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LOW REGULARITY WELL-POSEDNESS FOR THE
ONE-DIMENSIONAL DIRAC-KLEIN-GORDON SYSTEM

HARTMUT PECHER

Abstract. Local well-posedness for Dirac-Klein-Gordon equations is proven

in one space dimension, where the Dirac part belongs to H−
1
4+ε and the

Klein-Gordon part to H
1
4−ε for 0 < ε < 1/4, and global well-posedness, if

the Dirac part belongs to the charge class L2 and the Klein-Gordon part to
Hk with 0 < k < 1/2. The proof uses a null structure in both nonlinearities

detected by d’Ancona, Foschi and Selberg and bilinear estimates in spaces of
Bourgain-Klainerman-Machedon type.

1. Introduction

In this paper we study the Cauchy problem for the Dirac-Klein–Gordon equations
in one space dimension

−iβ ∂
∂t
ψ + iαβ

∂

∂x
ψ +Mψ = gφψ (1.1)

∂2

∂t2
φ− ∂2

∂x2
φ+m2φ = 〈βψ, ψ〉C2 (1.2)

with initial data

ψ(x, 0) = ψ0(x) , φ(x, 0) = φ0(x) ,
∂φ

∂t
(x, 0) = φ1(x) . (1.3)

Here ψ is a two-spinor field, i.e. ψ has values in C2, and φ is a real-valued function.
α and β are hermitian (2 × 2)-matrices, which fulfill α2 = β2 = I, αβ + βα = 0,

e.g. we can choose α =
(

0 −i
i 0

)
, β =

(
0 1
1 0

)
. M,m and g are real constants.

We are interested in local and global low regularity solutions. The first results
were obtained by Chadam and Glassey [5], [6] who proved global well-posedness for
data ψ0 ∈ H1, φ0 ∈ H1, φ1 ∈ L2. This result was improved by Bournaveas [3] (cf.
also Fang [7]) who showed the same results for data ψ0 ∈ L2, φ0 ∈ H1, φ1 ∈ L2.
Local existence and uniqueness was shown by Fang [8] for data ψ0 ∈ H− 1

4+ε,
φ0 ∈ H

1
2+δ, φ1 ∈ H− 1

2+δ and 0 < ε ≤ 1
4 , 0 < δ ≤ 2ε. These solutions are global,

if ψ0 ∈ L2. Finally, Bournaveas and Gibbeson [4] also proved global existence and
uniqueness for ψ0 ∈ L2, φ0 ∈ Hk, φ1 ∈ Hk−1 for 1

4 ≤ k < 1
2 . All these global results
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were obtained by using conservation of charge, namely
∫
|ψ|2 dx =

∫
|ψ0|2 dx. The

energy does not help here because it is not positive definite.
In three space dimensions the best result concerning local well-posedness was

recently obtained by d’Ancona, Foschi and Selberg [1] for data ψ0 ∈ Hε, φ0 ∈ H
1
2+ε,

φ1 ∈ H− 1
2+ε with ε > 0. This result is arbitrarily close to the minimal regularity

predicted by scaling (ε = 0). Whereas in the above mentioned more recent results a
null structure of Klainerman-Machedon type [10] for the nonlinearities was already
used in one or the other way, they showed that the null form 〈βψ, ψ〉 of the wave
part is also hidden (by a duality argument) in the Dirac part of the system and
both nonlinearities can be treated in a similar way. It was also very helpful to first
diagonalize the system by using the eigenspace projections of the Dirac operator
(cf. also Beals and Bézard [2]). Of course this local result does not directly imply
a global one.

In the present paper we want to improve the local and global results in one space
dimension by consequently using this diagonalization of the system and applying
the Fourier restriction norm method. We are able to show local existence and
uniqueness for data ψ0 ∈ H−l, φ0 ∈ Hk, φ1 ∈ Hk−1, provided l < 1

4 , k > 0,
2l + k < 1, l + k ≤ 1 and k ≥ |l|. This means that e.g. k = l = 1

4 − ε is
admissible as well as l = 0, k = ε, thus improving the above mentioned results of
Fang and Bournaveas-Gibbeson. These local results easily imply global ones in the
case ψ0 ∈ L2, φ0 ∈ Hk, φ1 ∈ Hk−1 for 0 < k < 1/2, using only charge conservation,
also improving Bourneveas-Gibbeson.

This paper is organized as follows. First we rewrite the system as a first order
system in time in diagonal form. We split ψ as the sum π+(D)ψ+ π−(D)ψ, where
π±(D) are the projections onto the eigenspaces of −iα ∂

∂x , and also split φ as the
sum φ++φ−, where the half waves φ+ and φ− are defined in the usual way. Then we
analyze the components of the nonlinearity 〈βψ, ψ〉, namely 〈βπ±(D)ψ, π±(D)ψ′〉
for all possible combinations of signs by computing its Fourier symbol. It turns
out that the symbol is a piecewise constant matrix in Fourier space depending
only on the signs of the Fourier variables and especially vanishes in certain regions.
Then we examine which bilinear estimates for the nonlinear terms are necessary for
local well-posedness in the framework of the Xm,b-spaces. It turns out that due to
duality arguments two similar estimates have to be given for 〈βπ±(D)ψ, π±(D)ψ′〉
in order to treat both nonlinearities. These are given in Lemma 3.2 and Lemma
3.3. The local results are summarized in Theorem 3.4. Global existence is a direct
consequence of the local results combined with charge conservation (Theorem 4.1).

