Electronic Journal of Differential Equations, Vol. 2006(2006), No. 156, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# ELASTO-PLASTIC TORSION PROBLEM AS AN INFINITY LAPLACE'S EQUATION 

AHMED ADDOU, ABDELUAAB LIDOUH, BELKASSEM SEDDOUG


#### Abstract

In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with and operator $A$.


## 1. Introduction

Given a bounded open subset $\Omega$ of $\mathbb{R}^{N}, N \geq 1$, we consider the Dirichlet Problem

$$
\begin{gather*}
A u-\Delta_{\infty} u=f \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where $\Delta_{\infty} u=u_{x_{i}} u_{x_{j}} u_{x_{i} x_{j}}$ (see [3]), $f$ in $L^{1}(\Omega)$ or $W^{-1, p^{\prime}}(\Omega)$ and $A$ is a Leray-Lions operator with no coercivity assumption, i.e.

$$
A v=-\operatorname{div}(a(x, \nabla v(x)))
$$

where $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Caratheodory function satisfying the following assumptions:

For almost every $x \in \Omega$ and for all $\xi, \eta \in \mathbb{R}^{N},(\xi \neq \eta)$, one has:

$$
\begin{gather*}
a(x, \xi) \xi \geq 0  \tag{1.2}\\
|a(x, \xi)| \leq \beta\left[h(x)+|\xi|^{p-1}\right]  \tag{1.3}\\
{[a(x, \xi)-a(x, \eta)](\xi-\eta)>0} \tag{1.4}
\end{gather*}
$$

with $1<p<+\infty, \beta>0, h \in L^{p^{\prime}}(\Omega)\left(p^{\prime}\right.$ denotes the conjugate exponent of $p$, i.e: $\left.\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$.

By a solution to 1.1 we will mean a variational solution in the sense which extends that given in ([3]) and ( 9 ), that is, a function $u$ which is the limit of the sequence $\left(u_{n}\right)$ of solutions to the Dirichlet problems

$$
\begin{gathered}
A u_{n}-\Delta_{n} u_{n}=f \quad \text { in } \Omega, \\
u_{n}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

[^0]as $n \rightarrow \infty$, where $\Delta_{n}$ is the $n$-Laplacian operator $\left(\Delta_{n} v=\operatorname{div}\left(|\nabla v|^{n-2} \nabla v\right)\right.$.
We show that in the variational case $\left(f \in W^{-1, p^{\prime}}(\Omega)\right)$, the sequence $\left(u_{n}\right)$ converges to the unique solution to the variational inequality
\[

$$
\begin{gathered}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \text { for all } v \in \mathcal{K}, \\
u \in \mathcal{K} .
\end{gathered}
$$
\]

Where $\mathcal{K}$ is the bounded convex cone of $W_{0}^{1, p}(\Omega)$ defined as:

$$
\mathcal{K}=\left\{v \in W_{0}^{1, p}(\Omega):|\nabla v(x)| \leq 1 \text { a.e. in } \Omega\right\}
$$

and in the case $f \in L^{1}(\Omega)$, the sequence $\left(u_{n}\right)$ converges to the unique solution to the problem

$$
\begin{aligned}
\left\langle A u, T_{k}(v-u)\right\rangle & \geq \int_{\Omega} f T_{k}(v-u) d x, \quad \text { for all } v \in \mathcal{K}, \\
u & \in \mathcal{K}, \quad \text { for all } k>0 .
\end{aligned}
$$

Where $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is the cut function defined as

$$
T_{k}(s)= \begin{cases}s & \text { if }|s| \leq k \\ k \operatorname{sign}(s) & \text { if }|s|>k\end{cases}
$$

here $\langle.,$.$\rangle denotes the duality pairing between W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$.
Our approach is also inscribed among the techniques of "the increase of power", first introduced by Boccardo and Murat in [4, where they approached the problem

$$
\begin{gathered}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \quad \text { for all } v \in \mathcal{K}_{0} \\
u \in \mathcal{K}_{0}=\left\{v \in W_{0}^{1, p}(\Omega):|v(x)| \leq 1 \text { a.e. in } \Omega\right\},
\end{gathered}
$$

by the sequence of the Dirichlet equations

$$
\begin{gathered}
A u_{n}-\left|u_{n}\right|^{n-1} u_{n}=f \quad \text { in } D^{\prime}(\Omega) \\
u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{n}(\Omega),
\end{gathered}
$$

where $f \in W^{-1, p^{\prime}}(\Omega)$ and $A$ is modelled on the $p$-Laplacian.
Then in [5], Dall'Aglio and Orsina generalized this result by considering increasing powers depending of a certain Caratheodory function satisfying the sign condition and an integrability assumption.

