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EXISTENCE OF SOLUTIONS FOR NONCONVEX
SECOND-ORDER DIFFERENTIAL INCLUSIONS IN THE

INFINITE DIMENSIONAL SPACE

TAHAR HADDAD, MUSTAPHA YAROU

Abstract. We prove the existence of solutions to the differential inclusion

ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)), x(0) = x0, ẋ(0) = y0,

where f is a Carathéodory function and F with nonconvex values in a Hilbert

space such that F (x, y) ⊂ γ(∂g(y)), with g a regular locally Lipschitz function
and γ a linear operator.

1. Introduction

In the present paper we consider the Cauchy problem for second-order differential
inclusion

ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)),

x(0) = x0, ẋ(0) = y0
(1.1)

where F (·, ·) is a given set-valued map and f is a Carathéodory function. Second
order differential inclusions have been studied by many authors, mainly in the case
when the multifunction is convex valued. Several existence results may be found in
[2, 8, 10, 13, 14].

Recently in [11] and [12], the situation when the multifunction is not convex
valued is considered, the existence of solution for the problem (1.1) was obtained
in the finite dimensional case by assuming F (·, ·) upper semicontinuous, compact
valued multifunction such that F (x, y) ⊂ ∂g(y) for some convex proper lower semi-
continuous function g. In this paper we extend this result in two ways: we consider
the infinite dimensional case and we relax the convexity assumption on the function
g, namely we suppose that g is uniformly regular and so the usual subdifferentials
will be replaced by the Clarke subdifferentials. The class of proper convex lower
semicontinuous functions and the class of lower-C2 functions (see examples 2.2, 2.3)
are strictly contained within the class of uniformly regular functions. The paper is
organized as follows: in Section 2 we recall some preliminary facts that we need in
the sequel and in Section 3 we prove our main result.
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2. Preliminaries

Let H be a real separable Hilbert space with the norm ‖ · ‖ and scalar product
〈·, ·〉. We denote by B := B(0, 1) the unit open ball of H and let B be its closure. We
denote by δ∗(., A) the support function of A, by d(x, A) the distance from x ∈ H
to A. for any two subsets A,B of H, dH(A,B) stands to the Hausdorff distance
between A and B.

Let σ the weak topology in H. Let us (en)n≥1 be a dense sequence in B and we
consider the linear application γ : H → H defined by

∀x ∈ H, γ(x) =
∞∑

n=1

2−n〈x, en〉en.

Note that this series is absolutely convergent. According to the specialists of the
theory of linear operators the application γ belongs to the class of the nuclear
operators of H. Further, γ satisfies the two following properties:

(a) The restriction of γ to B is continuous from (B , σ) into H.
(b) For all x ∈ H\{0}, 〈x, γ(x)〉 > 0.

Indeed b) is obvious. This condition is equivalent to

x ∈ H 7→ 〈x, γ(x)〉

is a strictly convex function (see [16]).
In the sequel we note by Γ(H) the set of linear applications γ : H → H verifying

the conditions a) and b). Γ(H) ⊂ K(H) the space of compact operators of H. If
H = Rm then Γ(H) coincides with the set of the automorphism of Rm associated
to positive definite matrices.

Definition 2.1 ([5]). Let f : H → R ∪ {+∞} be a lower semicontinuous function
and let Ω ⊂ domf be a nonempty open subset. We will say that f is uniformly
regular over Ω if there exists a positive number β ≥ 0 such that for all x ∈ Ω and
for all ξ ∈ ∂P f(x) one has

〈ξ, x′ − x〉 ≤ f(x′)− f(x) + β‖x′ − x‖2 for all x′ ∈ Ω.

Here ∂P f(x) denotes the proximal subdifferential of f at x (for its definition the
reader is refereed for instance to [7]). We will say that f is uniformly regular over
closed set S if there exists an open set O containing S such that f is uniformly
regular over O. The class of functions that are uniformly regular over sets is so
large. We state here some examples.

Example 2.2. Any lower semicontinuous proper convex function f is uniformly
regular over any nonempty subset of its domain with β = 0.