We construct our solutions in spaces of the type Xm,b
ϕ defined as follows: for an

equation of the form iut − ϕ(−i ∂∂x )u = 0, where ϕ is a measurable function, let
Xm,b
ϕ be the completion of S(R× R) with respect to

‖f‖Xm,b
ϕ

:= ‖〈ξ〉m〈τ〉bF(eitϕ(−i ∂
∂x )f(x, t))‖L2

ξτ
= ‖〈ξ〉m〈τ + ϕ(ξ)〉bf̃(ξ, τ)‖L2

ξτ

where 〈·〉 := (1 + | · |2) 1
2 , and f̃ denotes the Fourier transform of f with respect to

x and t. We also use the time localized spaces Xm,b
ϕ [0, T ] defined by

‖f‖Xm,b
ϕ [0,T ] = inf

f̃|[0,T ]=f
‖f̃‖Xm,b

ϕ
.
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The following fact about these spaces is well-known (cf. , e.g. , [9], section 2): if v
is a solution of

ivt − ϕ(−i ∂
∂x

)v = F , v(0) = f

on a time interval [0, T ], T ≤ 1, we have for b′ + 1 ≥ b ≥ 0 ≥ b′ > − 1
2 :

‖v‖Xm,b
ϕ [0,T ] ≤ c‖f‖Hm + cT 1+b′−b‖F‖

Xm,b′
ϕ [0,T ]

. (1.4)

2. Preliminaries

First we transform our system (1.1),(1.2) into a first order system (in t) in
diagonal form.

Multiplying the Dirac equations from the left by β leads to

−i ∂
∂t
ψ − iα

∂

∂x
ψ +Mβψ = gφβψ

∂2

∂t2
φ− ∂2

∂x2
φ+m2φ = 〈βψ, ψ〉C2 .

Following the paper of d’Ancona, Foschi and Selberg we diagonalize the system by
defining the projections

π±(ξ) :=
1
2
(I ± ξ̂α) ,

where ξ̂ := ξ
|ξ| . Then we have ψ = ψ+ +ψ− with ψ± := π±(D)ψ, D := 1

i
∂
∂x . Using

the identity

−iα ∂

∂x
= αD = |D|π+(D)− |D|π−(D)

and

π±(ξ)β =
1
2
(I ± ξ̂α)β =

1
2
(β ∓ ξ̂βα) = βπ∓(ξ) (2.1)

we get by application of π±(D) to the Dirac equation

π±(D)(−i ∂
∂t
ψ − iα

∂

∂x
ψ) = π±(D)(−i ∂

∂t
ψ + |D|π+(D)ψ − |D|π−(D)ψ)

= −i ∂
∂t
π±(D)ψ ± |D|π±(D)ψ

= −i ∂
∂t
ψ± ± |D|ψ±

where we also used

π±(ξ)π∓(ξ) =
1
4
(I ± ξ̂α)(I ∓ ξ̂α) =

1
4
(I − ξ̂2α2) = 0

and

π±(ξ)π±(ξ) =
1
4
(I ± ξ̂α)(I ± ξ̂α) =

1
4
(I ± 2ξ̂α+ ξ̂2α2) =

1
2
(I ± ξ̂α) = π±(ξ)

(this also implies especially ψ± = π±(D)ψ±).
The Dirac equations are thus transformed into

(−i ∂
∂t

± |D|)ψ± = −Mβπ∓(D)(ψ+ + ψ−) + gπ±(D)(φβψ)

= −Mβψ∓ + gπ±(D)(φβ(ψ+ + ψ−)) .
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We also split the function φ into the sum φ = 1
2 (φ+ + φ−), where

φ± := φ± iA−
1
2
∂φ

∂t
, A := − ∂2

∂x2
+m2 .

Here we assume m > 0 and in fact m = 1. Otherwise we artificially add a term
(1 − m2)φ on both sides of the equation at the expense of having an additional
linear term c0φ in the inhomogeneous part which can easily be taken care of. We
calculate

(i
∂

∂t
∓A

1
2 )φ± = (i

∂

∂t
∓A

1
2 )(I ± iA−

1
2
∂

∂t
)φ

= i
∂

∂t
φ∓A

1
2φ∓A−

1
2
∂2

∂t2
φ− i

∂

∂t
φ

= ∓A− 1
2 (Aφ+

∂2

∂t2
φ)

= ∓A− 1
2 (〈βψ, ψ〉C2 + c0φ) .