Then finally in [2] the authors extended this result to the case where increasing powers are multiplied by a quantity depending on the gradient and verifying adequate conditions, they examine the two cases, $f$ in $L^{1}(\Omega)$ and in $W^{-1, p^{\prime}}(\Omega)$.

In this paper we examine the case where the increasing powers carry on the gradients and not on quantities independent of the gradient.

## 2. The variational case

Let $f \in W^{-1, p^{\prime}}(\Omega), 1<p<+\infty$. For all integer $n \geq p$, we consider the Dirichlet problem

$$
\begin{gather*}
A u_{n}-\Delta_{n} u_{n}=f \quad \text { in } \Omega \\
u_{n} \in W_{0}^{1, n}(\Omega) \tag{2.1}
\end{gather*}
$$

It is known [7, 8] that, under assumptions (1.2)-(1.4), the problem 2.1) has an unique solution $u_{n}$, in the following sense:

$$
\begin{equation*}
\forall v \in W_{0}^{1, n}(\Omega): \int_{\Omega}\left[a\left(x, \nabla u_{n}\right) \nabla v+\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla v\right] d x=\langle f, v\rangle \tag{2.2}
\end{equation*}
$$

In the sequel $W_{0}^{1, p}(\Omega)$ is equipped with its usual norm

$$
\|v\|_{W_{0}^{1, p}(\Omega)}=\left[\int_{\Omega}|\nabla v|^{p} d x\right]^{1 / p}
$$

Let us now, state our first main result.
Theorem 2.1. Let $f \in W^{-1, p^{\prime}}(\Omega), 1<p<+\infty$. Under assumptions $\sqrt{1.2}-(\sqrt{1.4}$, if $u_{n}$ designates the solution to the problem 2.1), then the sequence $\left(u_{n}\right)$ converges strongly in $W_{0}^{1, p}(\Omega)$, to the unique solution $u$ to the problem

$$
\begin{gather*}
\langle A u, v-u\rangle \geq\langle f, v-u\rangle, \quad \text { for all } v \in \mathcal{K}, \\
u \in \mathcal{K} . \tag{2.3}
\end{gather*}
$$

## Proof of Theorem 2.1.

A priori estimate. With $u_{n}$ as a test function in 2.2), we get

$$
\int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\Omega}\left|\nabla u_{n}\right|^{n} d x=\left\langle f, u_{n}\right\rangle \leq\|f\|_{-1, p^{\prime}}\left\|u_{n}\right\|_{1, p}
$$

hence

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{n} d x \leq c\left\|u_{n}\right\|_{1, p} \quad \text { for all } n \geq p \tag{2.4}
\end{equation*}
$$

In the sequel $c, c_{1}, c_{2} \ldots$ designate arbitrary constants.
From 2.4, and by splitting $\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x$ as

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=\int_{\left[\left|\nabla u_{n}\right| \leq 1\right]}\left|\nabla u_{n}\right|^{p} d x+\int_{\left[\left|\nabla u_{n}\right|>1\right]}\left|\nabla u_{n}\right|^{p} d x
$$

one deduces that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq|\Omega|+c\left[\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x\right]^{\frac{1}{p}} \quad \text { for all } n \geq p
$$

and so

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq c \quad \text { for all } n \geq p \tag{2.5}
\end{equation*}
$$

Thereafter,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{n} d x \leq c \quad \forall n \quad \text { and } \quad \int_{\Omega}\left|\nabla u_{n}\right|^{q} d x \leq c \quad \forall q, \forall n \geq q \tag{2.6}
\end{equation*}
$$

Therefore, one can construct a subsequence, still denoted by $\left(u_{n}\right)_{n}$, such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, q}(\Omega) \text { and uniformly in } \bar{\Omega} \tag{2.7}
\end{equation*}
$$

for some $u \in W_{0}^{1, q}(\Omega) \cap L^{\infty}(\Omega)$, for all $q>1$. More precisely, we have

$$
\begin{equation*}
u \in W_{0}^{1, \infty}(\Omega) \quad \text { and } \quad\|\nabla u\|_{\infty} \leq 1 \tag{2.8}
\end{equation*}
$$

Indeed, from (2.6) and 2.7), one has

$$
\|\nabla u\|_{\infty}=\lim _{q \rightarrow \infty}\|\nabla u\|_{q} \leq \lim _{q \rightarrow \infty}\left(\liminf _{n \rightarrow \infty}\left\|\nabla u_{n}\right\|_{q}\right) \leq \lim _{q \rightarrow \infty} c^{\frac{1}{q}}=1
$$

