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SINGULAR PERIODIC PROBLEM FOR NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS WITH φ-LAPLACIAN

VLADIMÍR POLÁŠEK, IRENA RACHŮNKOVÁ

Abstract. We investigate the singular periodic boundary-value problem with

φ-Laplacian,

(φ(u′))′ = f(t, u, u′),

u(0) = u(T ), u′(0) = u′(T ),

where φ is an increasing homeomorphism, φ(R) = R, φ(0) = 0. We assume that
f satisfies the Carathéodory conditions on each set [a, b] × R2, [a, b] ⊂ (0, T )

and f does not satisfy the Carathéodory conditions on [0, T ]×R2, which means

that f has time singularities at t = 0, t = T .
We provide sufficient conditions for the existence of solutions to the above

problem belonging to C1[0, T ]. We also find conditions which guarantee the

existence of a sign-changing solution to the problem.

1. Introduction

The growth in the theory of singular nonlinear boundary-value problems has
been strongly influenced by the rich and large number of applications that occur
particulary in the physical sciences. For example the singular differential equation
with the time singularity at t = 0,

u′′ +
2
t
u′ = f(t, u)

arises in the study of steady-state oxygen diffusion in a cell with Michaelis-Menten
Kinetics [1, 13].

Here we investigate the singular nonlinear periodic problem with φ-Laplacian,

(φ(u′))′ = f(t, u, u′), (1.1)

u(0) = u(T ), u′(0) = u′(T ). (1.2)

We assume that φ is an increasing homeomorphism with φ(R) = R, φ(0) = 0,
[0, T ] ⊂ R. The function f is supposed to satisfy the Carathéodory conditions
on each set [a, b] × R2, [a, b] ⊂ (0, T ), but f does not satisfy the Carathéodory
conditions on [0, T ]× R2. We will write it f ∈ Car((0, T )× R2).
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Definition 1.1. The function f satisfies the Carathéodory conditions on the set
[a, b]× R2, [a, b] ⊂ (0, T ) if

(i) f(·, x, y) : [a, b] → R is measurable for all (x, y) ∈ R2,
(ii) f(t, ·, ·) : R2 → R is continuous for a.e. t ∈ [a, b],

(iii) for each compact set K ⊂ R2 there is a function mK ∈ L1[a, b] such that
|f(t, x, y)| ≤ mK(t) for a.e. t ∈ [a, b] and all (x, y) ∈ K.

Further we assume that f has time singularities at the endpoints 0 and T .

Definition 1.2. We say that f has time singularities at the points 0 and T , re-
spectively, if there exist x, y ∈ R such that∫ ε

0

|f(t, x, y)|dt = ∞ and
∫ T

T−ε

|f(t, x, y)|dt = ∞

for each sufficiently small ε > 0. The points 0 and T are called singular points of
f .

In order to prove the existence of solutions for periodic problem (1.1), (1.2) we
start with the proof of the existence of solutions of auxiliary Dirichlet problems.
For that reason we will consider boundary conditions

u(0) = u(T ) = C, (1.3)

where C ∈ R.

Definition 1.3. Let i ∈ {2, 3}. A function u : [0, T ] → R with φ(u′) ∈ AC[0, T ] is
called a solution of problem (1.1), (1.i) if u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.i).

Note that the condition φ(u′) ∈ AC[0, T ] implies u ∈ C1[0, T ]. Therefore we
will seek solutions of problems (1.1), (1.2) and (1.1), (1.3) in the space of functions
having continuous first derivatives on [0, T ], in particular at the singular points 0
and T . In the most works studying Dirichlet problems with time singularities the
existence of so called w-solutions has been proved. See e.g. [9, 10, 11, 15].

Definition 1.4. A function u ∈ C[0, T ] is called a w-solution of problem (1.1),
(1.3) if φ(u′) ∈ ACloc(0, T ), u satisfies

(φ(u′(t)))′ = f(t, u(t), u′(t))

for a.e. t ∈ [0, T ] and fulfils (1.3) .