Example 2.3. Any lower-C2 function f is uniformly regular over any nonempty
convex compact subset of its domain. Indeed, let f be a lower-C2 function over a
nonempty convex compact set S ⊂ domf . By Rockafellar’s result ( see for instance
[14, Theorem 10.33]) there exists a positive real number β such that g := f + β

2 ‖.‖
2

is a convex function on S. Using the definition of the subdifferential of convex
functions and the fact that the Clarke subdifferential of f is ∂Cf(x) = ∂g(x)− βx
for any x ∈ S, we get the inequality in definition 2.1 and so f is uniformly regular
over S.
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The following proposition summarizes some important properties for uniformly
regular locally Lipschitz functions over sets needed in the sequel. For the proof of
these results we refer the reader to [4, 6].

Proposition 2.4. Let g : H → R be a locally Lipschitz function and Ω a nonempty
open set. If f is uniformly regular over Ω, then the following hold:

(i) The proximal subdifferential of g is closed over Ω, that is, for every xn →
x ∈ Ω with xn ∈ Ω and every ξn → ξ with ξn ∈ ∂P g(xn) one has ξ ∈ ∂P g(x)

(ii) The proximal subdifferential of g coincides with ∂Cg(x) the Clarke subdif-
ferential for any point x (see for instance [7] for the definition of ∂Cg)

(iii) The proximal subdifferential of g is upper hemicontinuous over S, that is,
the support function x 7→ 〈v, ∂P g(x)〉 is u.s.c. over S for every v ∈ H

(iv) For any absolutely continuous map x : [0, T ] → Ω for which ẋ(t) is abso-
lutely continuous one has

d

dt
(f ◦ ẋ)(t) = 〈∂Cf(ẋ(t)); ẍ(t)〉.

For a multifunction F : Ω1 × Ω2 ⊂ H×H → 2H and for any (x0, y0) ∈ Ω1 × Ω2

we consider the Cauchy problem

ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)), x(0) = x0, ẋ(0) = y0

under the following assumptions:

(H1) Ω1,Ω2 are open subsets in H and F : Ω1×Ω2 → 2H is upper semicontinuous
(i.e for all ε > 0 there exists δ > 0 such that ‖z − z′‖ ≤ δ implies F (z′) ⊂
F (z) + εB) with compact values.

(H2) There exist γ ∈ Γ(H) and a locally Lipschitz β-uniformly regular function
g : H → R over Ω2 such that

F (x, y) ⊂ γ(∂Cg(y)) for all (x, y) ∈ Ω1 × Ω2. (2.1)

(H3) f : R+ × H × H → H is a Carathéodory function, (i.e. for every x, y ∈
H, t 7−→ f(t, x, y) is measurable, for t ∈ R+, (x, y) 7−→ f(t, x, y) is contin-
uous) and for any bounded subset B of H × H, there is a compact set K
such that f(t, x, y) ∈ K for all (t, x, y) ∈ R+ ×B.

By a solution of problem (1.1) we mean an absolutely continuous function x(.) :
[0, T ] → H with absolutely continuous derivative ẋ(.) such that x(0) = x0, ẋ(0) =
y0 and ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)) a.e. on [0, T ]. For more details on
differential inclusions, we refer to [1].

3. Main result

Our main result is the following.

Theorem 3.1. Consider F : Ω1 × Ω2 → 2H, f : R × H × H → H, g : H → R and
γ ∈ Γ(H) satisfy Hypotheses (H1)-(H3). Then, for every (x0, y0) ∈ Ω1 × Ω2 there
exist T > 0 and x(.) : [0, T ] → H solution to problem (1.1).

Proof. Let r > 0 be such that B̄(y0, r) ⊂ Ω2 and g is L-Lipschitz on B̄(y0, r).
Then we have that ∂Cg(y) ⊂ LB̄, whenever y ∈ B̄(y0, r). By our assumption (H3),
there is a positive constant m such that f(t, x, y) ∈ K ⊂ mB for all (t, x, y) ∈
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R+ × B̄(x0, r)× B̄(y0, r). Moreover, since γ ∈ Γ(H), the set K1 := γ(LB̄) is convex
compact in H and so there exists m1 > 0 such that K1 ⊂ m1B. Choose T such that

