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BOUNDS AND CRITICAL PARAMETERS FOR A CLASS OF
NON-LOCAL PROBLEMS

MOHAMMED AL-REFAI, NIKOS I. KAVALLARIS

Abstract. A non-local elliptic equation, for which comparison methods are

applicable, associated with Robin boundary conditions is considered. Upper

and lower solutions for this problem are obtained by solving algebraic equa-
tions. These upper and lower solutions are used to obtain analytical bounds

for the critical (blow-up) parameter of the problem. Numerical results are

presented for the slab, cylindrical and spherical geometries. The results are
compared with the existing ones in the literature.

1. Introduction

The non-local problem

ut = ∇2u+
λ f(u)( ∫

Ω
f(u) dx

)p , x ∈ Ω ⊂ RN , N ≥ 1, t > 0, (1.1)

∂u(x, t)
∂ν

+ β u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where 0 < β < ∞ and p > 0 is connected with a variety of applications. In
particular for p = 2 problem (1.1)-(1.3) describes the operation of a device is flowed
by an electric current, e.g. thermistors, fuse wires, electric arcs and fluorescent
lights [12, 13], resulting Ohmic heating, with Newtonian cooling imposed on the
boundary. In the case of a nonlinear conductor problem (1.1)-(1.3) with p > 1, can
be derived to describe the thermo-electric flow in the conductor, [11]. Besides, for
p = 1 the same model can describe phenomena associated with the occurrence of
shear bands in metals being deformed under high strain rates [2]-[4], in the theory
of gravitational equilibrium of polytropic stars [10], in the investigation of the fully
turbulent behaviour of real flows, using invariant measures for the Euler equation
[5], in modelling aggregation of cells via interaction with a chemical substance
(chemotaxis), [15].
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The key-problem for the study of (1.1)-(1.3) is the corresponding steady-state
problem

∇2w + µf(w) = 0, x ∈ Ω, (1.4)

∂w(x)
∂ν

+ β w(x) = 0, x ∈ ∂Ω, (1.5)

where µ = λ/
( ∫

Ω
f(w) dx

)p. The existence of a critical parameter 0 < λ∗ < ∞
such that problem (1.4)-(1.5) has at least one solution for 0 < λ < λ∗ and no
solution for λ > λ∗, indicates the ocurence of a singular behaviour of the solution
of the time-dependent problem (1.1)-(1.3) above this critical value. More precisely,
the phenomenon of finite-time blow-up, i.e. ‖u(·, t)‖∞ →∞ as t→ t∗ <∞, occurs
for λ > λ∗, see for example [2, 7, 9, 12, 13, 14]. Also from the point of view of
applications it is very important to derive some estimates of the blow-up time.
But the most useful (upper, lower, asymptotical) estimates of blow-up time are
provided in terms of λ∗, see [7, 8]. Consequently, either the determination of the
critical parameter λ∗, when it is possible, or the computation of some upper and
lower estimates become very important.

Some times the computation of λ∗ is rather simple, see for example [12, 13, 14],
where λ∗ is calculated for Dirichlet boundary conditions in the one-dimensional and
two-dimensional radial symmetric cases but only for p = 2. In higher dimensions
and asymetric cases, the proof of the existence of λ∗ it is not so easy even considering
some special functions f , [2, 6]. Moreover in [2], where the steady-state problem
(1.4)-(1.5) is studied in detail, some estimates of λ∗ are derived covering mainly the
Dirichlet boundary conditions, while for the Robin problem only the existence of
λ∗ is obtained. Some upper estimates for the Robin problem, when f is a deceasing
function, have been obtained in [7]. It is worth noting that for the Neumann
problem we have λ∗ = 0, i.e. the steady-state problem (1.4)-(1.5) has no solutions
for every λ > 0. This a direct consequence of the maximum principle.

Here, we investigate the two special cases f(s) = e−s and f(s) = (1+s)−q, q > 0,
dealing only with the Robin problem. First, we derive some lower and upper esti-
mates of λ∗ for a general domain Ω and then focusing on some special geometries we
improve these estimates by using proper approximations. These estimates improve
those obtained in [7, 13, 14], at least for the geometries we checked. Our approach
is based on comparison arguments, that can be applied for problem (1.4)-(1.5) only
when f is decreasing, and it is quite similar to the approach used in [1].

2. General results

Let now write the steady-state problem in the form

∇2w +
λ

h(w)
f(w) = 0, x ∈ Ω, (2.1)

∂w

∂n
+ βw = 0, x ∈ ∂Ω, (2.2)

where h(w) =
( ∫

Ω
f(w)dx

)p.
When f is a decreasing function, we have a variant of the comparison results

that apply to more usual elliptic problems, [12]. So in this case we can define the
notion of lower and upper solutions.
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Definition 2.1. A function φ is a lower solution of (2.1)-(2.2) if it satisfies

P (φ) := ∇2φ+
λ

h(φ)
f(φ) ≥ 0,

B(φ) :=
∂φ

∂n
+ βφ ≤ 0.

