−tλ dEλ ∈ L(H), t ≥ 0, the C0-semigroup

generated by −A. Some basic properties of are listed in the following theorem.

Theorem 2.1 ([33, Chap. 2, theorem 6.13]). For this family of operators we have:
(1) ‖S(t)‖ ≤ 1, for all t ≥ 0;
(2) the function t 7−→ S(t), t > 0, is analytic;
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(3) for every real r ≥ 0 and t > 0, the operator S(t) ∈ L(H,D(Ar));
(4) for every integer k ≥ 0 and t > 0, ‖S(k)(t)‖ = ‖AkS(t)‖ ≤ c(k)t−k;
(5) for every x ∈ D(Ar), r ≥ 0 we have S(t)Arx = ArS(t)x.

Definition 2.2. We put

Jα = (I + αA)−1, Aα = A(I + αA)−1 =
1
α

(I − Jα), α > 0,

and call Aα the Yosida approximation of A.

Some basic properties of Aα are listed in the following theorem.

Theorem 2.3 ([4, chap. VII, p. 101-118]). We have
(1) Aα is positive and self-adjoint;
(2) JαAh = AJαh, for all h ∈ D(A);
(3) Jα, Aα ∈ L(H), ‖Jα‖ ≤ 1, for all α > 0;
(4) ‖Aαh‖ ≤ ‖Ah‖, for all α > 0, for all h ∈ D(A);
(5) for all h ∈ H, limα→0 Jαh = h;
(6) for all h ∈ D(A), limα→0Aαh = Ah;
(7) for all h ∈ H, for all t ≥ 0, limα→0 Sα(t)h = limα→0 e

−tAαh = S(t)h =
e−tAh.

Theorem 2.4. For t > 0, S(t) is self-adjoint and one to one operator with dense
range (S(t) = S(t)∗, N (S(t)) = {0} and R(S(t)) = H).

Proof. A is self-adjoint and since S(t)∗ = (e−tA)∗ = e−tA∗ = e−tA, then we have
S(t)∗ = S(t).

Let h ∈ N (S(t0)), t0 > 0, then S(t0)h = 0, which implies that S(t)S(t0)h =
S(t+ t0)h = 0, t ≥ 0. Using analyticity, one obtains that S(t)h = 0, t ≥ 0. Strong
continuity at 0 now gives h = 0. This shows that N (S(t0)) = {0}. Thanks to

R(S(t0)) = N (S(t0))⊥ = {0}⊥ = H,

we conclude that R(S(t0)) is dense in H. �

For more details, we refer the reader to a general version of theorem 2.4 in the
case of analytic semigroups in Banach spaces (Lemma 2.2, [11]).

Remark 2.5 (Smoothing effect and irreversibility). Thanks to Theorem 2.1 and
Theorem 2.4, we observe that the solution of the direct Cauchy problem

u′(t) +Au(t) = 0, 0 < t ≤ T, u(0) = u0,

has the following smoothing effect: admitting the initial value u(0) to belong only
to H, then for all t > 0,

R(S(t)) ⊂ C∞(A)
def
= ∩∞n=1D(An)

(space more regular than H) (see [16]). It follows that for the final value problem
(1.1) to have a solution, we should have u(T ) ∈ C(A) ⊆ R(S(T )), where C(A) is
an admissible class for which the (1.1) is solvable. This shows that the (1.1) is
irreversible in the sense:

S(T − t) : H → R(S(T − t)) ⊂ C∞(A) ( H, 0 ≤ t < T,

and R(S(T − t)) 6= R(S(T − t)), in other words S(T − t)−1 = S(t− T ) /∈ L(H).
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For notational convenience and simplicity, we denote

Cθ(A) = {h ∈ H : ‖h‖2Cθ
= ‖eθTAh‖2 =

∫ +∞

γ

e2Tθλ d‖Eλh‖2 < +∞}, θ ≥ 0.