Since the condition φ(u′) ∈ ACloc(0, T ) implies that a w-solution u belongs only
to C1(0, T ), we do not know the behaviour of u′ at the singular endpoints 0, T .
The notion of w-solutions can not be used for periodic problem (1.1), (1.2), where
condition (1.2) requires u ∈ C1[0, T ]. That is why existence results for periodic
problem (1.1), (1.2) with time singularities have not been proved up to now and
in literature we can find only existence results for periodic problems with space
singularities (i.e. f(t, x, y) has singularities at x or at y). See e.g [4, 5, 6, 7, 8, 12,
14, 17, 18, 20], where the existence of positive periodic solutions was proved.

It seems worth to fill in this gap and to present existence results for problem
(1.1), (1.2) with time singularities, which is the main goal of our paper (Theorem
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4.1). Moreover we show conditions giving sign-changing solutions of (1.1), (1.2)
(Corollary 4.2).

We will investigate singular problem (1.1), (1.2) by means of Dirichlet problem
(1.1), (1.3). To establish the existence of a solution of the singular problem (1.1),
(1.3) we introduce a sequence of approximating regular Dirichlet problems which
are solvable. Then we pass to the limit in the sequence of approximate solutions to
get a solution (a w-solution) of the problem (1.1), (1.3) and finally of the original
problem (1.1), (1.2). In the next theorem we provide an existence principle which
contains the main rules for the construction of such approximating sequences.

For n ∈ N consider equations

(φ(u′))′ = fn(t, u, u′), (1.4)

where fn ∈ Car([0, T ]×R2). Denote

Jn = [
1
n
, T − 1

n
] ∩ [0, T ]. (1.5)

Theorem 1.5 ([16, Theorem 2.1]). Assume that

f ∈ Car((0, T )×R2) has time singularities at t = 0 and t = T, (1.6)

fn(t, x, y) = f(t, x, y) for a.e. t ∈ Jn and all x, y ∈ R, n ∈ N, (1.7)

there exists a bounded set Ω ⊂ C1[0, T ] such that for each n ∈ N
the regular problem (1.4), (1.3) has a solution un ∈ Ω. (1.8)

Then

• there exist u ∈ C[0, T ] ∩ C1(0, T ) and a subsequence {unl
} ⊂ {un} such

that
liml→∞ ‖unl

− u‖C[0,T ] = 0, liml→∞ u′nl
(t) = u′(t) locally uniformly on

(0, T ),
• u is a w-solution of (1.1), (1.3).

Moreover, assume that there exist η ∈ (0, T
2 ), λ1, λ2 ∈ {−1, 1}, d ∈ R and ψ ∈

L1[0, T ] such that for each n ∈ N

λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) ≥ ψ(t) a.e. on (0, η),

λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) ≥ ψ(t) a.e. on (T − η, T ).
(1.9)

Then u is a solution of (1.1), (1.3).

2. Preliminary Lemmas

Consider a sequence of functions vn : [0, T ] → R, n ∈ N.

Definition 2.1. We say that the sequence {vn} is equicontinuous in t0 ∈ [0, T ], if

∀ε > 0 ∃δ > 0 ∀t ∈ (t0 − δ, t0 + δ) ∩ [0, T ],∀n ∈ N : |vn(t)− vn(t0)| < ε.

We will show conditions which imply the equicontinuity of {vn} at the points 0,
T . This result will be used in Section 4.
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Lemma 2.2. Assume that there exist η ∈ (0, T
2 ) and nonnegative functions α ∈

C[0, η], β ∈ C(0, η], α(0) = 0, β(0+) = 0 such that for each n ∈ N, n > 1
η

|vn(t)| ≤ β(t) for t ∈ [
1
n
, η], (2.1)

|vn(t)− vn(0)| ≤ α(t) for t ∈ [0,
1
n

]. (2.2)

Then {vn} is equicontinuous in 0 and limn→∞ vn(0) = 0.

Proof. Choose an arbitrary ε > 0. Then there exists δ ∈ (0, η) such that

t ∈ [0, δ) ⇒ |α(t)| < ε

3
, t ∈ (0, δ) ⇒ |β(t)| < ε

3
.