0 < T < min
{ r

m1 + m
,

r

r + ‖y0‖
}

Set I := [0, T ]. For each integer n ≥ 1 and for 1 ≤ i ≤ n − 1 we set tni := iT
n ,

In
i := [tni−1, t

n
i [ and tnn = T , In

n = T . Let define the following approximate sequences

yn(t) = yn(tni ) +
∫ t

tn
i

[f(s, xn(tni ), yn(tni )) + un
i ]ds

xn(t) = xn(tni ) +
∫ t

tn
i

yn(s)ds

whenever t ∈ In
i+1, 0 ≤ i ≤ n − 1, where xn(0) = x0, yn(0) = y0, and un

i ∈
F (xn(tni ), yn(tni )).

For every 0 ≤ i ≤ n − 1, take zn
i ∈ ∂Cg(yn(tni )) such that un

i = γ(zn
i ). Now let

us define the step functions from [0, T ] to [0, T ] by

θn(t) = tni , un(t) = un
i , zn(t) = zn

i t ∈ In
i+1.

Then, for all n ∈ N∗ and all t ∈ [0, T ], we have the following properties:

0 ≤ t− θn(t) ≤ T

n
(3.1)

yn(t) = y0 +
∫ t

0

[f(s, xn(θn(s)), yn(θn(s))) + un(s)]ds (3.2)

xn(t) = x0 +
∫ t

0

yn(s)ds (3.3)

un(t) ∈ F (xn(θn(t)), yn(θn(t))) (3.4)

zn(t) ∈ ∂Cg(yn(θn(t))) (3.5)

un(t) = γ(zn(t)). (3.6)

Observe that yn(t) ∈ B̄(y0, r) and xn(t) ∈ B̄(x0, r) for all n ∈ N∗ and all t ∈ [0, T ].
Indeed it is obvious that

‖yn(t)− y0‖ = ‖
∫ t

0

[f(s, xn(θn(s)), yn(θn(s))) + un(s)]ds‖ ≤ (m1 + m)T < r

and

‖xn(t)− x0‖ = ‖
∫ t

0

yn(s)ds‖ ≤ (‖y0‖+ r)T < r

Hence
‖yn(t)− yn(t′)‖ ≤ (m1 + m)|t′ − t|

whenever 0 ≤ t ≤ t′ ≤ T and n ∈ N∗. On the other hand, we have

‖xn(t)− xn(t′)‖ ≤
∫ t′

t

‖yn(s)‖ds ≤ (r + ‖y0‖) |t− t′|

whenever 0 ≤ t ≤ t′ ≤ T and n ∈ N∗. Hence (xn)n∈N∗ and (yn)n∈N∗ are equi-
Lipschitz subsets of C([0, T ], H). The sets {xn(t) : n ∈ N∗} and {yn(t) : n ∈ N∗}
are relatively compact in H for every t ∈ [0, T ]. Indeed we have for all n ∈ N∗ and
all t ∈ [0, T ]

yn(t) ∈ y0 + [0, T ]{K1 + K} := K2
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which is compact. We have also

xn(t) ∈ x0 + [0, T ]K2

for all n ∈ N∗ and all t ∈ [0, T ]. Then by Ascoli’s theorem, (xn)n∈N∗ and (yn)n∈N∗

are relatively compact in the Banach space C([0, T ], H). Further, the sequences
(un)n∈N and (zn)n∈N are relatively σ(L1([0, T ], H); L∞([0, T ], H))-compact and
σ(L∞([0, T ], H);L1([0, T ], H))-compact respectively since we have a.e.

∀n ∈ N∗ un(t) ∈ K1 and zn(t) ∈ LB̄ .