By the definition of Cθ(A) we have the following topological inclusions:

Cθ2(A) ⊆ Cθ1(A), θ2 ≥ θ1,

Cθ(A) ⊂ D(Ar) ⊂ H, θ > 0, r > 0,

‖Arh‖2 =
∫ +∞

γ

( λr

eθTλ

)2
e2θTλ d‖Eλh‖2 ≤ c(θ, r, T )‖h‖2Cθ

where c(θ, r, T ) = ( θT
r )2θT e−2r.

For λ ≥ γ, we introduce the functions:

Hσ(λ) = Fσ(λ) +Gσ(λ),

where

Fσ(λ) =
β

β + e−
T λ

1+αλ

, Gσ(λ) =
e−

T λ
1+αλ − e−Tλ

β + e−
T λ

1+αλ

,

Fσ,θ(λ) = Fσ(λ)e−Tθλ, Gσ,θ(λ) = Gσ(λ)e−Tθλ, θ > 0,

Kβ(λ) =
β

β + e−Tλ
, Mθ(λ) = λ2e−θTλ, θ > 0,

Fσ1,σ2(λ) =
|β1 − β2|(

β1 + e−
T λ

1+α1λ
)(
β2 + e−

T λ
1+α2λ

) ,
Gσ1,σ2(λ) =

|e−
T λ

1+α1λ − e−
T λ

1+α2λ |(
β1 + e−

T λ
1+α1λ

)(
β2 + e−

T λ
1+α2λ

) .
By simple differential calculus and elementary estimates, we show that

0 < Fσ(λ) ≤ 1, Fσ(λ) ≤ β

β + e
−T
α

, Fσ(λ) ≤ βeTλ. (2.1)

0 < Gσ(λ) ≤ 1,

Gσ(λ) =
e−

T λ
1+αλ

(
1− e

−αT λ2
1+αλ

)
β + e−

T λ
1+αλ

≤
(
1− e

−αT λ2
1+αλ

)
≤ αTλ2

1 + αλ
≤ αTλ2. (2.2)

Mθ,∞(λ) = sup
λ≥γ

Mθ(λ) =
( 2
θTe

)2 ≤
( 1
θT

)2
. (2.3)

Fσ,θ,∞ = sup
λ≥γ

Fσ,θ(λ) ≤ Kβ,∞ = sup
λ≥γ

Kβ(λ) ≤

{
β, if θ ≥ 1,
c1(θ)βθ, if 0 < θ < 1,

(2.4)

where c1(θ) = (1− θ)1−θθθ ≤ 1.

Gσ,θ,∞ = sup
λ≥γ

Gσ,θ(λ) ≤ c2(θ, T )
α

1 + β
≤ c2(θ, T )α, (2.5)
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where c2(θ, T ) = 1
Tθ2 .

Fσ1,σ2(λ) ≤ eTλ, Fσ1,σ2(λ) ≤ |β1 − β2|e2Tλ. (2.6)

Gσ1,σ2(λ) ≤ eTλ, Fσ1,σ2(λ) ≤ |α1 − α2|Tλ2eTλ. (2.7)

Fσ(λ)λ−1 =
β

βλ+ λe
−T λ
1+αλ

≤ β

βλ+ γe−Tλ
≤ T

1 + ln(γT
β )

, (β ≤ γT ). (2.8)

Without loss of the generality, we suppose that λ ≥ γ ≥ 1. By virtue of (1− e−τ ≤√
τ , τ ≥ 1), the function Gσ(λ) can be estimated as follows:

Gσ(λ) =
e−

T λ
1+αλ − e−Tλ

β + e−
T λ

1+αλ

=
e−

T λ
1+αλ (1− e

−T αλ2
1+αλ )

β + e−
T λ

1+αλ

≤ 1− e
−T αλ2
1+αλ ≤

√
Tαλ. (2.9)

Remark 2.6. Let u be a solution to the problem

ut +Au = 0, 0 < t < T, u(T ) = ϕ. (2.10)

We set U(t) = e−νtu(t), ν ≥ 1, then U is a solution of the problem

Ut +AνU = 0, 0 < t < T, U(T ) = e−νTϕ = ψ, (2.11)

with Aν = A + νI ≥ (ν + γ)I ≥ νI. Hence, regularizing (2.10) is equivalent to
regularize (2.11).