Choose an arbitrary t ∈ [0, δ) and an arbitrary n ∈ N, n > 1
δ .

(a) Let t ∈ [0, 1
n ]. Then by (2.2), |vn(t)− vn(0)| ≤ α(t) < ε

3 .
(b) Let t ∈ ( 1

n , δ). Then by (2.1), (2.2), |vn(t) − vn(0)| ≤ |vn(t)| + |vn(0) −
vn( 1

n )|+ |vn( 1
n )| ≤ β(t) + α( 1

n ) + β( 1
n ) < ε.

Hence, we have proved that {vn} is equicontinuous in 0. Further, |vn(0)| ≤ |vn(0)−
vn( 1

n )|+ |vn( 1
n )| ≤ α( 1

n ) + β( 1
n ) → 0 for n→∞. �

Lemma 2.3. Assume that there exist η ∈ (0, T
2 ) and nonnegative functions α ∈

C[T − η, T ], β ∈ C[T − η, T ), α(T ) = 0, β(T−) = 0 such that for each n ∈ N,
n > 1

η

|vn(t)| ≤ β(t) for t ∈ [T − η, T − 1
n

], (2.3)

|vn(t)− vn(T )| ≤ α(t) for t ∈ [T − 1
n
, T ]. (2.4)

Then {vn} is equicontinuous in T and limn→∞ vn(T ) = 0.

Proof. Choose an arbitrary ε > 0. Then there exists δ ∈ (0, η) such that

t ∈ (T − δ, T ] ⇒ |α(t)| < ε

3
, t ∈ (T − δ, T ) ⇒ |β(t)| < ε

3
.

Choose an arbitrary t ∈ (T − δ, T ] and an arbitrary n ∈ N, n > 1
δ .

(a) Let t ∈ [T − 1
n , T ]. Then by (2.4), |vn(t)− vn(T )| ≤ α(t) < ε

3 .
(b) Let t ∈ (T − δ, T − 1

n ). Then by (2.3), (2.4), |vn(t) − vn(T )| ≤ |vn(t)| +
|vn(T )− vn(T − 1

n )|+ |vn(T − 1
n )| ≤ β(t) + α(T − 1

n ) + β(T − 1
n ) < ε.

Hence, we have proved that {vn} is equicontinuous in T . Further, |vn(T )| ≤
|vn(T )− vn(T − 1

n )|+ |vn(T − 1
n )| ≤ α(T − 1

n ) + β(T − 1
n ) → 0 for n→∞. �

Lemma 2.4. Assume that η ∈ (0, T
2 ), β0 ∈ (0,∞), γ ∈ L1[0, T ], g∗ ∈ L1[0, T ] and

that h∗ ∈ L1loc
(0, T ) is nonnegative. Further let for each n ∈ N, n > 1

η , a function
vn ∈ AC[0, T ] fulfil conditions

|vn(η)| ≤ β0, (2.5)

v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [
1
n
, η], (2.6)

v′n(t) = γ(t) for a.e. t ∈ (0,
1
n

), (2.7)



EJDE-2006/27 SINGULAR PERIODIC PROBLEM 5

where ∫ ε

0

h∗(s)ds = ∞ for sufficiently small ε > 0. (2.8)

Then the sequence {vn} is equicontinuous in 0 and limn→∞ vn(0) = 0.

Proof. We will construct functions α and β of Lemma 2.2. Consider the auxiliary
problem

β′(t) = h∗(t)β(t) + g∗(t), β(η) = β0. (2.9)

Problem (2.9) has a unique solution of the form

β(t) = e−
R η

t
h∗(s)ds

[
β0 −

∫ η

t

g∗(τ)e
R η

τ
h∗(s)dsdτ

]
for t ∈ (0, η].

By (2.8) we get

lim
t→0+

β(t) = β0e
−

R η
0 h∗(s)ds −

∫ η

0

g∗(τ)e−
R τ
0 h∗(s)dsdτ = 0

because
∫ τ

0
h∗(s)ds = ∞ for each τ ∈ (0, η].