Analogously z is an upper solution of (2.1)-(2.2) if P (z) ≤ 0 and B(z) ≥ 0.

Let ψ be the solution of the problem

∇2ψ = −1, x ∈ Ω, (2.3)
∂ψ

∂n
+ βψ = 0, x ∈ ∂Ω, (2.4)

and M = maxx∈Ω ψ(x) > 0, m = minx∈Ω ψ(x) > 0, then we infer the following
result.

Now we provide a method to construct upper and lower solutions to problem
(2.1)-(2.2).

Proposition 2.2. Let f1(s) and f2(s), be such that f1(s) ≤ h(sψ) ≤ f2(s). Let k
and c, respectively, be the solutions to

−k +
λ

f1(k)
f(km) = 0, (2.5)

−c+
λ

f2(c)
f(cM) = 0. (2.6)

Then z = kψ and φ = cψ are upper and lower solutions of (2.1)-(2.2), respectively.

Proof. From the definition of z and φ we have

P (kψ) = −k +
λ

h(kψ)
f(kψ) ≤ −k +

λ

f1(k)
f(km) = 0,

P (cψ) = −c+
λ

h(cψ)
f(cψ) ≥ −c+

λ

f2(c)
f(cM) = 0,

and the result is obtained, since also B(z) = B(φ) = 0. �

In the following we present some results that will be used through this paper.

Proposition 2.3. Consider the equation 1
λ = g(k), where g(k) is differentiable

for k > 0, and g(k) → ∞, as k → ∞. Let ks be the largest solution (if any) of
g′(k) = 0, and 1

λs = g(ks). Then
(a) for λ > λs, and k > ks, we have 1

λ ≤ g(k), and
(b) for λ ≤ λs, the equation 1

λ = g(k), has at least one solution.

The proof of the above proposition is straight forward using the fact that g(k)
is increasing for k > ks.

Theorem 2.4. Let f be a positive decreasing C1-function and pcr an exponent (if
any) such that

lim
k→∞

f(kM)
kfpcr (km)

= ∞, (2.7)

then for every p > pcr, there exists λ∗ > 0 such that problem (2.1)-(2.2), has at
least one solution for 0 < λ < λ∗ and no solution for λ > λ∗.
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Proof. Recalling that M = maxx∈Ω ψ(x) > 0 and m = minx∈Ω ψ(x) > 0, then
using the definition of ψ we obtain

P (kψ) ≥ −k +
λf(kM)
|Ω|pfp(km)

.

Considering the function

g(k) =
f(kM)

|Ω|pkfp(km)
,

we infer that g(k) → ∞ as k → 0+, since f is positive and that g(k) → ∞ as
k → ∞ for every p > pcr using (2.7). The latter with g(k) → ∞ as k → ∞
implies that there exists at least one solution of the equation g′(k) = 0. Let k0

be the largest solution of this equation and set λ0 = 1/g(k0). Now if we consider
λ > λ0 we obtain, in view of Proposition 2.3, that 1/λ ≤ g(k) and so P (kψ) ≥ 0 for
every k > k0. Therefore for every λ > λ0 we are able to construct an unbounded
lower solution kψ and so the steady-state solution does not exist for λ > λ0, hence
λ∗ ≤ λ0. This completes the proof. �

Remark 2.5. Regarding the critical exponent pcr of Theorem 2.4 there should be
pcr > 1, otherwise

lim
k→∞

f(kM)
kfp(km)

≤ lim
k→∞

f1−p(kM)
k

= 0.

Remark 2.6. Note that a critical exponent pcr of Theorem 2.4, exists when
− log f(s) does not grow at infinity faster than algebraically, i.e. −f ′(s)/f(s) .
θ sq, q > 0, as s→∞, where θ is a positive constant.

In the following sections, we determine this critical exponent pcr in the two
special cases f(s) = e−s and f(s) = (1 + s)−q, q > 0, which provides us with some
upper estimates of λ∗.

3. The exponential case

3.1. Bounds for a general domain. First we give a general upper bound for λ∗

under the condition pm > M . Namely, under this condition we have

h(kψ) =
( ∫

Ω

e−kψ(x)dx
)p
≤

(
e−km|Ω|

)p = e−pkm|Ω|p,

hence

P (kψ) ≥ −k +
λ

|Ω|p
ek(pm−M).