Remark 2.7. The operational calculus for a self-adjoint operator and estimates
(2.1)–(2.9) play the key role in our analysis and calculations.

3. The approximate problem

Description of the method. Step 1 Let vσ be the solution of the perturbed
problem

v′σ(t) +Aαvσ(t) = 0, 0 < t < T,

βvσ(0) + vσ(T ) = ϕ
(3.1)

where the operator A is replaced by Aα = A(I + αA)−1 and the final condition
v(T ) = ϕ is replaced by the nonlocal condition βv(0) + v(T ) = ϕ, where α > 0,
β > 0 and σ = (α, β).

Step 2 We use the initial value

ϕσ = vσ(0) =
(
β + Sα(T )

)−1
ϕ,

in the problem

u′σ(t) +Auσ(t) = 0, 0 < t ≤ T, uσ(0) = ϕσ. (3.2)

Step 3 We show that

‖uσ(T )− ϕ‖ → 0, as |σ| → 0,

‖uσ(0)− u(0)‖ → 0, as |σ| → 0,

sup
0≤t≤T

‖uσ(t)− u(t)‖ → 0, as |σ| → 0.
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4. Analysis of the method and main results

Now we are ready to state and prove the main results of this paper.

Definition 4.1 ([36]). A solution of (1.1) on the interval [0, T ] is a function u ∈
C([0, T ];H)∩C1((0, T );H) such that for all t ∈ (0, T ), u(t) ∈ D(A) and (1.1) holds.

It is useful to know exactly the admissible set for which (1.1) has a solution. The
following lemma gives an answer to this question.

Lemma 4.2 ([9, Lemma 1]). Problem (1.1) has a solution if and only if ϕ ∈ C1(A),
and its unique solution is represented by

u(t) = e(T−t)Aϕ. (4.1)

Using semi-groups theory and the properties of Sα(t), we have the following
theorem.

Theorem 4.3. For all ϕ ∈ H, the function

vσ(t) = Sα(t)
(
β + Sα(T )

)−1
ϕ

is the unique solution of (3.1) and it depends continuously on ϕ.

Proof. We consider the problem

y′σ(t) +Aαyσ(t) = 0, 0 < t ≤ T, yσ(0) =
(
β + Sα(T )

)−1
ϕ. (4.2)

This problem is well-posed, and its solution is

yσ(t) = Sα(t)
(
β + Sα(T )

)−1
ϕ. (4.3)

Observing that

βyσ(0) + yσ(T ) =
(
β + Sα(T )

)(
β + Sα(T )

)−1
ϕ = ϕ. (4.4)

Thanks to (4.4) and the uniqueness of solution to direct problem (4.2), we deduce
that the problem (3.1) admits the unique solution vσ given by (4.3). To show the
continuous dependence of vσ on ϕ, we compute

‖vσ(t)‖ = ‖Sα(t)
(
β + Sα(T )

)−1
ϕ‖ ≤ ‖

(
β + Sα(T )

)−1
ϕ‖ ≤ (β + e

−T
α )−1‖ϕ‖.

�

Theorem 4.4. The problem (3.2) is well-posed, and its solution is

uσ(t) = S(t)ϕα = S(t)
(
β + Sα(T )

)−1
ϕ. (4.5)

An easy computation shows that

‖uσ(t)‖ ≤
( 1

β + e−
T
α

)T−t
T ‖ϕ‖. (4.6)

Theorem 4.5. For all ϕ ∈ H, ‖uσ(T )− ϕ‖ → 0, as |σ| → 0.