Therefore, by extracting subsequences if necessary, we can assume that there exist
x in C([0, T ], H), y in C([0, T ], H), u in L1([0, T ], H) and z in L∞([0, T ], H) such
that xn → x in C([0, T ], H), yn → y in C([0, T ], H), un → u for σ(L1([0, T ], H);
L∞([0, T ], H))-topology and zn → z for σ(L∞([0, T ], H); L1([0, T ], H))-topology.
Also, we have f(., xn(θn(.)), yn(θn())) → f(., x(.), y(.)) in the norm of the space
L1([0, T ], H). Consequently, for all t ∈ [0, T ],

x0 +
∫ t

0

ẋ(s)ds = x(t) = lim
n→∞

xn(t) = x0 + lim
n→∞

∫ t

0

yn(s)ds = x0 +
∫ t

0

y(s)ds

which gives the equality

ẋ(t) = y(t) for almost t ∈ [0, T ]. (3.7)

Now we assert that u = γ(z) a.e. Indeed, for any w ∈ H and any measurable set A
in [0, T ], one has

〈w,

∫
A

u(η)dη〉 =
∫

A

〈w, u(η)〉dη

= lim
n→∞

∫
A

〈w, un(η)〉dη

= lim
n→∞

〈w,

∫
A

γ(zn(η))dη〉

= lim
n→∞

〈w, γ(
∫

A

zn(η)dη)〉

= 〈w, γ(
∫

A

z(η)dη)〉

= 〈w,

∫
A

γ(z(η)dη)〉.

Hence u(t) = γ(z(t)) for almost every t ∈ [0, T ]. Note that limn→∞ xn(θn(t)) = x(t)
and limn→∞ yn(θn(t)) = y(t), for all t ∈ [0, T ] where y(t) = y0 +

∫ t

0
ẏ(s)ds, for all

t ∈ [0, T ]. Then it follows from (3.2) that ẏ(t) = f(t, x(t), y(t)) + u(t) for almost
t ∈ [0, T ] and by (3.7) we obtain that

ẍ(t) = f(t, x(t), y(t)) + u(t)

for almost t ∈ [0, T ]. By construction, we have for a.e t ∈ [0, T ],

ẍn(t)− fn(t) = un(t) ∈ F (xn(θn(t)), yn(θn(t)))

⊂ γ(∂Cg(yn(θn(t))))

= γ(∂P g(yn(θn(t)))).

(3.8)
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Since yn(θn(t) ∈ B̄(y0, r) ⊂ Ω2, the last equality follows from the uniform regularity
of g over Ω2 and the part (ii) in proposition 2.4. The convergence of zn to z for
σ(L∞([0, T ], H);L1([0, T ], H))-topology and Mazur’s Lemma entails

z ∈
⋂
n

coσ{zm : m ≥ n}, for a.e. t ∈ [0, T ]

(here σ = σ(L∞([0, T ], H);L1([0, T ], H)). Fix any such t and consider any ξ ∈ H.
Then, the last relation above yields

〈ξ, z(t)〉 ≤ inf
n

sup
m≥n

〈ξ, zn(t)〉

and by proposition 2.4 part (iii) and (3.5) yield

〈ξ, z(t)〉 ≤ lim sup
n

δ∗(ξ, ∂P g(yn(θn(t))))

≤ δ∗(ξ, ∂pg(y(t))) for any ξ ∈ H,

So, by [9, Theorem VI.4], the convexity and the closeness of the set ∂pg(y(t))
ensures

z(t) ∈ ∂pg(y(t))

Now, since g is uniformly regular over Ω2 and ẋ(t) = y(t) ∈ B̄(y0, r) ⊂ Ω2 for all
t ∈ [0, T ] we have by proposition 2.4 part (iv)

d

dt
(g ◦ ẋ)(t) = 〈∂pg(ẋ(t)), ẍ(t)〉 = 〈z(t), ẍ(t)〉

= 〈z(t), f(t, x(t), y(t)) + u(t)〉.

Consequently,

g(ẋ(T ))− g(y0) =
∫ T

0

〈z(t), f(t, x(t), y(t))〉dt +
∫ T

0

〈z(t), u(t)〉dt (3.9)

On the other hand, since yn(θn(t) ∈ B̄(y0, r) ⊂ Ω2 and by (3.8) and definition 2.1,
we have for all i ∈ {0, . . . , n− 1}

g(yn
i+1)− g(yn

i )