Thus the Dirac-Klein-Gordon system can be rewritten as

(−i ∂
∂t

± |D|)ψ± = −Mβψ∓ + gπ±(D)(
1
2
(φ+ + φ−)β(ψ+ + ψ−)) (2.2)

(i
∂

∂t
∓A

1
2 )φ± = ∓A− 1

2 (〈β(ψ+ + ψ−), ψ+ + ψ−〉C2 + c0(φ+ + φ−)) . (2.3)

The initial conditions are transformed into

ψ±(0, x) = π±(D)ψ0(x) , φ±(0, x) = φ0(x)± iA−
1
2φ1(x) . (2.4)

It turns out that the decisive bilinear form which has to be considered is given by
〈βπ[±](D)ψ, π±(D)ψ′〉C2 , where [±] and ± denote independent signs. We are going
to compute its symbol. One has to treat

F(〈βπ[±](D)ψ, π±(D)ψ′〉C2)(ξ, τ)

=
∫∫

∗
〈βπ[±](ξ1)ψ̃(ξ1, τ1), π±(−ξ2)ψ̃′(−ξ2,−τ2)〉C2dξ1dτ1 ,

where * denotes the region ξ = ξ1 + ξ2, τ = τ1 + τ2. Because π± are hermitian and
by use of (2.1) and π+(−ξ) = π−(ξ) we get

〈βπ[±](ξ1)ψ̃(ξ1, τ1), π±(−ξ2)ψ̃′(−ξ2,−τ2)〉

= 〈π±(−ξ2)βπ[±](ξ1)ψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉

= 〈βπ∓(−ξ2)π[±](ξ1)ψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉

= 〈βπ±(ξ2)π[±](ξ1)ψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉 .

We compute

4π±(ξ2)π+(ξ1) = (I ± ξ̂2α)(I + ξ̂1α)

= I ± ξ̂1ξ̂2α
2 + (ξ̂1 ± ξ̂2)α

= (1± ξ̂1ξ̂2)I + (ξ̂1 ± ξ̂2)α .

If ξ1 and ξ2 have different signs we have ξ̂1ξ̂2 = −1 and ξ̂1 = −ξ̂2, thus π+(ξ2)π+(ξ1)
= 0. If ξ1 and ξ2 have the same sign we have ξ̂1ξ̂2 = 1 and ξ̂1 = ξ̂2, thus
4π+(ξ2)π+(ξ1) = 2(I ± α) (+, if ξ1, ξ2 > 0, and −, if ξ1, ξ2 < 0). Similarly
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4π−(ξ2)π+(ξ1) = 2(I ± α), if ξ1, ξ2 have different signs, and π−(ξ2)π+(ξ1) = 0,
if ξ1, ξ2 have the same sign. Thus we have

〈βπ±(ξ2)π[±](ξ1)ψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉 = 〈γψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉
where

• in the (+,+)-case and in the (−,−)-case: γ = 1
2 (β ± βα), if ξ1, ξ2 have the

same sign, and γ = 0, if ξ1, ξ2 have different signs.
• in the (+,−)-case and in the (−,+)-case: γ = 1

2 (β ± βα), if ξ1, ξ2 have
different signs, and γ = 0, if ξ1, ξ2 have the same sign.

3. Local solutions

We want to construct solutions ψ± and φ± in the spaces Xs,b
± and Y s,b± , respec-

tively, defined as follows.

Definition 3.1. Xs,b
± is the completion of S(R2) with respect to the norm

‖ψ‖Xs,b
±

= ‖〈ξ〉s〈τ ± |ξ|〉bψ̃(ξ, τ)‖L2
ξτ

for C2-valued functions ψ. Y s,b± is the same space for C-valued functions ψ. We
also use the localized norms

‖ψ‖Xs,b
± [0,T ] = inf

ψ̂|[0,t]=ψ
‖ψ̂‖Xs,b

±

and similarly Y s,b± [0, T ] .

We consider the following (slightly modified) system of integral equations which
belongs to our Cauchy problem (2.2), (2.3), (2.4).

ψ±(t) = e∓it|D|ψ±(0)

− ig

∫ t

0

e∓i(t−s)|D|π±(D)(
1
2
(φ+(s) + φ−(s))β(π+(D)ψ+(s)

+ π−(D)ψ−(s)))ds+ iM

∫ t

0

e∓i(t−s)|D|βψ∓(s)ds

(3.1)

φ±(t) = e∓itA
1
2 φ±(0)

± i

∫ t

0

e∓i(t−s)A
1
2A−

1
2 〈β(π+(D)ψ+(s) + π−(D)ψ−(s)), π+(D)ψ+(s)

+ π−(D)ψ−(s)〉ds± ic0

∫ t

0

e∓i(t−s)A
1
2A−

1
2 (φ+(s) + φ−(s))ds

(3.2)

We remark that any solution of this system automatically fulfills π±(D)ψ± = ψ±,
because applying π±(D) to the right hand side of the equations for ψ± gives
π±(D)ψ±(0) = π±(D)π±(D)ψ0 = π±(D)ψ0 = ψ±(0), and the integral terms also
remain unchanged, because π±(D)2 = π±(D) and π±(D)βψ∓(s) = βπ∓(D)ψ∓(s) =
βψ∓(s). Thus π±(D)ψ± can be replaced by ψ± on the right hand sides, thus the
system of integral equations reduces exactly to the one belonging to our Cauchy
problem (2.2), (2.3), (2.4).