Proof. We compute

‖uσ(T )− ϕ‖2 =
∫ +∞

γ

Hα(λ)2 d‖Eλϕ‖2 ≤ 2(I1,σ + I2,σ), (4.7)
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where

I1,σ =
∫ +∞

γ

Fα(λ)2 d‖Eλϕ‖2,

I2,σ =
∫ +∞

γ

Gα(λ)2 d‖Eλϕ‖2.

Fix ε > 0. Choose N so that
∫ +∞

N
d‖Eλϕ‖2 < ε

8 . Thus

I1,σ ≤
∫ N

γ

Fσ(λ)2 d‖Eλϕ‖2 +
∫ +∞

N

Fσ(λ)2 d‖Eλϕ‖2,

I2,σ ≤
∫ N

γ

Gσ(λ)2 d‖Eλϕ‖2 +
∫ +∞

N

Gσ(λ)2 d‖Eλϕ‖2.

Using inequalities (2.1) and (2.2), we derive

I1,σ ≤
ε

8
+ β2e2TN‖ϕ‖2,

I2,σ ≤
ε

8
+ α2T 2N4‖ϕ‖2.

So by taking σ such that

|σ|2 = β2 + α2 ≤ 1
‖ϕ‖2

( 1
T 2N4

+
1

e2TN

)ε
4
,

we complete the proof. �

Note that we do not have a convergence rate here.

Theorem 4.6. If ϕ ∈ Cθ(A), 0 < θ < 1, then we have

‖uσ(T )− ϕ‖2 ≤ 2
(
c21(θ)β

2θ + c22(θ, T )α2
)
‖ϕ‖2Cθ

. (4.8)

Moreover, if θ ≥ 1, then we have

‖uσ(T )− ϕ‖2 ≤ 2
(
β2 + c22(θ, T )α2

)
‖ϕ‖2Cθ

, (4.9)

where c1(θ) = (1− θ)1−θθθ ≤ 1 and c2(θ, T ) = T−1θ−2.

Proof. By doing computation, we have

‖uσ(T )− ϕ‖2 =
∫ +∞

γ

H2
σ(λ)e−2θTλe2θTλ d‖Eλϕ‖2

≤ 2
∫ +∞

γ

F 2
σ,θ(λ)e2θTλ d‖Eλϕ‖2 + 2

∫ +∞

γ

G2
σ,θ(λ)e2θTλ d‖Eλϕ‖2

≤ 2
(
F 2

σ,θ,∞ +G2
σ,θ,∞

)
‖ϕ‖2Cθ

and by virtue of inequalities (2.4), (2.5) we obtain the desired estimates. �

We define

F : R+ × R+ → H, σ = (α, β) 7→ F(σ) =

{
uσ(0) = ϕσ, σ 6= (0, 0),
u(0) = ϕ0, σ = (0, 0).

Theorem 4.7. For all ϕ ∈ H, (1.1) has a solution u if and only if the function
F is continuous at (0, 0). Furthermore, we have that uσ(t) converges to u(t) as |σ|
tends to zero uniformly in t.
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Proof. Assume that lim|σ|→0 ϕσ = ϕ0 and ‖ϕ0‖ < +∞. Let w(t) = S(t)ϕ0. We
compute

‖w(t)− uσ(t)‖ = ‖S(t)ϕ0 − S(t)ϕσ‖ = ‖S(t)(ϕ0 − ϕσ)‖ ≤ ‖ϕ0 − ϕσ‖.

Which implies

sup
0≤t≤T

‖w(t)− uσ(t)‖ ≤ ‖ϕ0 − ϕσ‖ → 0, as |σ| → 0.

Since lim|σ|→0 uσ(T ) = ϕ and lim|σ|→0 uσ(T ) = w(T ), we infer that w(T ) = ϕ.
Thus, w(t) = S(t)ϕ0 solves (1.1) and satisfies the condition w(T ) = ϕ.