≥ 〈zn
i , yn

i+1 − yn
i 〉 − β‖yn

i+1 − yn
i ‖2

= 〈zn
i ,

∫ tn
i+1

tn
i

ẍn(s)ds〉 − β‖yn
i+1 − yn

i ‖2

= 〈zn(t),
∫ tn

i+1

tn
i

[f(s, xn(θn(s)), yn(θn(s))) + un(s)]ds〉 − β‖yn
i+1 − yn

i ‖2

≥
∫ tn

i+1

tn
i

〈zn(s), f(s, xn(θn(s)), yn(θn(s)))〉ds +
∫ tn

i+1

tn
i

〈zn(s), un(s)〉ds

− β(m1 + m)2(tni+1 − tni )2

By adding, we obtain

g(ẋn(T ))− g(y0)

≥
∫ T

0

〈zn(s), f(s, xn(θn(s)), yn(θn(s)))〉ds +
∫ T

0

〈zn(s), un(s)〉ds− εn

(3.10)
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with

εn =
β(m1 + m)2T 2

n
→ 0

as n →∞. We have also have

lim
n→∞

∫ T

0

〈zn(s), f(s, xn(θn(s)), yn(θn(s)))〉ds =
∫ T

0

〈z(s), f(s, x(s), y(s))〉ds.

Indeed, for all t ∈ [0, T ] and all n ∈ N∗,

〈zn(t), f(t, xn(θn(t)), yn(θn(t)))〉 − 〈z(t), f(t, x(t), y(t))〉 = αn(t) + βn(t)

where

αn(t) = 〈zn(t), f(t, xn(θn(t)), yn(θn(t)))− f(t, x(t), y(t))〉,
βn(t) = 〈zn(t)− z(t), f(t, x(t), y(t))〉

Since zn(t)− z(t) → 0 for σ(L∞([0, T ], H);L1([0, T ], H)),∫ T

0

βn(s)ds → 0

and fn → f strongly in L1([0, T ], H) which implies∫ T

0

αn(s)ds → 0.

Taking the limit superior in (3.10) when n →∞ and using the continuity of g, we
obtain

g(ẋ(T ))− g(y0) ≥
∫ T

0

〈z(s), f(s, x(s), y(s))〉ds + lim
n

sup
∫ T

0

〈zn(s), un(s)〉ds

This inequality compared with (3.9) yields

lim sup
n

∫ T

0

〈zn(s), un(s)〉ds ≤
∫ T

0

〈z(s), u(s)〉ds (3.11)

The values of the function zn are in the convex weakly compact C := LB̄, further
the application Λ : (H, σ) → [0. +∞] defined by

Λ(α) =

{
〈α, γ(α)〉 if α ∈ C

+∞ otherwise

is lower semicontinuous and strictly convex on C (According to a) and b) ). The
condition (3.11) is equivalent to

lim sup
n

∫ T

0

Λ(zn(s))ds ≤
∫ T

0

Λ(z(s))ds .

Then [3, Proposition 3.2] yields

z(t) ∈
⋂
n

coσ{zm(t) : m ≥ n}, for a.e t ∈ [0, T ].

Hence there is a negligible N such that for t /∈ N , we have

u(t) = γ(z(t))

z(t) ∈
⋂
n

coσ{zm(t) : m ≥ n}.
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Now let t /∈ N be fixed. Then we can extract from (zn(t))n∈N a subsequence
(znk

(t))k∈N, such that znk
(t) ⇀ z(t) weakly in H so that γ(znk

(t)) → γ(z(t)) for
the norm topology since γ ∈ Γ(H). By (3.4) and (3.6), recalling that

un(t) = γ(zn(t)) ∈ F (xn(θn(t)), yn(θn(t)))

for every t ∈ [0, T ] and every n ∈ N∗, that limn→∞ xn(θn(t)) = x(t),
limn→∞ yn(θn(t)) = y(t) = ẋ(t), for all t ∈ [0, T ] and that the graph of F is
closed, we obtain

u(t) = γ(z(t)) ∈ F (x(t)), ẋ(t)) a.e. (3.12)

Since ẍ(t) = f(t, x(t), y(t)) + u(t) for almost t ∈ [0, T ] it follows from (3.12) that

ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)) a.e. on [0, T ].

Therefore, differential inclusion (1.1) admits a solution. �

Remark 3.2. An inspection of the proof of Theorem 3.1 shows that the uniformity
of the constant β was needed only over the ball B(y0, ρ) and so it was not necessary
over all the set Ω2.
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