Let now data be given with

ψ0 ∈ H−l(R) , φ0 ∈ Hk(R) , φ1 ∈ Hk−1(R) .
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This implies ψ±(0) ∈ H−l(R) and φ±(0) ∈ Hk(R). In order to construct a so-
lution of the integral equations for t ∈ [0, T ] with a suitable T ≤ 1 with ψ± ∈
X
−l, 12+ε′

± [0, T ] and φ± ∈ Y
k, 12+ε′

± [0, T ] (ε′ > 0 small) we only have to show the
following estimates for the nonlinearities (using standard facts from the theory of
Xs,b - spaces, especially (1.4)).

Concerning (3.1) we need

‖π±(D)(φβπ[±](D)ψ)‖
X
−l,− 1

2 +2ε′

±

≤ c‖φ‖
Y

k, 1
2 +ε′

+

‖ψ‖
X
−l, 1

2 +ε′

[±]

(3.3)

and the same estimates with ‖φ‖
Y

k, 1
2 +ε′

+

replaced by ‖φ‖
Y

k, 1
2 +ε′

−

on the right hand

side. Again [±] denotes a sign independent of ±.
Concerning (3.2) we have to show

‖〈βπ[±](D)ψ, π±(D)ψ′〉‖
Y

k−1,− 1
2 +2ε′

+

≤ c‖ψ‖
X
−l, 1

2 +ε′

[±]

‖ψ′‖
X
−l, 1

2 +ε′

±

(3.4)

and the same estimate with Y k−1,− 1
2+2ε′

+ replaced by Y k−1,− 1
2+2ε′

− on the left hand
side.

By duality (3.3) is equivalent to∣∣ ∫∫
〈π±(D)(φβπ[±](D)ψ), ψ′〉dx dt

∣∣ ≤ c‖φ‖
Y

k, 1
2 +ε′

+

‖ψ‖
X
−l, 1

2 +ε′

[±]

‖ψ′‖
X

l, 1
2−2ε′

±

.

The left hand side equals∣∣ ∫∫
φ〈βπ[±](D)ψ, π±(D)ψ′〉dx dt

∣∣ ,
which can be estimated by

‖φ‖
Y

k, 1
2 +ε′

+

‖〈βπ[±](D)ψ, π±ψ′〉‖
Y
−k,− 1

2−ε′

+

.

Thus (3.3) is fulfilled if

‖〈βπ[±](D)ψ, π±(D)ψ′〉‖
Y
−k,− 1

2−ε′

+

≤ c‖ψ‖
X
−l, 1

2 +ε′

[±]

‖ψ′‖
X

l, 1
2−2ε′

±

(3.5)

and the same with Y −k,− 1
2−ε

′

+ replaced by Y −k,− 1
2−ε

′

− on the left hand side.
The linear terms in the integral equations can easily be treated as follows:

‖ψ∓‖
X
−l,− 1

2 +2ε′

∓ [0,T ]

≤ ‖ψ∓‖L2([0,T ],H−l) ≤ T
1
2 ‖ψ∓‖L∞([0,T ],H−l) ≤ cT

1
2 ‖ψ∓‖

X
−l, 1

2 +ε′

∓ [0,T ]

and

‖A− 1
2φ±‖

Y
k,− 1

2 +2ε′

[±] [0,T ]

≤ ‖φ±‖L2([0,T ],Hk−1) ≤ T
1
2 ‖φ±‖L∞([0,T ],Hk−1) ≤ cT

1
2 ‖φ±‖

Y
k, 1

2 +ε′

± [0,T ]
.

It remains to prove (3.4) and (3.5).

Lemma 3.2. Assume l < 1
4 , 2l + k < 1 and l + k ≤ 1. Then (3.4) holds for a

sufficiently small ε′ > 0.
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Proof. We have to show∣∣∣ ∫∫
〈βπ[±](D)ψ, π±(D)ψ′〉φdx dt

∣∣∣ ≤ c‖φ‖
Y

1−k, 1
2−2ε′

+

‖ψ‖
X
−l, 1

2 +ε′

[±]

‖ψ′‖
X
−l, 1

2 +ε′

±

.