Now, let us assume that u(t) is the solution to (1.1). From lemma 4.2 we have
u(0) = S(−T )ϕ ∈ H, i.e.,

‖u(0)‖2 = ‖ϕ‖2C1
=

∫ +∞

γ

e2Tλ d‖Eλϕ‖2 <∞.

Let N > 0 and ε > 0 such that
∫ +∞

N
e2Tλ d‖Eλϕ‖2 < ε

8 . Let σi = (αi, βi), i = 1, 2.
Then

‖uσ1(0)− uσ2(0)‖2 =
∫ +∞

γ

(
(β1 + e

−T λ
1+α1λ )−1 − (β2 + e

−T λ
1+α2λ )−1

)2
d‖Eλϕ‖2

≤ 2
∫ +∞

γ

F 2
σ1,σ2

(λ) d‖Eλϕ‖2 + 2
∫ +∞

γ

G2
σ1,σ2

(λ) d‖Eλϕ‖2.

(4.10)
By using (2.6) and (2.7), the right hand sand of (4.10) can be estimated as follows∫ +∞

γ

F 2
σ1,σ2

(λ) d‖Eλϕ‖2 ≤
∫ N

γ

F 2
σ1,σ2

(λ) d‖Eλϕ‖2 +
∫ +∞

N

F 2
σ1,σ2

(λ) d‖Eλϕ‖2

≤ (β2 − β1)2e2TN‖ϕ‖2C1
+
ε

8
,

∫ +∞

γ

G2
σ1,σ2

(λ) d‖Eλϕ‖2 ≤
∫ N

γ

G2
σ1,σ2

(λ) d‖Eλϕ‖2 +
∫ +∞

N

G2
σ1,σ2

(λ) d‖Eλϕ‖2

≤ (α2 − α1)2T 2N4‖ϕ‖2C1
+
ε

8
.

Now if we choose σ = (α, β) so that

|σ|2 = α2 + β2 ≤ 1
‖ϕ‖2C1

( 1
T 2N4

+
1

e2TN

)ε
4

and σ0 = (0, 0), then we have ‖uσ(0) − uσ0(0)‖2 = ‖ϕσ − ϕ0‖2 ≤ ε. This shows
that the function F is continuous at (0, 0). �

Remark 4.8. If we suppose that ϕ ∈ C1(A), then by the equality

‖uσ(0)− u(0)‖2 = ‖uσ(T )− ϕ‖2C1

and theorem 4.5, we have

‖uσ(0)− u(0)‖2 → 0, as |σ| → 0.
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Theorem 4.9. If ϕ ∈ C1+θ(A), 0 < θ < 1, we have

‖uσ(0)− u(0)‖2 ≤ 2
(
c21(θ)β

2θ + c22(θ, T )α2
)
‖ϕ‖2C1+θ

. (4.11)

Moreover, if θ ≥ 1, we have

‖uσ(0)− u(0)‖2 ≤ 2
(
β2 + c22(θ, T )α2

)
‖ϕ‖2C1+θ

. (4.12)

Proof. By similar calculations to those used in Theorem 4.6 and 4.7, we have

‖uσ(0)− u(0)‖2

=
∫ +∞

γ

Hσ(λ)2e−2θTλe2(1+θ)Tλ d‖Eλϕ‖2

≤ 2
∫ +∞

γ

Fσ,θ(λ)2e2(1+θ)Tλ d‖Eλϕ‖2 + 2
∫ +∞

γ

Gσ,θ(λ)2e2(1+θ)Tλ d‖Eλϕ‖2

≤ 2
(
F 2

σ,θ,∞ +G2
σ,θ,∞

)
‖ϕ‖2C1+θ

and by (2.4), (2.5) we obtain the desired estimates. �

From Theorem 4.7 and 4.9, we have the following result.