Choose an arbitrary n ∈ N. Let us prove that (2.1) is satisfied. In contrary assume
that there exist t1 ∈ ( 1

n , η) and t2 ∈ (t1, η] such that

|vn(t2)| = β(t2), |vn(t)| > β(t) for all t ∈ [t1, t2).

Then, by (2.6) and (2.9), we get

0 < |vn(t1)| − β(t1)

= −
∫ t2

t1

(v′n(t) sign vn(t)− β′(t))dt

≤
∫ t2

t1

−h∗(t)(|vn(t)| − β(t))dt ≤ 0,

a contradiction. Further, due to (2.7), we have

|vn(t)− vn(0)| ≤ |
∫ t

0

γ(s)ds| = α(t) for t ∈ [0,
1
n

].

It means that (2.2) is satisfied and, using Lemma 2.2, Lemma 2.4 is proved. �

Lemma 2.5. Assume that η ∈ (0, T
2 ), β0 ∈ (0,∞), γ ∈ L1[0, T ], g∗ ∈ L1[0, T ] and

that h∗ ∈ L1loc
(0, T ) is nonnegative. Further let for each n ∈ N, n > 1

η , a function
vn ∈ AC[0, T ] fulfil conditions

|vn(T − η)| ≤ β0, (2.10)

−v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [T − η, T − 1
n

], (2.11)

v′n(t) = γ(t) for a.e. t ∈ (T − 1
n
, T ), (2.12)

where ∫ T

T−ε

h∗(s)ds = ∞ for sufficiently small ε > 0. (2.13)

Then the sequence {vn} is equicontinuous in T and limn→∞ vn(T ) = 0.
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Proof. We will construct functions α and β of Lemma 2.3. Consider the auxiliary
problem

β′(t) = −h∗(t)β(t)− g∗(t), β(T − η) = β0. (2.14)

Problem (2.14) has a unique solution of the form

β(t) = e−
R t

T−η
h∗(s)ds[β0 −

∫ t

T−η

g∗(τ)e
R τ

T−η
h∗(s)dsdτ

]
for t ∈ [T − η, T ).

By (2.13) we get

lim
t→T−

β(t) = β0e
−

R T
T−η

h∗(s)ds −
∫ T

T−η

g∗(τ)e−
R T

τ
h∗(s)dsdτ = 0

because
∫ T

τ
h∗(s)ds = ∞ for each τ ∈ [T−η, T ). Choose an arbitrary n ∈ N. Let us

prove that (2.3) is satisfied. In contrary assume that there exist t1 ∈ [T − η, T − 1
n )

and t2 ∈ (t1, T − 1
n ) such that

|vn(t1)| = β(t1), |vn(t)| > β(t) for all t ∈ (t1, t2].

Then, by (2.11) and (2.14), we get

0 < |vn(t2)| − β(t2)

=
∫ t2

t1

(v′n(t) sign vn(t)− β′(t))dt

≤
∫ t2

t1

−h∗(t)(|vn(t)| − β(t))dt ≤ 0,

a contradiction. Further, due to (2.12), we have

|vn(t)− vn(T )| ≤ |
∫ T

t

γ(s)ds| = α(t) for t ∈ [T − 1
n
, T ].

It means that (2.4) is satisfied and, by Lemma 2.3, Lemma 2.5 is proved. �

3. Regular Dirichlet BVP’s

To fulfil the basic condition (1.8) in Theorem 1.5 we need existence results for
regular problems (1.4), (1.3) and a priori estimates for their solutions. To this aim
we consider a regular equation

(φ(u′))′ = h(t, u, u′), (3.1)

h ∈ Car([0, T ]×R2), and use the lower and upper functions method to get solvability
of problem (3.1), (1.3).

Definition 3.1. Functions σ1, σ2 : [0, T ] → R are respectively lower and upper
functions of problem (3.1), (1.3) if φ(σ′i) ∈ AC[0, T ] for i ∈ {1, 2} and

(φ(σ′1(t)))
′ ≥ f(t, σ1(t), σ′1(t)), (φ(σ′2(t)))

′ ≤ f(t, σ2(t), σ′2(t)) a.e. t ∈ [0, T ],

σ1(0) ≤ C, σ1(T ) ≤ C, σ2(0) ≥ C, σ2(T ) ≥ C.