The left hand side equals (according to the calculation above)∣∣∣ ∫∫
∗
〈βπ±(ξ2)π[±](ξ1)ψ̃(ξ1, τ1), ψ̃′(−ξ2,−τ2)〉φ̃(ξ, τ)dξ1dξ2dτ1dτ2

∣∣∣ ,
where * denotes the region ξ1 + ξ2 = ξ, τ1 + τ2 = τ . Defining now

ṽ1(ξ1, τ1) := 〈ξ1〉−l〈τ1[±]|ξ1|〉
1
2+ε′ ψ̃(ξ1, τ1)

ṽ2(ξ2, τ2) := 〈ξ2〉−l〈τ2 ± |ξ2|〉
1
2+ε′ ψ̃′(ξ2, τ2)

ϕ̃(ξ, τ) := 〈ξ〉1−k〈τ + |ξ|〉 1
2−2ε′ φ̃(ξ, τ),

we have

‖ψ‖
X
−l, 1

2 +ε′

[±]

= ‖v1‖L2
xt
, ‖ψ′‖

X
−l, 1

2 +ε′

±

= ‖v1‖L2
xt
, ‖φ‖

Y
1−k, 1

2−2ε′

+

= ‖ϕ‖L2
xt
.

Thus we have to show∣∣∣ ∫∫
∗

〈βπ±(ξ2)π[±](ξ1)ṽ1(ξ1, τ1), ṽ2(−ξ2,−τ2)〉〈ξ1〉l〈ξ2〉lϕ̃(ξ, τ)

〈τ1[±]|ξ1|〉
1
2+ε′〈τ2 ∓ |ξ2|〉

1
2+ε′〈τ + |ξ|〉 1

2−2ε′〈ξ〉1−k
dξ1dξ2dτ1dτ2

∣∣∣
≤ c‖v1‖L2‖v2‖L2‖ϕ‖L2 .

According to our computations at the end of Section 1 we know: in the (+,+)-case
or (−,−)-case this integral reduces to the region ξ1ξ2 > 0, whereas in the (+,−)-
case or (−,+)-case it reduces to ξ1ξ2 < 0 . In any case βπ±(ξ2)π[±](ξ1) is a constant
matrix in each of the quadrants in the (ξ1, ξ2)-plane.

A. Let us first consider the (+,−)-case or (−,+)-case. Here we have to prove∫∫
∗

ξ1ξ2<0

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l〈ξ2〉l

〈τ1 ± |ξ1|〉
1
2+ε′〈τ2 ± |ξ2|〉

1
2+ε′〈τ + |ξ|〉 1

2−2ε′〈ξ〉1−k
dξ1dξ2dτ1dτ2

≤ c‖v1‖L2‖v2‖L2‖ϕ‖L2 .

In this region we have |ξ| = ||ξ1| − |ξ2||. Define

σ1 = τ1 ± |ξ1| , σ2 = τ2 ± |ξ2| , σ = τ + |ξ| .

Then we get the decisive algebraic inequality:

2 min(|ξ1|, |ξ2|) ≤ |ξ1|+ |ξ2| ∓ ||ξ2| − |ξ1||
= |ξ1|+ |ξ2| ∓ |ξ|
= ±(τ1 ± |ξ1|)± (τ2 ± |ξ2|)∓ (τ + |ξ|)
= ±σ1 ± σ2 ∓ σ ≤ |σ1|+ |σ2|+ |σ| .

(3.6)

Case 1: |ξ1| << |ξ2| (⇒ |ξ| ∼ |ξ2|) (The case |ξ2| << |ξ1| can be handled similarly.)
We have

〈ξ1〉l〈ξ2〉l

〈ξ〉1−k
≤ c〈ξ1〉l〈ξ2〉l−1+k

and consider three different cases depending on which of the σ’s is dominant.
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a. |σ| ≥ |σ1| , |σ2| . By (3.6) we have 〈σ〉 ≥ c〈ξ1〉, so that it remains to estimate∫∫
∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l〈ξ2〉l−1+k

〈σ1〉
1
2+ε′〈σ2〉

1
2+ε′〈ξ1〉

1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ2〉

1
2+ε′〈ξ1〉−2l+ 3

2−k−2ε′
dξ1dξ2dτ1dτ2

=
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ2〉

1
2+ε′〈ξ1〉

1
2+ε

dξ1dξ2dτ1dτ2 .

Here we used the assumptions l − 1 + k ≤ 0, |ξ1| ≤ |ξ2|, 2l + k < 1. ε′ > 0
is sufficiently small and ε > 0. Forgetting about the factor 〈σ1〉

1
2+ε′ and using

Plancherel and Hölder this is bounded by∥∥F−1
( |ṽ1|
〈ξ1〉

1
2+ε

)∥∥
L2

tL
∞
x

∥∥F−1
( |ṽ2(−ξ2,−τ2)|

〈σ2〉
1
2+ε′

)∥∥
L∞t L2

x
‖ϕ‖L2

tL
2
x

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt

by Sobolev’s embedding and X0, 12+ε′

± ⊂ L∞t L
2
x .

b. |σj | (j = 1 or j = 2) dominant. This case can be treated similarly by using
the estimate 〈σj〉

1
2+ε′ ≥ c〈ξ1〉

1
2+ε′ .