Corollary 4.10. If ϕ ∈ C1+θ(A), 0 < θ < 1, then an upper bound of the rate of
convergence of the method is given by

sup
0≤t≤T

‖uσ(t)− u(t)‖2 ≤ ‖uσ(0)− u(0)‖2 ≤ 2
(
c21(θ)β

2θ + c22(θ, T )α2
)
‖ϕ‖2C1+θ

.

Moreover, if θ ≥ 1, then we have

sup
0≤t≤T

‖uσ(t)− u(t)‖2 ≤ ‖uσ(0)− u(0)‖2 ≤ 2
(
β2 + c22(θ, T )α2

)
‖ϕ‖2C1+θ

.

Remark 4.11. If ϕ ∈ D(A2), then with the help of (2.1) and (2.2), ‖uσ(T )− ϕ‖2
can be estimated as follows:

‖uσ(T )− ϕ‖2 ≤ 2
∫ +∞

γ

F 2
σ (λ) d‖Eλϕ‖2 + 2

∫ +∞

γ

G2
σ(λ) d‖Eλϕ‖2

≤ 2
( β

β + e
−T
α

)2
∫ +∞

γ

d‖Eλϕ‖2 + 2T 2α2

∫ +∞

γ

λ4 d‖Eλϕ‖2.

Choosing α = T
(1−r) ln( 1

β )
, 0 < r < 1, we obtain

‖uσ(T )− ϕ‖2 ≤ 2
(
β2r‖ϕ‖2 +

T 4

(1− r)2 ln2( 1
β )
‖A2ϕ‖2

)
.

Theorem 4.12. Assuming that ϕ ∈ D(A) and letting α = T
(1−r) ln( 1

β )
, 0 < r < 1,

the expression ‖uσ(T )− ϕ‖2 can be estimated as follows

‖uσ(T )− ϕ‖2 ≤ β2r‖ϕ‖2 +
4T

(1− r) ln( 1
β )
‖Aϕ‖2.

Proof. We have

u′σ(t) +Auσ(t) = 0, (4.13)

v′σ(t) +Avσ(t) = (A−Aα)vσ(t) = αJαA
2vσ(t), (4.14)

uσ(0)− vσ(0) = 0, (4.15)

βvσ(0) + vσ(T ) = ϕ. (4.16)
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If we put xσ(t) = vσ(t)− uσ(t), then xσ(t) satisfies the equation

x′σ(t) +Axσ(t) = αJαA
2u(t). (4.17)

Applying the operator M(t) = e(t−T )A to (4.13), (4.14) and (4.17), we obtain

d

dt
(M(t)uσ(t)) = 0, (4.18)

d

dt
(M(t)vσ(t)) = αJαA

2M(t)vσ(t), (4.19)

d

dt
(M(t)xσ(t)) = αJαA

2M(t)vσ(t). (4.20)

Multiplying (4.20) by M(t)xσ and integrating the obtained result over (0, τ), we
get∫ τ

0

d

dt
‖M(t)xσ(t)‖2 = ‖M(τ)xσ(τ)‖2 − ‖M(0)xσ(0)‖2 = ‖M(τ)xσ(τ)‖2

= 2
∫ τ

0

Re(αJαA
2M(t)vσ(t),M(t)xσ) dt

≤ 2T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt+

1
2T

∫ T

0

‖M(t)xσ(t)‖2

≤ 2T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt+

1
2

sup
0≤t≤T

‖M(t)xσ(t)‖2.

This implies

1
2

sup
0≤t≤T

‖M(t)xσ(t)‖2 ≤ 2T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt.

In particulary for t = T we have

‖M(T )xσ(T )‖2 = ‖uσ(T )− vσ(T )‖2 ≤ 4T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt. (4.21)

From (4.21) we can write

‖uσ(T )− vσ(T )‖2 = ‖(uσ(T )− ϕ) + (ϕ− vσ(T ))‖2

= ‖(uσ(T )− ϕ) + βvσ(0)‖2

= ‖uσ(T )− ϕ‖2 + ‖βvσ(0)‖2 + 2Re(uσ(T )− ϕ, βvσ(0))

≤ 4T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt.