We set

g(k) =
ek(pm−M)

k|Ω|p
,

then g(k) → ∞ as k → ∞ under the condition pm > M . The unique solution of
the equation g′(k) = 0 is

k0 =
1

pm−M
, (3.1)

so if we consider λ > λ0 where

λ0 =
1

g(k0)
=

|Ω|p

(pm−M)e
, (3.2)
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we obtain, in view of Proposition 2.3, P (kψ) ≥ 0 for every k > k0. Therefore, we
can construct an unbounded lower solution kψ to (2.1)-(2.2) and so the steady-state
solution w does not exist for λ > λ0 and then Theorem 2.4 implies that λ0 is an
upper bound for λ∗.

Next we find a function f1(k), see Proposition 2.2, using linear approximation
and then we obtain a lower bound for λ∗. We approximate f(w) = e−w by a linear
function as follows

e−kψ ≥ e−kM (1 + kM − kψ),
and therefore,

h(kψ) ≥ e−pkM
[
(1 + kM)

∫
Ω

dx− k

∫
Ω

ψdx
]p

= e−pkM [(1 + kM)|Ω| − kR]p,

where |Ω| =
∫
Ω
dx and R =

∫
Ω
ψdx. Hence

P (kψ) ≤ −k + λ
ek(pM−m)

[k(M |Ω| −R) + |Ω|]p
.

Let us now consider the function

g(k) =
ek(pM−m)

k[k(M |Ω| −R) + |Ω|]p
,

then g(k) →∞ as k →∞ provided that p > m/M . g(k) is also differentiable and
the only positive solution k0 of the equation g′(k) = 0 is given by

k0 =
δ(1 + p)− γ|Ω|+

√
[γ|Ω| − δ(1 + p)]2 + 4γδ|Ω|
2γδ

, (3.3)

where γ = pM −m and δ = M |Ω| −R. For λ ≤ λ0 where

λ0 =
1

g(k0)
= k0

(
δk0 + |Ω|

)p
e−γk

0
, (3.4)

we derive, in view of Proposition 2.3, that P (k0ψ) ≤ 0 thus k0ψ is a bounded upper
solution to (2.1)-(2.2) and so is the steady-state solution w. Hence λ0 is a lower
bound for λ∗.

3.2. Bounds for the slab. We consider the problem (2.1)-(2.2) in the slab, −1 ≤
x ≤ 1, and hence the boundary conditions reduced to

−w′(−1) + βw(−1) = 0,

w′(1) + βw(1) = 0.

For β = 1, we have ψ(x) = 1
2 (3− x2), and 1 = m ≤ ψ(x) ≤ 3

2 = M . For p > 3
2 , the

condition pm > M is satisfied and an upper bound λ0 = 2p

(p− 3
2 )e

for λ∗ is obtained
using equations (3.1) and (3.2). Also, a lower bound

λ0 = k0
(1
3
k0 + 2

)p
e−( 3

2p−1)k0
, where k0 =

7− 8p+ 3
√

( 7−8p
3 )2 + 4p− 8

3

3p− 2
,

is obtained using (3.3) and (3.4). If p = 2, then λ0 = 0.874 · · · ≤ λ∗ ≤ λ0 = 8
e . To

derive better bounds we start with∫ 1

−1

e
k
2 x

2
dx = 2

∫ 1

0

e
k
2 x

2
dx ≤ 2

∫ 1

0

e
k
2 x dx =

4
k

(e
k
2 − 1),
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hence ∫ 1

−1

e−kψ(x) dx = e−
3
2k

∫ 1

−1

e
k
2 x

2
dx ≤ 4

k
(e

k
2 − 1)e−

3
2k,

and
1

h(kψ)
=

1( ∫ 1

−1
e−kψ(x) dx

)p ≥ kpe
3
2kp

4p(e
k
2 − 1)p

.

Therefore,

P (kψ) = −k + λ
e−kψ

h(kψ)
≥ −k + λ

kpe
3
2k(p−1)

4p(e
k
2 − 1)p

.

An upper bound λ0 for λ∗ is obtained by

λ0 =
1

g1(k0)
,

where k0 is the largest solution of the equation g′1(k) = 0 with

g1(k) =
kp−1e

3
2k(p−1)

4p(e
k
2 − 1)p

.

Such k0 exists for p > 3
2 , since limk→0+ g1(k) = limk→∞ g1(k) = ∞. To derive a

better lower bound we use the Maclaurin series

e
k
2 x

2
=

n∑
i=0

ki

2ii!
x2i + En,

where the error En(x, ξ) ≡ En = eξ kn+1

2n+1(n+1)!x
2n+2 and 0 ≤ ξ ≤ k

2 . Hence

En ≥
kn+1

2n+1(n+ 1)!
x2n+2,

and ∫ 1

−1

e
k
2 x

2
dx ≥

n∑
i=0

ki

2ii!

∫ 1

−1

x2idx+
kn+1

2n+1(n+ 1)!