Case 2: |ξ1| ∼ |ξ2|. We have

〈ξ1〉l〈ξ2〉l

〈ξ〉1−k
∼ 〈ξ1〉2l

〈ξ〉1−k
.

a. |σ| dominant.
We use (3.6) and get 〈σ〉 ≥ c〈ξ1〉, and moreover , l < 1

4 , 〈ξ1〉 ≥ c〈ξ〉, and 2l+ k < 1
and estimate as follows:∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉2l−
1
2+2ε′

〈σ1〉
1
2+ε′〈σ2〉

1
2+ε′〈ξ〉1−k

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ2〉

1
2+ε′〈ξ〉 3

2−k−2l−2ε′
dξ1dξ2dτ1dτ2

=
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ2〉

1
2+ε′〈ξ〉 1

2+ε
dξ1dξ2dτ1dτ2

≤ ‖v1‖L2
xt

∥∥F−1
( |ṽ2(−ξ2,−τ2)|

〈σ2〉
1
2+ε′

)∥∥
L∞t L2

x

∥∥F−1
( |ϕ̃|
〈ξ〉 1

2+ε

)∥∥
L2

tL
∞
x

≤ ‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt

b. The cases |σ1| or |σ2| dominant are handled similarly.
B. Let us next consider the (+,+)-case or (−,−)-case. We have to prove∫∫

∗
ξ1ξ2>0

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l〈ξ2〉l

〈τ1 ± |ξ1|〉
1
2+ε′〈τ2 ∓ |ξ2|〉

1
2+ε′〈τ + |ξ|〉 1

2−2ε′〈ξ〉1−k
dξ1dξ2dτ1dτ2

≤ c‖v1‖L2‖v2‖L2‖ϕ‖L2 .

In this region we have |ξ| = |ξ1| + |ξ2| . Assuming without loss of generality
|ξ2| ≥ |ξ1| we have |ξ| ∼ |ξ2| and also

〈ξ1〉l〈ξ2〉l

〈ξ〉1−k
≤ c〈ξ1〉l

〈ξ2〉1−k−l
≤ c〈ξ1〉2l+k−1 ≤ c〈ξ1〉−ε
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by our assumptions l + k ≤ 1 and 2l + k < 1 . Moreover, defining

σ1 = τ1 ± |ξ1| , σ2 = τ2 ∓ |ξ2| , σ = τ + |ξ| ,

we get

2 min(|ξ1|, |ξ2|) ≤ ∓|ξ1| ± |ξ2|+ |ξ1|+ |ξ2|
= −(τ1 ± |ξ1|)− (τ2 ∓ |ξ2|) + τ + |ξ|
= −σ1 − σ2 + σ ≤ |σ1|+ |σ2|+ |σ| .

a. |σ| dominant. This implies 〈σ〉 ≥ c〈ξ1〉 so that we estimate for sufficiently
small ε′ > 0:∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈ξ1〉ε〈ξ1〉

1
2−2ε′〈σ1〉

1
2+ε′〈σ2〉

1
2+ε′

≤
∥∥F−1

( |ṽ1|
〈ξ1〉

1
2+ε−2ε′

)∥∥
L2

tL
∞
x

∥∥F−1
( |ṽ2(−ξ2,−τ2)|

〈σ2〉
1
2+ε′

)∥∥
L∞t L2

x

∥∥ϕ∥∥
L2

tL
2
x

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt
.

b. The cases |σ1| or |σ2| dominant are handled similarly. �

Remark: The modified estimate (3.4) with Y k−1,− 1
2+2ε′

+ replaced by Y k−1,− 1
2+2ε′

−
is proven in the same way replacing σ = τ + |ξ| by σ = τ −|ξ| everywhere. One just
has to show that the decisive algebraic inequality 2 min(|ξ1|, |ξ2|) ≤ |σ1|+ |σ2|+ |σ|
still holds true. This can easily be seen as follows: in Part A of the proof we
estimate

2 min(|ξ1|, |ξ2|) ≤ |ξ1|+ |ξ2| ± ||ξ1| − |ξ2||
= |ξ1|+ |ξ2| ± |ξ|
= ±(τ1 ± |ξ1|)± (τ2 ± |ξ2|)∓ (τ − |ξ|)
= ±σ1 ± σ2 ∓ σ ≤ |σ1|+ |σ2|+ |σ| ,

and in Part B we get

2 min(|ξ1|, |ξ2|) ≤ ±|ξ1| ∓ |ξ2|+ |ξ1|+ |ξ2| = ±|ξ1| ∓ |ξ2|+ |ξ|
= (τ1 ± |ξ1|) + (τ2 ∓ |ξ2|)− (τ − |ξ|)
= σ1 + σ2 − σ ≤ |σ1|+ |σ2|+ |σ| .

Lemma 3.3. Assume k ≥ |l| and k > 0. Then (3.5) holds for a sufficiently small
ε′ > 0 .