Almost everywhere convergence of gradients. With $v=u_{n}-u$, as a test function in 2.2 , and using the fact that

$$
\nabla u_{n}\left(\nabla u_{n}-\nabla u\right) \geq 0
$$

in the set $\left\{\left|\nabla u_{n}\right| \geq|\nabla u|\right\}$, one has

$$
\begin{equation*}
\left\langle A u_{n}, u_{n}-u\right\rangle+\int_{\left\{\left|\nabla u_{n}\right|<|\nabla u|\right\}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \leq \varepsilon_{n} \tag{2.9}
\end{equation*}
$$

We will denote by $\varepsilon_{n}$ any quantity which converges to zero as $n$ tends to infinity.
Let $\varepsilon>0$, for the second term on the left in (2.9), one puts

$$
A_{1}=\left\{\left|\nabla u_{n}\right|<|\nabla u| \text { and }\left|\nabla u_{n}\right| \leq 1-\varepsilon\right\}, \quad A_{2}=\left\{1-\varepsilon<\left|\nabla u_{n}\right|<|\nabla u|\right\}
$$

and so we have

$$
\begin{equation*}
\int_{A_{1}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x=\sigma_{n, \varepsilon} \tag{2.10}
\end{equation*}
$$

where $\sigma_{n, \varepsilon}$ denotes a quantity depending on $n$ and $\varepsilon$, such that, for any fixed $\varepsilon>0$, $\sigma_{n, \varepsilon} \rightarrow 0$, as $n \rightarrow \infty$, and which may change from line to line. Also

$$
\begin{align*}
& \int_{A_{2}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right) d x \\
& =\int_{A_{2}}\left|\nabla u_{n}\right|^{n-2}\left(\left|\nabla u_{n}\right|^{2}-|\nabla u|^{2}\right) d x+\int_{A_{2}}\left|\nabla u_{n}\right|^{n-2} \nabla u\left(\nabla u-\nabla u_{n}\right) d x  \tag{2.11}\\
& =q_{n}+I_{n}
\end{align*}
$$

where the quantity $I_{n}$ is nonnegative, and $q_{n} \in[-2 \varepsilon|\Omega|, 0]$. Combining (2.9), 2.10) and 2.11, one gets

$$
\left\langle A u_{n}, u_{n}-u\right\rangle \leq \sigma_{n, \varepsilon}+2 \varepsilon|\Omega|, \forall \varepsilon>0
$$

On the other hand, $\left\langle A u, u_{n}-u\right\rangle \rightarrow 0$, as $n \rightarrow \infty$, so that

$$
0 \leq\left\langle A u_{n}-A u, u_{n}-u\right\rangle \leq \sigma_{n, \varepsilon}+2 \varepsilon|\Omega|, \forall \varepsilon>0
$$

Passing to the limit as $n \rightarrow \infty$, for any fixed $\varepsilon$, one has

$$
0 \leq \liminf _{n \rightarrow \infty}\left\langle A u_{n}-A u, u_{n}-u\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle A u_{n}-A u, u_{n}-u\right\rangle \leq 2 \varepsilon|\Omega| \quad \forall \varepsilon>0
$$

By the arbitrariness of $\varepsilon$ (and since $\left\langle A u_{n}-A u, u_{n}-u\right\rangle$ does not depend on $\varepsilon$ ) it follows that

$$
\begin{equation*}
\left\langle A u_{n}-A u, u_{n}-u\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

Which implies, thanks to 1.4 , that (for a subsequence),

$$
\left(a\left(x, \nabla u_{n}\right)-a(x, \nabla u)\right)\left(\nabla u_{n}-\nabla u\right) \rightarrow 0 \text { a.e. in } \Omega .
$$

For a fixed $k>1$, we put

$$
X=\bigcap_{q \in \mathbb{N}} \bigcup_{n \geq q}\left\{\left|\nabla u_{n}\right| \geq k\right\}, \text { and its complement } Y=\bigcup_{q \in \mathbb{N}} \bigcap_{n \geq q}\left\{\left|\nabla u_{n}\right|<k\right\}
$$

for all $x \in Y$, the sequence $\left(\nabla u_{n}(x)\right)$ is bounded in $\mathbb{R}^{N}$, so

$$
\nabla u_{n}(x) \rightarrow \xi
$$

for a subsequence and some $\xi \in \mathbb{R}^{N}$, while 1.4) and the continuity of $a(x,$.$) , implies$ that $\xi=\nabla u(x)$, we can then conclude that

$$
\nabla u_{n}(x) \rightarrow \nabla u(x) \quad \text { for all } x \in Y
$$

To show the almost everywhere convergence of $\left(\nabla u_{n}\right)$, it suffices to prove that $\operatorname{meas}(X)=0$. In deed, from 2.6, one has

$$
\begin{equation*}
\operatorname{meas}\left\{\left|\nabla u_{n}\right| \geq k\right\}=\int_{\left\{\left|\nabla u_{n}\right| \geq k\right\}} 1 d x \leq \frac{c}{k^{n}} \tag{2.13}
\end{equation*}
$$