Since the lower and upper function method for regular problems with φ-Laplacian
can be found in literature (see e.g. [2, 3, 16, 19]), we only cite the results without
their proofs.
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Lemma 3.2 ([2, Theorem 2.1]). Let σ1 and σ2 be respectively lower and upper
functions of problem (3.1), (1.3) and let σ1 ≤ σ2 on [0, T ]. Further assume that
there is h0 ∈ L1[0, T ] such that |h(t, x, y)| ≤ h0(t) for a.e. t ∈ [0, T ] and for all
(x, y) ∈ [σ1(t), σ2(t)] × R. Then problem (3.1), (1.3) has a solution u ∈ C1[0, T ]
with φ(u′) ∈ AC[0, T ] such that

σ1 ≤ u ≤ σ2 on [0, T ]. (3.2)

Lemma 3.2 gives the existence result for (3.1), (1.3) provided the function h has
a Lebesgue integrable majorant h0. The method of a priori estimates enables us to
extend this result to more general right-hand sides h.

Lemma 3.3 (An a priori estimate, [16, Lemma 3.3]). Assume that a, b ∈ [0, T ], a ≤
b, d ∈ R, c0 ∈ (0,∞). Let g0 ∈ L1[0, T ] be nonnegative and let ω ∈ C[0,∞) be
positive and ∫ ∞

0

ds

ω(s)
= ∞. (3.3)

Then there exists %0 ∈ (c0,∞) such that for each function u ∈ C1[0, T ] satisfying
the conditions

φ(u′) ∈ AC[0, T ],

|u(t)| ≤ c0 for each t ∈ [0, T ], (3.4)

|u′(ξ)| ≤ c0 for some ξ ∈ [a, b], (3.5)

(φ(u′(t)))′ sign(u′(t)− d) ≥ −ω(|φ(u′(t))− φ(d)|)(g0(t) + |u′(t)− d|)
for a.e. t ∈ [0, b] and for |φ(u′(t))| > |φ(d)|,

(3.6)

(φ(u′(t)))′ sign(u′(t)− d) ≤ ω(|φ(u′(t))− φ(d)|)(g0(t) + |u′(t)− d|)
for a.e. t ∈ [a, T ] and for |φ(u′(t))| > |φ(d)|,

(3.7)

the estimate
|u′(t)| ≤ %0 (3.8)

is valid for each t ∈ [0, T ].

Using Lemma 3.2 and Lemma 3.3 we get the existence result for (3.1), (1.3)
under one-sided growth restrictions of the Nagumo type (3.12), (3.13).

Theorem 3.4 ([16, Theorem 3.4]). Assume that the following conditions are ful-
filled:

σ1 and σ2 are respectively lower and upper functions of (3.1), (1.3)

and σ1 ≤ σ2 on [0, T ],
(3.9)

a, b ∈ [0, T ], a < b, d ∈ R, c0 ≥ 2
1 + b− a

b− a
(‖σ1‖∞ + ‖σ2‖∞), (3.10)

g ∈ L1[0, T ] is nonnegative, ω ∈ C[0,∞) is positive and fulfils (3.3), (3.11)

h(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b],∀x ∈ [σ1(t), σ2(t)],∀y ∈ R such that |φ(y)| > |φ(d)|,

(3.12)

h(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ],∀x ∈ [σ1(t), σ2(t)],∀y ∈ R such that |φ(y)| > |φ(d)|.

(3.13)
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Then problem (3.1), (1.3) has a solution u satisfying

σ1 ≤ u ≤ σ2 on [0, T ],

|u′(t)| ≤ %0 for t ∈ [0, T ],

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |d|.

4. Main result

In this section we prove our main result about the solvability of the singular
periodic boundary-value problem (1.1), (1.2).