Proof. Arguing as in the previous proof we have to show∣∣∣ ∫∫
∗

〈βπ±(ξ2)π[±](ξ1)ṽ1(ξ1, τ1), ṽ2(−ξ2,−τ2)〉〈ξ1〉lϕ̃(ξ, τ)

〈τ1[±]|ξ1|〉
1
2+ε′〈τ2 ∓ |ξ2|〉

1
2−2ε′〈τ + |ξ|〉 1

2+ε′〈ξ〉k〈ξ2〉l
dξ1dξ2dτ1dτ2

∣∣∣
≤ c‖v1‖L2‖v2‖L2‖ϕ‖L2 .

A: Consider first the (+,−)-case or (−,+)-case. One has to show∫∫
∗

ξ1ξ2<0

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l

〈τ1 ± |ξ1|〉
1
2+ε′〈τ2 ± |ξ2|〉

1
2−2ε′〈τ + |ξ|〉 1

2+ε′〈ξ〉k〈ξ2〉l
dξ1dξ2dτ1dτ2

≤ c‖v1‖L2‖v2‖L2‖ϕ‖L2 .
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In this region we have |ξ| = ||ξ1| − |ξ2||. Define

σ1 = τ1 ± |ξ1| , σ2 = τ2 ± |ξ2| , σ = τ + |ξ| .

Again as in the previous proof (cf. (3.6)),

2 min(|ξ1|, |ξ2|) ≤ |σ1|+ |σ2|+ |σ| . (3.7)

Case 1: |ξ1| << |ξ2| (⇒ |ξ| ∼ |ξ2|) We have

〈ξ1〉l

〈ξ〉k〈ξ2〉l
∼ 〈ξ1〉l

〈ξ2〉k+l
.

In the |σ2| - dominant case it remains to estimate, using 〈ξ1〉 ≤ c〈σ2〉, k + l ≥ 0,
k > 0 and |ξ2| ≥ |ξ1|:∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l

〈σ1〉
1
2+ε′〈σ〉 1

2+ε′〈ξ1〉
1
2−2ε′〈ξ2〉k+l

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ1〉k+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∥∥F−1

( |ṽ1|
〈ξ1〉k+

1
2−2ε′

)∥∥
L2

tL
∞
x
‖v2‖L2

tL
2
x

∥∥F−1
( |ϕ̃|
〈σ〉 1

2+ε′

)∥∥
L∞t L2

x

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt
.

The regions where |σ| or |σ1| are dominant are treated similarly.
Case 2: |ξ2| << |ξ1| (⇒ |ξ| ∼ |ξ1|) Using

〈ξ1〉l

〈ξ〉k〈ξ2〉l
∼ 1
〈ξ1〉k−l〈ξ2〉l

and (3.7) we have to estimate in the |σ2|-dominant case, using k− l ≥ 0, k > 0 and
|ξ1| ≥ |ξ2|: ∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ1〉k−l〈ξ2〉l+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ2〉k+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt

similarly as in Case 1. The regions where |σ| or |σ1| are dominant can be handled
similarly.
Case 3: |ξ1| ∼ |ξ2| (⇒ |ξ| ≤ |ξ1|+ |ξ2| ∼ 2|ξ2|). We use

〈ξ1〉l

〈ξ〉k〈ξ2〉l
∼ 1
〈ξ〉k
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and get in the |σ2| - dominant region (the other cases can be treated similarly again)
by our assumption k > 0:∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ2〉
1
2−2ε′〈ξ〉k

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ〉k+ 1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∥∥∥∥F−1

(
|ṽ1|

〈σ1〉
1
2+ε′

)∥∥∥∥
L∞t L2

x

‖v2‖L2
tL

2
x

∥∥∥∥F−1

(
|ϕ̃|

〈ξ〉k+ 1
2−2ε′

)∥∥∥∥
L2

tL
∞
x

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt
.

B: Consider now the (+,+)-case or (−,−)-case, where one has to estimate∫∫
∗

ξ1ξ2>0

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|〈ξ1〉l

〈τ1 ± |ξ1|〉
1
2+ε′〈τ2 ∓ |ξ2|〉

1
2−2ε′〈τ + |ξ|〉 1

2+ε′〈ξ〉k〈ξ2〉l
dξ1dξ2dτ1dτ2 .

One has |ξ| = |ξ1|+ |ξ2| and with

σ1 = τ1 ± |ξ1| , σ2 = τ2 ∓ |ξ2| , σ = τ + |ξ|

one checks again (3.7).
If |σ2| is dominant and |ξ1| ≥ |ξ2| we have |ξ| ∼ |ξ1| and

〈ξ1〉l

〈ξ〉k〈ξ2〉l
∼ 1
〈ξ1〉k−l〈ξ2〉l

as well as 〈ξ2〉 ≤ c〈σ2〉, so that by use of k− l ≥ 0, k > 0 and |ξ1| ≥ |ξ2| we estimate∫∫
∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ1〉k−l〈ξ2〉l+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∫∫

∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ2〉k+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤
∥∥F−1

( |ṽ1|
〈σ1〉

1
2+ε′

)∥∥
L∞t L2

x

∥∥F−1
( |ṽ2(−ξ2,−τ2)|
〈ξ2〉k+

1
2−2ε′

)∥∥
L2

tL
∞
x
‖ϕ‖L2

tL
2
x

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt
.