Since $X \subset \bigcup_{n \geq q}\left\{\left|\nabla u_{n}\right| \geq k\right\}$, for all $q$, one deduces that

$$
\operatorname{meas}(X) \leq \sum_{n \geq q} \operatorname{meas}\left\{\left|\nabla u_{n}\right| \geq k\right\} \rightarrow 0 \quad \text { as } q \rightarrow \infty
$$

Strong convergence in $W_{0}^{1, p}(\Omega)$. Thanks to Vitali's theorem, it suffices to show the equi-integrability of $\left(\left|\nabla u_{n}\right|^{p}\right)$ in $L^{1}(\Omega)$, what follows from 2.6 with $q=p+1$.

Indeed for a measurable subset $E$ of $\Omega$, one has

$$
\int_{E}\left|\nabla u_{n}\right|^{p} d x \leq\left(\int_{E}\left|\nabla u_{n}\right|^{p+1} d x\right)^{\frac{p}{p+1}}\left(\int_{E} 1 d x\right)^{\frac{1}{p+1}} \leq c(\operatorname{meas}(E))^{\frac{1}{p+1}}
$$

The function $u$ is solution to problem 2.3. Let $v \in \mathcal{K}$ and $0<\theta<1$, taking $z=u_{n}-\theta T_{k}(v)$ as a test function in 2.2, one gets

$$
\left\langle A u_{n}, z\right\rangle+\int_{\Omega}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla z d x=\langle f, z\rangle
$$

While noticing that

$$
\int_{\left\{\left|\nabla u_{n}\right| \geq \theta\left|\nabla T_{k}(v)\right|\right\}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n}\left(\nabla u_{n}-\theta \nabla T_{k}(v)\right) d x \geq 0
$$

one has

$$
\left\langle A u_{n}, z\right\rangle+\int_{\left\{\left|\nabla u_{n}\right|<\theta\left|\nabla T_{k}(v)\right|\right\}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla z d x \leq\langle f, z\rangle
$$

Passing to the limit as $n \rightarrow \infty$, and using standard result about Caratheodory functions satisfying $\sqrt{1.3}$, one gets

$$
\left\langle A u, u-\theta T_{k}(v)\right\rangle \leq\left\langle f, u-\theta T_{k}(v)\right\rangle
$$

The result is then obtained while passing to the limit as $\theta \rightarrow 1$ and $k \rightarrow \infty$.
3. The case $f \in L^{1}(\Omega)$

In this section, we suppose that $f \in L^{1}(\Omega)$, as in the previous section. Now we prove our second main result.

Theorem 3.1. Let $f \in L^{1}(\Omega), 1<p<+\infty$. Under assumptions $1.2-(1.4$, if $u_{n}(n>N)$ designates the solution to the problem 2.1), then the sequence ( $u_{n}$ ) converges strongly in $W_{0}^{1, p}(\Omega)$, to the unique solution $u$ to the problem

$$
\begin{align*}
\left\langle A u, T_{k}(v-u)\right\rangle & \geq \int_{\Omega} f T_{k}(v-u) d x \quad \text { for all } v \in \mathcal{K},  \tag{3.1}\\
u & \in \mathcal{K}, \quad \text { for all } k>0 .
\end{align*}
$$

Proof of Theorem 3.1. According to the previous section, it is clear that the estimate (2.6) permits to show that the sequence $\left(u_{n}\right)$ converges in $W_{0}^{1, p}(\Omega)$ and uniformly in $\Omega$ (for a subsequence) to $u$ satisfying (2.8).

We are going to prove (2.6) and the fact that $u$ is the solution to (3.1).

A priori estimate. With $u_{n}(n>N)$ as a test function in 2.2), we get

$$
\int_{\Omega} a\left(x, \nabla u_{n}\right) \nabla u_{n} d x+\int_{\Omega}\left|\nabla u_{n}\right|^{n} d x=\int_{\Omega} f u_{n} d x \leq\|f\|_{1}\left\|u_{n}\right\|_{\infty}
$$

Let $q>N$ (fixed), by splitting $\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x$ as

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x=\int_{\left\{\left|\nabla u_{n}\right|<1\right\}}\left|\nabla u_{n}\right|^{q} d x+\int_{\left\{\left|\nabla u_{n}\right| \geq 1\right\}}\left|\nabla u_{n}\right|^{q} d x
$$

and using Sobolev's inequality [1], one has

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x \leq c \quad \forall n \geq q \tag{3.2}
\end{equation*}
$$

therefore,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{n} d x \leq c \quad \forall n>N
$$

It follows that the estimate 3.2 holds for all $q>1$, what leads to the estimate 2.6.