Theorem 4.1 (Existence of a solution of the periodic problem). Let a, b ∈ [0, T ],
a < b. Let there exist r1, r2, d ∈ R, such that

r1 + td ≤ C, r2 + td ≥ C for t ∈ [0, T ],

f(t, r1 + td, d) ≤ 0, f(t, r2 + td, d) ≥ 0 for a.e. t ∈ [0, T ].
(4.1)

Further, let there exist nonnegative function g ∈ L1[0, T ] and positive function
ω ∈ C[0,∞) satisfying (3.3),

f(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|) (4.2)

for a.e. t ∈ [0, b], for all x ∈ [r1 +td, r2 +td], for all y ∈ R such that |φ(y)| > |φ(d)|.
Also

f(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|) (4.3)

for a.e. t ∈ [a, T ], for all x ∈ [r1+td, r2+td], for all y ∈ R such that |φ(y)| > |φ(d)|.
Then there exists a function u which is w-solution of problem (1.1), (1.3) and
satisfies

r1 + td ≤ u(t) ≤ r2 + td for t ∈ [0, T ], (4.4)

|u′(t)| ≤ %0 for each t ∈ (0, T ), (4.5)

where %0 is the constant from Lemma 3.3 with g0 = g + |d|.
Moreover, let there exist η ∈ (0, T

2 ), g∗ ∈ L1[0, T ] and nonnegative function
h∗ ∈ L1loc

(0, T ) such that

sign(y − d)f(t, x, y) ≥ h∗(t)|φ(y)− φ(d)|+ g∗(t) (4.6)

for a.e. t ∈ (0, η), for all x ∈ [r1 + td, r2 + td], for all y ∈ [−%0, %0],

− sign(y − d)f(t, x, y) ≥ h∗(t)|φ(y)− φ(d)|+ g∗(t) (4.7)

for a.e. t ∈ (T − η, T ), for all x ∈ [r1 + td, r2 + td], for all y ∈ [−%0, %0].
Then the function u is a solution of problem (1.1), (1.2) and u′(0) = u′(T ) = d.

Proof. For each n ∈ N define Jn by (1.5),

fn(t, x, y) =

{
f(t, x, y) for a.e. t ∈ Jn,∀x, y ∈ R,
0 for a.e. t ∈ [0, 1

n ) ∪ (T − 1
n , T ],∀x, y ∈ R.

(4.8)

Then fn ∈ Car([0, T ]× R2) for each n ∈ N. Choose n ∈ N and show that problem
(1.4), (1.3) satisfies the assumptions of Theorem 3.4. Let us put σ1(t) = r1 + td
and σ2(t) = r2 + td for t ∈ [0, T ]. Then σ1 ≤ σ2 on [0, T ] and according to (4.1), σ1
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and σ2 are lower and upper function of problem (1.4), (1.3), i.e. (3.9) holds. From
inequalities (4.2) and (4.3) we get

fn(t, x, y) sign y = f(t, x, y) sign y ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b] ∩ Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R, |φ(y)| > |φ(d)|,

fn(t, x, y) sign y = 0 ≥ −ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [0, b]\Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R,

fn(t, x, y) sign y = f(t, x, y) sign y ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ] ∩ Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R, |φ(y)| > |φ(d)|,

fn(t, x, y) sign y = 0 ≤ ω(|φ(y)− φ(d)|)(g(t) + |y|)
for a.e. t ∈ [a, T ]\Jn,∀x ∈ [r1 + td, r2 + td],∀y ∈ R.

It means that conditions (3.12) and (3.13) are fulfilled for h = fn. By Theorem 3.4,
problem (1.4), (1.3) has a solution un ∈ C1[0, T ] with φ(u′n) ∈ AC[0, T ]. Moreover,
un satisfies (4.4) and

|u′n(t)| ≤ %0 for t ∈ [0, T ], (4.9)

where %0 ∈ (0,∞) is the constant from Lemma 3.3 with g0 = g + |d|. By virtue of
Lemma 3.3, %0 does not depend on un. Therefore condition (1.8) is fulfilled, where

Ω = {x ∈ C1([0, T ]) : ‖x‖∞ ≤ ‖σ1‖∞ + ‖σ2‖∞ + %0}.