If |σ2| is dominant and |ξ2| ≥ |ξ1|, we have |ξ| ∼ |ξ2| and, using k + l > 0:

〈ξ1〉l

〈ξ〉k〈ξ2〉l
∼ 〈ξ1〉l

〈ξ2〉k+l
≤ 〈ξ1〉l

〈ξ1〉k+l
=

1
〈ξ1〉k

and also 〈ξ1〉 ≤ c〈σ2〉. Thus, similarly as before we get for k > 0:∫∫
∗

|ṽ1(ξ1, τ1)||ṽ2(−ξ2,−τ2)||ϕ̃(ξ, τ)|
〈σ1〉

1
2+ε′〈σ〉 1

2+ε′〈ξ1〉k+
1
2−2ε′

dξ1dξ2dτ1dτ2

≤ c‖v1‖L2
xt
‖v2‖L2

xt
‖ϕ‖L2

xt
.

The other regions are treated similarly. �

Remark. The modified estimate (3.5) with Y
−k,− 1

2−ε
′

+ replaced by Y
−k,− 1

2−ε
′

− is
proven in the same way. See also the remark to the previous lemma.

We summarize our results in the following theorem.
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Theorem 3.4. Assume l < 1/4, k > 0, 2l + k < 1, l + k ≤ 1 and k ≥ |l| . The
Cauchy problem for the Dirac-Klein-Gordon equations (1.1),(1.2),(1.3) with data

ψ0 ∈ H−l(R) , φ0 ∈ Hk(R) , φ1 ∈ Hk−1(R)

has a unique local solution

ψ = ψ+ + ψ− with ψ± ∈ X−l, 12+ε′

± [0, T ],

and

φ =
1
2
(φ+ + φ−) , φt =

1
2i
A

1
2 (φ+ − φ−) with φ± ∈ Y k,

1
2+ε′

± [0, T ] ,

where A = − ∂2

∂x2 + 1 . Here T = T (‖ψ0‖H−l , ‖φ0‖Hk , ‖φ1‖Hk−1) and ε′ > 0 is
sufficiently small. This solution satisfies

ψ ∈ C0([0, T ],H−l(R)) , φ ∈ C0([0, T ],Hk(R)) , φt ∈ C0([0, T ],Hk−1(R)) .

4. Global existence

The following global existence result is an easy consequence of the local results
and conservation of charge.

Theorem 4.1. Assume ψ0 ∈ L2(R), φ0 ∈ Hk(R), φ1 ∈ Hk−1(R), where 0 < k <
1/2. Then the solution of Theorem 3.4 exists globally in t.

Proof. We only need an a-priori-bound for ‖ψ(t)‖L2 and ‖φ(t)‖Hk + ‖φt(t)‖Hk−1 .
Charge conservation gives the L2 - bound of ψ(t) and φ(t) fulfills the integral
equation

φ(t) = cos(A
1
2 t)φ0 +A−

1
2 sin(A

1
2 t)φ1 +

∫ t

0

A−
1
2 sin[A

1
2 (t− s)]〈βψ(s), ψ(s)〉ds

+ c0

∫ t

0

A−
1
2 sin[A

1
2 (t− s)]φ(s)ds ,

where c0 = 1−m2 . Thus

‖φ(t)‖Hk + ‖φt(t)‖Hk−1

≤ c
(
‖φ0‖Hk + ‖φ1‖Hk−1 +

∫ t

0

(‖〈βψ(s), ψ(s)〉‖Hk−1 + ‖φ(s)‖Hk−1) ds
)
.

Using the estimate

‖〈βψ, ψ〉‖Hk−1 ≤ c‖ψ‖2
L2 for k <

1
2
,

which follows from (cf. [4])

‖uv‖2
Hk−1 ≤

∫ ∣∣∣ ∫
ũ(η)ṽ(ξ − η) dη

∣∣∣2〈ξ〉2(k−1) dξ

≤
∫

(
∫
|ũ(η)|2dη)(

∫
|ṽ(ξ − η)|2dη)〈ξ〉2(k−1)dξ

≤ ‖u‖2
L2‖v‖2

L2

∫
〈ξ〉2(k−1)dξ ≤ c‖u‖2

L2‖v‖2
L2 ,

we arrive at

‖φ(t)‖Hk + ‖φt(t)‖Hk−1 ≤ c(‖φ0‖Hk + ‖φ1‖Hk−1 + t‖ψ0‖2
L2 +

∫ t

0

‖φ(s)‖Hk ds) ,
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so that Gronwall’s lemma gives the desired a-priori-bound. �

References

[1] P. d’Ancona, D. Foschi, and S. Selberg: Null structure and almost optimal local regularity

for the Dirac-Klein–Gordon system. arXiv: math. AP/0509545 , to appear in Journal of the

EMS.
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