∫ 1

−1

x2n+2dx

= 2
n+1∑
i=0

ki

2ii!
1

2i+ 1
.

Let

α(n, k) ≡ α = 2
n+1∑
i=0

ki

2ii!(2i+ 1)
,

then ∫ 1

−1

e−kψ(x)dx = e−
3
2k

∫ 1

−1

e
k
2 x

2
dx ≥ αe−

3
2k

and
1

h(kψ)
=

1( ∫ 1

−1
e−kψ(x)dx

)p ≤ e
3
2kp

αp
.

Therefore,

P (kψ) = −k +
λ

h(kψ)
e−kψ ≤ −k +

λ

αp
ek(

3
2p−1).
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Then a lower bound λ0 for λ∗ is provided by

λ0 =
1

g2(k0)
,

where k0 is the largest solution of the equation g′2(k) = 0 with

g2(k) =
ek(

3
2p−1)

kαp
.

For p > 2/3, it is clear that such k0 exists since limk→0+ g2(k) = limk→∞ g2(k) = ∞.

Remark 3.1. Using the above method we obtain, see also the next two subsections,
that the critical exponent is pcr = 3/2, although it is known that for N = 1, 2 , λ∗

is bounded for every p > 1. In other words the optimal critical exponent is p∗ = 1,
see [2].

Remark 3.2. For the slab and general β, we have ψ(x) = −x2

2 + 1
β + 1

2 , with

m = 1
β ≤ ψ ≤ M = 1

β + 1
2 . Then using equation (3.2) we have λ0 = |Ω|p

(pm−M)e =
2p[

1
β (p−1)− 1

2

]
e
, provided that p > β

2 + 1. Now, for β → 0, we have λ0 → 0 and so

λ∗ → 0 as well. This implies that the problem with Neumann boundary conditions
has no solution regardless the value of λ, which is in agreement with what is already
known, see comments in the introduction.

3.3. Bounds for the circular cylinder. For the cylindrical geometry where the
Laplacian operator depends only on the radial, we have ∇2w = wrr+ 1

rwr, 0 < r <

1, and ψ(r) = 1
4 (3− r2), satisfies

ψrr +
1
r
ψr = −1, ψr(0) = 0, ψr(1) + ψ(1) = 0.

By substituting ψ(r) = 1
4 (3− r2) in the expression of h(kψ), we have

h(kψ) =
(
2π

∫ 1

0

re−
k
4 (3−r2) dr

)p
= 4pπpk−pe−

3pk
4 (e

k
4 − 1)p.

Since 1
2 ≤ ψ ≤ 3

4 , we obtain

−k + λ
( 1
4π

)p
kpe

3k
4 (p−1)(e

k
4 − 1)−p ≤ P (kψ) ≤ −k + λ

( 1
4π

)p
kpe

k
4 (3p−2)(e

k
4 − 1)−p.

So, in view of Proposition 2.3, an upper bound of the critical parameter λ∗ is
provided by λ0 = 1/g1(k0), where

g1(k) =
( 1
4π

)p
kp−1e

3k
4 (p−1)(e

k
4 − 1)−p

and k0 is the largest solution of the equation g′1(k) = 0. Such a solution exists since
limk→0+ g(k) = limk→∞ g(k) = ∞ provided that p > 3/2. This means that the
critical exponent for the existence of λ∗ using this method, is pcr = 3/2.

Analogously, a lower estimate of λ∗ is obtained by λ0 = 1/g1(k0), where

g2(k) =
( 1
4π

)p
kp−1e

k
4 (3p−2)(e

k
4 − 1)−p

and k0 is the largest solution of the equation g′2(k) = 0, which exists for p > 1.
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3.4. Bounds for the unit sphere. For the spherical geometry where the Lapla-
cian operator depends again only on the radial, we have ∇2w = wrr + 2

rwr,
0 < r < 1. So ψ(r) = 1

2 (1− r2

3 ) satisfies

ψrr +
2
r
ψr = −1, ψr(0) = 0, ψr(1) + ψ(1) = 0.

We have

h(kψ) =
(
4π

∫ 1

0

r2e−
k
2 (1− r2

3 ) dr
)p

= (4π)pe−
kp
2

( ∫ 1

0

r2e
kr2
6 dr

)p
.

Since 0 ≤ r ≤ 1, we derive

2
k

(e
k
6 − 1) =

∫ 1

0

r2e
kr3
6 dr ≤

∫ 1

0

r2e
kr2
6 dr ≤

∫ 1

0

re
kr2
6 dr =

3
k

(e
k
6 − 1),

and hence

(4π)pe−
kp
2

2
k

(e
k
6 − 1) ≤ h(kψ) ≤ (4π)pe−

kp
2

3
k

(e
k
6 − 1).