Hence, by Theorem 1.5, problem (1.4), (1.3) has a w-solution u which satisfies (4.4)
and (4.5). Now, furthermore, assume (4.6), (4.7). Let us define

ψ(t) = min{g∗(t), 0} for t ∈ [0, T ].

Then ψ ∈ L1[0, T ]. Let us put λ1 = 1 and λ2 = −1. We can see that

λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = sign(u′n(t)− d)f(t, un(t), u′n(t))

≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)

≥ ψ(t) for a.e. t ∈ [0, η] ∩ Jn,

λ1 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = 0 ≥ ψ(t) for a.e. t ∈ [0, η]\Jn,

λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = − sign(u′n(t)− d)f(t, un(t), u′n(t))

≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)

≥ ψ(t) for a.e. t ∈ [0, η] ∩ Jn,

λ2 sign(u′n(t)− d)fn(t, un(t), u′n(t)) = 0 ≥ ψ(t) for a.e. t ∈ [0, η]\Jn.

Hence, by Theorem 1.5, u is the solution of the problem (1.1), (1.3). Moreover
there exists a subsequence {unl

} ⊂ {un}, which uniformly converges to u on [0, T ]
and {u′nl

} converges locally uniformly to u′ on (0, T ).
Let us show that u is also a solution of the periodic problem (1.1), (1.2). Without

loss of generality, let us denote {unl
} as {un}. We will verify the assumptions of

Lemmas 2.4 and 2.5 to show that {u′n} is equicontinuous in 0 and T . Note that
sign(φ(y)− φ(d)) = sign(y− d) for all y ∈ R and that fn = f for t ≥ 1

n . Let us put
φ(u′n(t)) − φ(d) = vn(t). By (4.9) there exists β0 > 0 such that |vn(η)| ≤ β0 and
|vn(T − η)| ≤ β0. From (4.6) we have

[φ(u′n(t))]′ sign(φ(u′n(t))− φ(d)) ≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)
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for all n ∈ N and a.e. t ∈ [ 1
n , η] and from (4.7)

−[φ(u′n(t))]′ sign(φ(u′n(t))− φ(d)) ≥ h∗(t)|φ(u′n(t))− φ(d)|+ g∗(t)

for all n ∈ N and a.e. t ∈ [T − η, T − 1
n ]. Then

v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [
1
n
, η],

−v′n(t) sign vn(t) ≥ h∗(t)|vn(t)|+ g∗(t) for a.e. t ∈ [T − η, T − 1
n

].

Further, v′n(t) = 0 for a.e. t ∈ (0, 1
n ) and a.e. t ∈ (T − 1

n , T ). According to
Lemmas 2.4 and 2.5, {vn} is equicontinuous in 0 and T and limn→∞ vn(0) = 0 and
limn→∞ vn(T ) = 0. It means that also {φ(u′n)} and {u′n} are equicontinuous in 0
and T . The equicontinuity in 0 means that for an arbitrary ε > 0 there exists δ > 0
such that for each t ∈ [0, δ) and all n ∈ N the inequality |u′n(t)−u′n(0)| < ε is valid.
Moreover, by Lemmas 2.4 and 2.5, limn→∞ u′n(0) = d and limn→∞ u′n(T ) = d.
According to the first limit we can find n0 ∈ N such that for each n ≥ n0 the
inequality |u′n(0) − d| < ε holds. From locally uniform convergence of {u′nl

} on
(0, T ) there exists nt ∈ N, nt ≥ n0, such that |u′(t) − u′nt

(t)| < ε. Therefore we
have for all ε > 0 there exists δ > 0 such that for all t ∈ (0, δ):

|u′(t)− d| ≤ |u′(t)− u′nt
(t)|+ |u′nt

(t)− u′nt
(0)|+ |u′nt

(0)− d| < 3ε,

which yields limt→0+ u
′(t) = d. The property limt→T− u

′(t) = d can be proved
similarly. Hence u′(0) = u′(T ) and u is a solution of the periodic problem (1.1),
(1.2). �

Corollary 4.2. Let all assumptions of Theorem 4.1 be fulfiled and let C = 0, d 6= 0.
Then problem (1.1), (1.2) has a sign-changing solution.