This last inequality implies

‖uσ(T )− ϕ‖2 ≤ 8T
∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt+ 2‖βvσ(0)‖2. (4.22)
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To estimate the integral in the right-hand side, we take the inner product of (4.19)
with αJαA

2M(t)vσ(t) and integrate over (0, T ):∫ T

0

‖αJαA
2M(t)vσ(t)‖2 dt

=
1
2

∫ T

0

Re(
d

dt
(M(t)vσ(t)) , αJαA

2M(t)vσ(t)) dt

=
1
2

∫ T

0

d

dt
‖αJαAM(t)vσ(t)‖2 dt+

1
2

∫ T

0

d

dt
‖α2JαA

3/2M(t)vσ(t)‖2 dt

≤ 1
2

(
‖αJαAvσ(T )‖2 + ‖α2JαA

3/2vσ(T )‖2
)
.

By virtue of

‖vσ(T )‖ = ‖Sα(T )
(
β + Sα(T )

)−1
ϕ‖ ≤ ‖ϕ‖

and

‖Aϕ‖2 = ‖(I + αA)JαAϕ‖2 = ‖JαAϕ‖2 + 2α‖JαA
3/2ϕ‖2 + α2‖JαA

2ϕ‖2,

we derive∫ T

0

‖αJαA
2M(t)vσ(t)‖2 ≤ 1

2

(
‖αJαAϕ‖2 + ‖α2JαA

3/2ϕ‖2
)
≤ 1

2
α‖Aϕ‖2.

Combining this inequality and (4.22), we obtain

‖uσ(T )− ϕ‖2 ≤ 4Tα‖Aϕ‖2 + ‖βvσ(0)‖2

≤ 4Tα‖Aϕ‖2 +
( β

β + e
−T
α

)2‖ϕ‖2.
(4.23)

If we choose α = T
(1−r) ln( 1

β )
, 0 < r < 1, then (4.23) becomes

‖uσ(T )− ϕ‖2 ≤ β2r‖ϕ‖2 +
4T

(1− r) ln( 1
β )
‖Aϕ‖2.

�

Theorem 4.13. Assuming that ϕ ∈ D(A) and γ ≥ 1, then ‖uσ(T ) − ϕ‖2 can be
estimated as follows

‖uσ(T )− ϕ‖2 ≤ 2
(( T

1 + ln(γT
β )

)2 + Tα
)
‖Aϕ‖2.

Proof. We have

‖uσ(T )− ϕ‖2 =
∫ +∞

γ

Hσ(λ)2 d‖Eλϕ‖2 ≤ 2(I1,σ + I2,σ),

where

I1,σ =
∫ +∞

γ

Fσ(λ)2λ−2λ2 d‖Eλϕ‖2,

I2,σ =
∫ +∞

γ

Gσ(λ)2 d‖Eλϕ‖2.
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Using (2.8) and (2.9), we obtain

I1,σ ≤
(

sup
λ≥γ

Fσ(λ)λ−1
)2

‖Aϕ‖2 ≤
( T

1 + ln(γT
β )

)2

‖Aϕ‖2, (4.24)

I2,σ ≤ Tα‖Aϕ‖2. (4.25)

Combining (4.24) and (4.25) we obtain the desired estimate. �

Theorem 4.14. Assume that ‖Au(0)‖2 =
∫ +∞

γ
λ2e2Tλ d‖Eλϕ‖2 <∞, i.e., u(0) ∈

D(A), and that γ ≥ 1. Then ‖uσ(0)− u(0)‖2 can be estimated as follows

‖uσ(0)− u(0)‖2 ≤ 2
(( T

1 + ln(γT
β )

)2 + Tα
)
‖Au(0)‖2.