Since 1
3 ≤ ψ ≤ 1

2 , we obtain

−k +
e

k
2 (p−1)kp

(4π)p3p(e
k
6 − 1)p

≤ P (kψ) ≤ −k +
ek(

p
2−

1
3 )kp

(4π)p2p(e
k
6 − 1)p

.

Then an upper bound λ0 for λ∗ is provided by

λ0 =
1

g1(k0)
,

where k0 is the largest solution of the equation g′1(k) = 0, with

g1(k) =
kp−1e

k
2 (p−1)

12pπp(e
k
6 − 1)p

.

A lower bound λ0 for λ∗ is provided by

λ0 =
1

g2(k0)
,

where k0 is the largest solution of the equation g′2(k) = 0, with

g2(k) =
kp−1ek(

p
2−

1
3 )

8pπp(e
k
6 − 1)p

.

One can see that g1(k) and g2(k) approach infinity as k does provided that p > 1
and p > 3

2 respectively. It is also clear that g1(k) and g2(k) approach infinity as
k → 0+. Thus the critical exponent is again pcr = 3/2.

Table 1, presents the value of λ0 and λ0 for different values of p. We can see that
the values of λ0 and λ0 increase with p for the cylindrical and spherical geometries,
and so does λ∗. The same result is obtained for the slab geometry, except at p = 3,
where the upper bound λ0 decreases.
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Table 1. The upper and lower estimates of λ∗ for f(w) = e−w,
and different values of p

Slab Cylinder Sphere
p λ0 λ0 λ0 λ0 λ0 λ0

2 0.890257 1.503823 4.886952 7.421067 13.031873 19.789512
3 0.984718 1.316214 8.330318 10.202723 29.618908 36.276347
4 1.361582 1.687503 17.964361 20.547267 85.164379 97.409264
5 2.081067 2.484099 42.968411 47.511459 271.602796 300.319344
6 3.368082 3.930889 108.984747 118.097328 918.521650 995.322337

4. The power-law case

4.1. Bounds for a general domain. Another important case from the point of
view of applications is the power-law case i.e. when f(s) = (1 + s)−q, q > 0. In
this case the steady-state problem has the form

∇2w +
λ

h(w)(1 + w)q
= 0, x ∈ Ω, (4.1)

∂w

∂n
+ βw = 0, x ∈ ∂Ω, (4.2)

where h(w) =
( ∫

Ω
1

(1+w)q dx
)p

, p > 0.
First, we find some conditions should be satisfied by p and q and give some

bounds of λ∗ for a general domain Ω under these conditions. Then we provide
some more accurate estimates of λ∗ for some special geometries.

We consider again potential upper and lower solutions to problem (4.1)-(4.2) of
the form kψ, where ψ is the solution of the problem (2.3)-(2.4). Then we have

P (kψ) = ∇2(kψ)+
λ (1 + k ψ)−q[ ∫

Ω
(1 + kψ(x))−q dx

]p ≥ −k+λ(1+kM)−q(1+km)p q|Ω|−p,

recalling that M = maxx∈Ω ψ(x) > 0 and m = minx∈Ω ψ(x) > 0 for 0 < β < ∞.
Let g1(k) = |Ω|−pk−1 (1+kM)−q(1+km)p q then limk→0+ g1(k) = limk→∞ g1(k) =
∞ provided that p > (1 + q)/q. So the equation g′1(k) = 0 has at least one solution
for k > 0. Let k0 be the largest solution of this equation then if we consider λ > λ0

where

λ0 =
1

g1(k0)
= |Ω|p k0 (1 + k0M)q(1 + k0m)−pq,

we obtain, in view of Proposition 2.3, P (kψ) ≥ 0 for every k > k0. That is, we can
construct an arbitrary large (for any k > k0) lower solution of problem (4.1)-(4.2),
for λ > λ0. Hence, in view of Theorem 2.4, we derive an upper estimate for λ∗ of
the form

λ∗ ≤ λ0 = |Ω|p k0 (1 + k0M)q (1 + k0m)−p q, (4.3)

and we conclude that pcr = (q + 1)/q, which coincides with the optimal critical
exponent existing in this case, see [2].
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To obtain a lower estimate of λ∗ we should construct an upper solution of the
steady-state problem (4.1)-(4.2). Namely, we have

P (kψ) = ∇2(kψ)+
λ(1 + kψ)−q[ ∫

Ω
(1 + kψ(x))−q dx

]p ≤ −k+λ(1+km)−q(1+kM)p q|Ω|−p.