Example 4.3 (Existence of a periodic sign changing solution). Let p > 1 and
φp(y) = |y|p−2y for y ∈ R. Consider the equation

(φp(u′))′ = q(t)(uk − rk) + cφp(u′)u′ + (
1
tα
− 1

(T − t)β
)(φp(u′)− φp(d)), (4.10)

where r, c, d ∈ R, k ∈ N is odd, α, β ∈ (1,∞), q ∈ L1[0, T ] is nonnegative. Choose
an arbitrary C ∈ R and show that all the conditions of Theorem 4.1 are satisfied.
Let r1, r2 ∈ R. Then

f(t, ri + td, d) = q(t)((ri + td)k − rk) + cφp(d)d for a.e. t ∈ [0, T ].

Since q is nonnegative on [0, T ], we can find a large positive r2 and a negative r1
with large absolute value such that (4.1) holds. Denote

q1(t) = q(t) max{|xk − rk| : r1 + td ≤ x ≤ r2 + td} for a.e. t ∈ [0, T ],

q2(t) =


(T − t)−β for a.e. t ∈ [0, a),
(T − t)−β + t−α for a.e. t ∈ [a, b],
t−α for a.e. t ∈ (b, T ].
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Then for a.e. t ∈ [0, b], each x ∈ [r1 + td, r2 + td] and each y ∈ R, |φp(y)| > |φp(d)|
we have

f(t, x, y) sign y

= f(t, x, y) sign(φp(y)− φp(d))

> −q1(t)− |c||φp(y)− φp(d)||y| − |c||φp(d)||y| −
1

(T − t)β
|φp(y)− φp(d)|

> −(|φp(y)− φp(d)|+ 1)((|c|+ 1)(|φp(d)|+ 1))(|q1(t)|+ |q2(t)|+ |y|).
Therefore, if we put

ω(s) = (1 + s)c0, c0 = (|c|+ 1)(|φp(d)|+ 1), g(t) = |q1(t)|+ |q2(t)|,
we get (4.2). Similarly we can derive (4.3). Let us put

h∗(t) =

{
t−α for a.e. t ∈ (0, η),
(T − t)−β for a.e. t ∈ (T − η, T ),

h∗ ∈ L1[η, T−η]. For a.e. t ∈ (0, η), each x ∈ [r1+td, r2+td] and each y ∈ [−%0, %0]
we obtain

f(t, x, y) sign(y − d)

= f(t, x, y) sign(φp(y)− φp(d))

> −q1(t)− |c|φp(%0)%0 − q2(t)(φp(%0) + |φp(d)|) +
1
tα
|φp(y)− φp(d)|

= g∗(t) + h∗(t)|φp(y)− φp(d)|,

where g∗ ∈ L1[0, T ], which means that (4.6) is satisfied. Identically we can derive
(4.7). Therefore, by Theorem 4.1, problem (4.10), (1.2) has a solution u. Moreover
u(0) = u(T ) = C and u′(0) = u′(T ) = d. If we choose C = 0 and d 6= 0, we get by
Corollary 4.2 that u changes its sign on (0, T ).
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[4] Del Pino, M., Manásevich, R., Montero, A.: T-periodic solutions for some second order

differential equations with singularities. Proc. Royal Soc. Edinburgh, 120A, 231-244 (1992)

[5] Fonda, A.: Periodic solutions of scalar second order differential equations with a singularity.
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[18] Rach̊unková, I., Tvrdý, M., Vrkoč, I.: Existence nonnegative and nonpositive solutions for

second order periodic boundary-value problems. J. Differential Equations, 176, 445 - 469

(2001)
[19] Wang, J., Gao, W., Lin, Z.: Boundary value problems for general second order equations and

similarity solutions to the Rayleigh problem. Tôhoku Math. J., 47, 327 - 344 (1995)
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