Proof. By a computation,

‖uσ(0)− u(0)‖2 =
∫ +∞

γ

Hσ(λ)2e2Tλ d‖Eλϕ‖2 ≤ 2(I1,σ + I2,σ),

where

I1,σ =
∫ +∞

γ

Fσ(λ)2λ−2λ2e2Tλ d‖Eλϕ‖2,

I2,σ =
∫ +∞

γ

Gσ(λ)2e2Tλ d‖Eλϕ‖2.

Using (2.8) and (2.9) we obtain

I1,σ ≤
(

sup
λ≥γ

Fσ(λ)
)2

‖Au(0)‖2 ≤
( T

1 + ln(γT
β )

)2

‖Au(0)‖2,

I2,σ ≤ Tα‖Au(0)‖2.

Combining the two inequalities above, we obtain the desired estimate. �

We conclude this paper by constructing a family of regularizing operators to
(1.1).

Definition 4.15. A family {Rσ(t), σ > 0, t ∈ [0, T ]} ⊂ L(H) is called a family of
regularizing operators for the problem (1.1) if for each solution u(t), 0 ≤ t ≤ T of
(1.1) with final element ϕ, and for any η > 0, there exists σ(η) > 0, such that

σ(η) → 0, η → 0, (4.26)

‖Rσ(η)(t)ϕη − u(t)‖ → 0, η → 0, (4.27)

for each t ∈ [0, T ] provided that ϕη satisfies ‖ϕη − ϕ‖ ≤ η.

Define Rσ(t) = S(t)
(
β + Sα(T )

)−1, t ≥ 0, σ > 0; it is clear that Rσ(t) ∈ L(H).
In the following we will show that Rσ(t) is a family of regularizing operators for
(1.1).

Theorem 4.16. Under the assumption ϕ ∈ C1(A), the condition (4.27) holds.

Proof. We have

∆σ(t) = ‖Rσ(t)ϕη − u(t)‖ ≤ ‖Rσ(t)(ϕη − ϕ)‖+ ‖Rσ(t)ϕ− u(t)‖ = ∆1(t) + ∆2(t),
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where

∆1(t) = ‖Rσ(t)(ϕη − ϕ)‖ ≤
( 1

β + e
−T
α

)
η,

∆2(t) = ‖Rσ(t)f − u(t)‖.

We observe that
∆1(t) ≤

η

β
, ∆1(t) ≤ ηe

T
α .

Choose β =
√
η and α = 2T

ln( 1
η )

, then σ(η) = (α(η), β(η)) → (0, 0), η → 0, and

∆1(t) ≤
√
η → 0, as η → 0. (4.28)

Now, by Theorem 4.7 we have

∆2(t) = ‖uσ(η)(t)− u(t)‖ → 0, as η → 0, (4.29)

uniformly in t. Combining (4.28) and (4.29) we obtain

sup
0≤t≤T

‖Rσ(t)ϕη − ϕ‖ → 0, as η → 0.

This shows that Rσ(t) is a family of regularizing operators for (1.1). �

Concluding remarks. 1. Note that the error factor e(σ) introduced by small
changes in the final value ϕ is of order 1

β+e
−T
α

.

2. When α = T
(1−r) ln( 1

β )
, 0 < r < 1, then

e(σ) = e(β) =
1

β + β1−r
≤ (

1
β

)1−r.

3. In [9] (resp. [17, 25]) the error factor e(β) (resp. e(α) is of order 1
β (resp. e

T
α ).

Observe that
1

β + e
−T
α

≤ 1
β
,

1

β + e
−T
α

≤ e
T
α .

This shows that our approach has a nice regularizing effect and gives a better
approximation with comparison to the methods developed in [9, 17, 25].

In this study we have achieved a better results than those established in [9, 17,
25]. The error resulting from approximation and the rate of convergence of the
method are optimal.

Acknowledgments. The authors give their cordial thanks to the anonymous ref-
erees for their valuable comments and suggestions which improved the quality of
the paper.
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