The function $u$ is solution to problem (3.1). Let $v \in \mathcal{K}$ and $0<\theta<1$, taking $z=T_{k}\left(u_{n}-\theta v\right)$ as a test function in 2.2 , one gets

$$
\left\langle A u_{n}, z\right\rangle+\int_{\Omega}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla z d x=\int_{\Omega} f z d x
$$

While noticing that

$$
\int_{\left\{\left|\nabla u_{n}\right| \geq \theta|\nabla v|\right\}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla T_{k}\left(u_{n}-\theta v\right) d x \geq 0
$$

one has

$$
\left\langle A u_{n}, z\right\rangle+\int_{\left\{\left|\nabla u_{n}\right|<\theta|\nabla v|\right\}}\left|\nabla u_{n}\right|^{n-2} \nabla u_{n} \nabla z d x \leq \int_{\Omega} f z d x
$$

Passing to the limit as $n \rightarrow \infty$, one gets

$$
\left\langle A u, T_{k}(u-\theta v)\right\rangle \leq \int_{\Omega} f T_{k}(u-\theta v) d x
$$

The result is obtained when passing to the limit as $\theta \rightarrow 1$.
Remark 3.2. Since $u \in W_{0}^{1, \infty}(\Omega)$, the problem can be formulated in this space by choosing $\mathcal{K}=\left\{v \in W_{0}^{1, \infty}(\Omega):\|\nabla v(x)\|_{\infty} \leq 1\right\}$, what permits to write the problem (3.1) without truncation operator, and simplify the proof of the step The function $u$ is solution to the problem (3.1). But traditionally (see for example [6]), the elastoplastic torsion problem is written with $\mathcal{K}=\left\{v \in W_{0}^{1, p}(\Omega):|\nabla v(x)| \leq 1\right.$ a.e. in $\left.\Omega\right\}$, it's why we have done this choice.

Acknowledgement. The authors would like to thank the anonymous referee for his/her interesting remarks.

## References

[1] R. Adams. Sobolev spaces. Academic Press, New York, 1975.
[2] A. Benkirane, A. EL Mahi, D. Meskine. On the limit of some penalized problems involving increasing powers. Asymptotic Analysis, Volume 36, Numbers 3-4 (2003), pp. 303-317.
[3] T. Bhattacharya, E. DiBenedetto, J. Manfredi. Limits as $p \rightarrow \infty$ of $\Delta_{p}(u)=f$ and related extremal problems. Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale Nonlinear PDE's, (1989), 15-68.
[4] L. Boccardo, F. Murat. Increase of power leads to bilateral problems. Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell' Antonio. eds., World Scientific, Singapore, 1995, pp. 113-123.
[5] A. Dall'Aglio, L. Orsina. On the limit of some nonlinear elliptic equations involving increasing powers. Asympt. Anal., 14 (1997), 49-71.
[6] D. Kinderlehrer, G. Stampacchia. An introduction to variational inequalities and their applications. Academic Press, New York, 1980.
[7] L. Leray, J. L. Lions. Quelques résultats de Visik sur les problèmes non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 93 (1965), 97-107.
[8] J. L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthiers-Villars (1969).
[9] E. Rosset. Symmetry and convexity of level sets of solutions to the infinity Laplace's equation. Electron. J. Differential Equations, vol. 1998, (1998) No. 34, pp. 1-12.

Ahmed Addou
Université Mohammed premier, Faculté des sciences, Oujda, Maroc
E-mail address: addou@sciences.univ-oujda.ac.ma
Abdeluaab Lidouh
Université Mohammed premier, Faculté des sciences, Oujda, Maroc
E-mail address: lidouh@sciences.univ-oujda.ac.ma
Belkassem Seddoug
Université Mohammed premier, Faculté des sciences, Oujda, Maroc
E-mail address: seddougbelkassem@yahoo.fr


[^0]:    2000 Mathematics Subject Classification. 35J70, 35J85, 74C05.
    Key words and phrases. Infinity Laplace equation; elasto-plastic torsion problem; variational inequality.
    © 2006 Texas State University - San Marcos.
    Submitted October 11, 2006. Published December 18, 2006.