We consider the function g2(k) = |Ω|−pk−1 (1 + km)−q(1 + kM)p q, then it can
be proved that the equation g′2(k) = 0 has at least one solution for k > 0 under
again the condition p > (q+1)/q. If k0 is the largest solution of this equation, then
regarding

λ0 =
1

g2(k0)
= |Ω|p k0 (1 + k0m)q(1 + k0M)−p q,

we derive that P (k0ψ) ≤ 0. Thus for λ = λ0, k0ψ is an upper solution of problem
(4.1)-(4.2) which is bounded and so the steady state w is. This implies that λ0

should be a lower bound for the critical parameter λ∗.

Remark 4.1. It can be observed that the critical exponent pcr = (q + 1)/q → 1
as q → ∞, for every N ≥ 1. This agrees with the observation in [2] for the one-
dimensional case. Thus if f decreases faster than any power (such as f(s) = e−s)
then pcr = 1 and so we recover the optimal critical exponent existing in this case,
see also Remark 3.1.

Remark 4.2. We can derive upper and lower estimates of the critical parameter
λ∗, using the same arguments as above, for every function f(s) such that − log f(s)
grows at infinity at most algebraically, see also Remark 2.6.

Remark 4.3. Our method gives an upper estimate for λ∗ even if
∫∞
0

(1+s)−qds =
∞ i.e. when 0 < q ≤ 1. However, the methods used in [2, 7] provide an upper
estimate only if f(s) satisfies

∫∞
0
f(s) ds <∞, see below.

4.2. Bounds for the slab. For the slab geometry, calculating h(kψ) instead of
estimating it from above and below, we can improve the estimates obtained in the
previous subsection. In this case ψ(x) = 3

2 (1− x2), and hence

h(kψ) =
( ∫ 1

−1

1
[1 + k

2 (3− x2)]q
dx

)p
.

By substituting x =
√

2
k + 3 sin(r), we end up with

h(kψ) = 2p(q+1)k−
p
2 (2 + 3k)

p
2−pq Jp(k, q),

where J(k, q) =
∫ sin−1

(
1√
2
k

+3

)
0 sec2q−1(r)dr. Now,

−k +
λ

h(kψ)(1 + 3
2k)

q
≤ P (kψ) ≤ −k +

λ

h(kψ)(1 + k)q
,

or

−k + λ
kp/2(2 + 3k)pq−p/2

2p(q+1)(1 + 3
2k)

qJp(k, q)
≤ P (kψ) ≤ −k + λ

kp/2(2 + 3k)pq−p/2

2p(q+1)(1 + k)qJp(k, q)
.

Then an upper bound for λ∗ is provided by the relation λ0 = 1/g1(k0), where

g1(k) =
kp/2−1(2 + 3k)pq−p/2

2p(q+1)(1 + 3
2k)

qJp(k, q)
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and k0 is the largest solution of the equation g′1(k) = 0.
Now k0 exists since g1(k) → ∞ as k → 0+ and g1(k) ∼ Bkp/2−1J−p(k, q) ∼

Γk−1 →∞ as k →∞ provided that p > (q + 1)/q, see Lemmas 4.5 and 4.7 below.
Similarly a lower bound λ0 for λ∗ is obtained by λ0 = 1/g2(k0), where

g2(k) =
kp/2−1(2 + 3k)pq−p/2

2p(q+1)(1 + k)qJp(k, q)

and k0 is the largest solution of the equation g′2(k) = 0. The existence of k0 is again
guaranteed by the satisfaction of the conditions limk→0+ g2(k) = limk→∞ g2(k) =
∞ for p > (q + 1)/q.

In the following we present some properties of the function J(k, q), which help
us in evaluating λ0 and λ0, and have been used in proving that limk→0+ g1(k) =
limk→0+ g2(k) = ∞.

Proposition 4.4. The function J(k, q) satisfies the recursion relation

J(k, q) =
1

2(q − 1)

[ ( 2
k + 3)q−

3
2

( 2
k + 2)q−1

+ (2q − 3)J(k, q − 1)
]
, q > 1. (4.4)

Proof. Using the relation
∫

secn(x)dx = secn−1(x) sin(x)
n−1 + n−2

n−1

∫
secn−2(x)dx, we

have

J(k, q) =
∫ α

0

sec2q−1(r)dr =
sec2q−2(r) sin(r)

2q − 2

∣∣∣∣α
0

+
2q − 3
2q − 2

∫ α

0

sec2q−3(r)dr

=
1

2(q − 1)
[
sec2q−2(α) sin(α) + (2q − 3)J(k, q − 1)

]
and the result is obtained using the facts that sec(α) =

√
2
k +3
2
k +2

, and sin(α) =
1√
2
k +3

. �

Lemma 4.5. If 2q−1 ∈ N+, then the function J(k, q) has a finite limit as k →∞,
and limk→0+ J(k, q) = 0.

Proof. Since, J(k, 3
2 ) = 1√

2
k +2

, has a finite limit as k → ∞, the result can be

obtained using induction and the recursion relation (4.4). The second statement is
proved using similar arguments. �

Lemma 4.6. If 2q − 1 ∈ N+, then dJ(k,q)
dk ∼ A√

k
as k → 0+, for some positive

constant A.

Proof. We have J(k, q) =
∫ sin−1

(
1√
2
k

+3

)
0 sec2q−1(r)dr. Hence

dJ(k, q)
dk

= sec
[
sin−1

(
1√

2
k + 3

)]2q−1 d

dk

[
sin−1

(
1√

2
k + 3

)]

=
(

2 + 3k
2 + 2k

)q− 1
2 1

(2 + 3k)
√
k
√

2 + 2k

=
(2 + 3k)q−

3
2

2q
√
k(1 + k)q

and the result is obtained. �
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Lemma 4.7. For p > 0 and 2q − 1 ∈ N+, we have

kp/2−1(
J(p, q)

)p →∞, as k → 0+.

Proof. It is clear that the result is true for p ≤ 2. For p > 2 using L’Hospital rule
and Lemma 4.6 we derive as k → 0+,

kp/2−1(
J(p, q)

)p ∼ (p/2− 1)kp/2−2

p
(
J(p, q)

)p−1
J ′(p, q)

∼ (p/2− 1)kp/2−3/2

p
(
J(p, q)

)p−1
A

,

and hence the result for 2 < p ≤ 3. Applying L’Hopital rule and differentiating
n− 2 times, we obtain the result for n− 1 < p ≤ n. �

4.3. Bounds for the circular cylinder. Recalling that ψ(r) = 1
4 (3 − r2), and

1
2 ≤ ψ ≤ 3

4 , we have

h(kψ) =
(
2π

∫ 1

0

r

[1 + k
4 (3− r2)]q

dr
)p

=
( 4π
k(q − 1)

[(
1 +

k

2
)1−q − (1 +

3
4
k)1−q

])p
.

Hence

− k +
( 4π
k(q − 1)

[(
1 +

k

2
)1−q −

(
1 +

3
4
k
)1−q

])−p λ

(1 + 3
4k)

q

≤ P (kψ) ≤

− k +
( 4π
k(q − 1)

[(
1 +

k

2
)1−q −

(
1 +

3
4
k
)1−q

])−p λ

(1 + k
2 )q

Thus an upper bound of λ∗ is obtained by λ0 = 1/g1(k0), where

g1(k) =
( 4π
k(q − 1)

[(
1 +

k

2
)1−q −

(
1 +

3
4
k
)1−q

])−p
k−1

(
1 +

3
4
k
)−q

and k0 is the largest solution of the equation g′1(k) = 0. Note that limk→0+ g1(k) =
limk→∞ g1(k) = ∞ for p > (q + 1)/q.

Also a lower bound of λ∗ is provided by λ0 = 1/g2(k0), where

g2(k) =
( 4π
k(q − 1)

[(
1 +

k

2
)1−q −

(
1 +

3
4
k
)1−q

])−p
k−1

(
1 +

k

2
)−q

and k0 is the largest solution of the equation g′2(k) = 0.
Again we have limk→0+ g2(k) = limk→∞ g2(k) = ∞ for p > (q + 1)/q.

4.4. Bounds for the unit sphere. Recalling that ψ(r) = 1
2 (1− r2

3 ), and substi-
tuting r =

√
6/k + 3 sin(x) in h(kψ) we have

h(kψ) =
(
4π

∫ 1

0

r2

[1 + k
2 (1− r2

3 )]q
dr

)p
=

[
π
√

27
2q+1

kq
(
1 +

2
k

)3/2−q
H(k, q)

]p
,
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where H(k, q) =
∫ γ
0

[sec2q−1(r)− sec2q−3(r)]dr, and γ = sin−1
(

1√
6
k +2

)
. It is noted

that H(k, q) satisfies similar properties to those of J(k, q). Since 1
3 ≤ ψ ≤ 1

2 , we
have

−k +
λ

h(kψ)
(
1 + 1

2k
)q ≤ P (kψ) ≤ −k +

λ

h(kψ)
(
1 + 1

3k
)q .

Then an upper bound λ0 for λ∗ is provided by

λ0 =
1

g1(k0)
,

where k0 is the largest solution of the equation g′1(k) = 0, with

g1(k) =
kpq−1(1 + k

2 )−q

πp27p/22p(q+1)(1 + 2
k )p(3/2−q)Hp(k, q)

.

A lower bound λ0 for λ∗ is provided by

λ0 =
1

g2(k0)
,

where k0 is the largest solution of the equation g′2(k) = 0, with

g2(k) =
kpq−1(1 + k

3 )−q

πp27p/22p(q+1)(1 + 2
k )p(3/2−q)Hp(k, q)

.

One can see that g1(k) and g2(k) approach infinity as k does provided that p >
(q + 1)/q.

Table 2, presents the values of λ0 and λ0 for p = 2 and different values of q. One
can see that the values of λ0 and λ0 are decreasing with q, and so is λ∗. This seems
sensible since as q grows the function f(s) = (1 + s)−q decreases faster and so a
steady state ceases to exist for smaller values of λ. Also, for the same values of p
and q we have λ∗s ≤ λ∗c ≤ λ∗sp, where λ∗s, λ

∗
c , and λ∗sp, denotes the critical parameter

in the slab, cylindrical and spherical geometries, respectively.

Table 2. The upper and lower estimates of λ∗ for f(w) = 1
(1+w)q ,

p = 2, and different values of q.

Slab Cylinder Sphere
q λ0 λ0 λ0 λ0 λ0 λ0
3
2 0.908333 1.336943 5.045209 7.558562 14.482507 21.912864
2 0.594493 0.869110 3.289868 4.934802 9.428617 14.358698
5
2 0.443868 0.646653 2.451625 3.682343 7.020242 10.741934
3 0.354617 0.515538 1.956356 2.941853 5.599051 8.598215
7
2 0.295409 0.428856 1.628417 2.451090 4.658795 7.174475

5. Numerical Results

In this section we compare our estimates with the existing ones in the literature.
For sake of simplicity, as in the previous sections, we assume that β = 1.
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In [7] an upper estimate for λ∗ has been obtained in the case where f(s) is a
decreasing function such that

∫∞
0
f(s) ds <∞. More precisely this upper estimate

has the form

λ∗ ≤ λ̃ =
µ1 |Ω|p−1

mpr
, (5.1)

where µ1 is the principal eigenvalue of −∆ for Robin boundary conditions while
mpr is the minimum of the corresponding positive normalized eigenfunction Φ so
that

∫
Ω

Φ(x) dx = 1.
For the slab geometry the principal eigenvalue is µ1 = 0.740175, while the nor-

malized corresponding eigenfunction is Φ(x) = 0.567457 cos(0.860334x) and so
mpr = 0.370086.

For the cylindrical geometry the principal eigenvalue is µ1 = 1.576993 and the
normalized eigenfunction has the form

Φ(r) =
J0(
√

1.576993 r)
2.764919

=
J0(1.255783 r)

2.764919
,

where J0(r) is the Bessel function of first kind and so mpr = J0(1.255783)
2.764919 = 0.232538.

For the spherical geometry we obtain that µ1 = π2

4 and

Φ(r) =
π sin(π2 r)

16 r
,

hence mpr = π
16 .

¿From Tables 1, 2 and 3 it is easily seen that the upper estimate λ0 of λ∗ is
more accurate than the upper estimate λ̃ obtained by (5.1) for any of the three
considered geometries.

Table 3. The upper estimate λ̃ of λ∗ for general decreasing f with∫∞
0
f(s) ds <∞, and different values of p.

Slab Cylinder Sphere
p λ̃ λ̃ λ̃
2 4.000016 21.305204 52.637890
3 8.000032 66.932273 220.489078
4 16.000064 210.273939 923.582493
5 32.000129 660.595063 3868.693300
6 64.000259 2075.320598 16205.144599

In [13] for the slab geometry and for a general decreasing f with
∫∞
0
f(s)ds <∞

the upper estimate λ̂ = 8 is obtained when p = 2. From Tables 1,2 it can be
observed that the upper estimate λ0 is again more accurate. Also in [14], under
the same conditions on f , for the cylindrical geometry, it is proved that λ∗ < 8π2.
Again from the above tables it is obvious that the upper estimate λ0 is significantly
smaller than 8π2 in both of the considered cases, exponential and power-law case.

Conclusion. For p > pcr, there exists a critical parameter λ∗ such that problem
(2.1)-(2.2) has at least one solution for λ < λ∗ and no solution for λ > λ∗. Since
for λ > λ∗ the solution of time-dependent problem (1.1)-(1.2) performs finite time
blow-up, the determination of λ∗ becomes very important. But in most of the cases
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the determination of λ∗ is not possible and so upper and lower estimates of λ∗ are
very important.

In this paper we investigate the two special cases f(s) = e−s and f(s) = (1 +
s)−q, q > 0, and we construct some upper and lower solutions of problem (2.1)-(2.2)
of special form. Using these upper and lower solutions we obtain general upper and
lower estimates of the critical parameter λ∗. Furthermore, our arguments permit
to determine an upper bound of the critical exponent pcr and provide the proof of
the existence of λ∗ as well.

In each case, we focus on the slab, the cylindrical and the spherical geometries
and using some special approximations we improve the bounds obtained for a gen-
eral domain Ω. Our estimates for these three geometries improve the existing ones
in the literature, see [7, 13, 14].
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