Electronic Journal of Differential Equations, Vol. 2006(2006), No. 33, pp. 1-8.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR NONCONVEX
SECOND-ORDER DIFFERENTIAL INCLUSIONS IN THE
INFINITE DIMENSIONAL SPACE

TAHAR HADDAD, MUSTAPHA YAROU

ABSTRACT. We prove the existence of solutions to the differential inclusion
i(t) € F(a(t),£(t) + f(t,z(t), (2)), «(0) ==z0, (0) = yo,
where f is a Carathéodory function and F' with nonconvex values in a Hilbert

space such that F(z,y) C v(9g(y)), with g a regular locally Lipschitz function
and ~ a linear operator.

1. INTRODUCTION

In the present paper we consider the Cauchy problem for second-order differential
inclusion

B(t) € F(x(t), &(t) + f(t, x(t), (1)),
z(0) = zo,  2(0) = yo

where F(-,-) is a given set-valued map and f is a Carathéodory function. Second
order differential inclusions have been studied by many authors, mainly in the case
when the multifunction is convex valued. Several existence results may be found in
[2, 18l 10} 13 [14].

Recently in [II] and [12], the situation when the multifunction is not convex
valued is considered, the existence of solution for the problem was obtained
in the finite dimensional case by assuming F'(-,-) upper semicontinuous, compact
valued multifunction such that F'(z,y) C dg(y) for some convex proper lower semi-
continuous function g. In this paper we extend this result in two ways: we consider
the infinite dimensional case and we relax the convexity assumption on the function
g, namely we suppose that ¢ is uniformly regular and so the usual subdifferentials
will be replaced by the Clarke subdifferentials. The class of proper convex lower
semicontinuous functions and the class of lower-C? functions (see examples
are strictly contained within the class of uniformly regular functions. The paper is
organized as follows: in Section 2 we recall some preliminary facts that we need in
the sequel and in Section 3 we prove our main result.

(1.1)
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2. PRELIMINARIES

Let H be a real separable Hilbert space with the norm || - || and scalar product
(-,+). We denote by B := B(0, 1) the unit open ball of H and let B be its closure. We
denote by §*(., A) the support function of A, by d(z, A) the distance from = € H
to A. for any two subsets A, B of H, dy(A, B) stands to the Hausdorfl distance
between A and B.

Let o the weak topology in H. Let us (e,)n>1 be a dense sequence in B and we
consider the linear application « : H — H defined by

Ve e H, ~(z)= Z 27"z, en)en.
n=1

Note that this series is absolutely convergent. According to the specialists of the
theory of linear operators the application v belongs to the class of the nuclear
operators of H. Further, - satisfies the two following properties:

(a) The restriction of v to B is continuous from (B , o) into H.

(b) For all z € H\{0}, (x,v(x)) > 0.
Indeed b) is obvious. This condition is equivalent to

z e (z,7(2))

is a strictly convex function (see [16]).

In the sequel we note by T'(H) the set of linear applications ~ : H — H verifying
the conditions a) and b). I'(H) C K(H) the space of compact operators of H. If
H = R™ then I'(H) coincides with the set of the automorphism of R™ associated
to positive definite matrices.

Definition 2.1 ([5]). Let f:H — RU {+oco} be a lower semicontinuous function
and let Q C domf be a nonempty open subset. We will say that f is uniformly
regular over () if there exists a positive number 3 > 0 such that for all x € Q and

for all £ € OF f(z) one has
(&' —2) < f(2') — f(x) + Bllz’ — =||* for all 2’ € Q.

Here OF f(x) denotes the proximal subdifferential of f at x (for its definition the
reader is refereed for instance to [7]). We will say that f is uniformly regular over
closed set S if there exists an open set O containing S such that f is uniformly
regular over O. The class of functions that are uniformly regular over sets is so
large. We state here some examples.

Example 2.2. Any lower semicontinuous proper convex function f is uniformly
regular over any nonempty subset of its domain with 5 = 0.

Example 2.3. Any lower-C? function f is uniformly regular over any nonempty
convex compact subset of its domain. Indeed, let f be a lower-C? function over a
nonempty convex compact set S C domf. By Rockafellar’s result ( see for instance
[T4, Theorem 10.33]) there exists a positive real number 3 such that g := f + g||||2
is a convex function on S. Using the definition of the subdifferential of convex
functions and the fact that the Clarke subdifferential of f is 9 f(x) = dg(z) — Bz
for any x € S, we get the inequality in definition 2:I] and so f is uniformly regular
over S.
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The following proposition summarizes some important properties for uniformly
regular locally Lipschitz functions over sets needed in the sequel. For the proof of
these results we refer the reader to [4, [6].

Proposition 2.4. Let g : H — R be a locally Lipschitz function and 2 a nonempty
open set. If f is uniformly regular over 2, then the following hold:

(i) The proximal subdifferential of g is closed over ), that is, for every x, —
r € Q with x, € Q and every &, — &€ with &, € 0P g(z,,) one has ¢ € 0¥ g(x)

(ii) The prozimal subdifferential of g coincides with O€ g(x) the Clarke subdif-
ferential for any point x (see for instance [7] for the definition of 9%g)

(iii) The proximal subdifferential of g is upper hemicontinuous over S, that is,
the support function x — {(v,0F g(x)) is u.s.c. over S for every v € H

(iv) For any absolutely continuous map x : [0,T] — Q for which (t) is abso-
lutely continuous one has

5 (Fo@)(t) = (07 F((t)); 5(t))-

For a multifunction F : Q; x Qy C H x H — 2% and for any (20,90) € 1 X Qs
we consider the Cauchy problem

E(t) € F(x(t), &(t)) + f(t, x(t), (1)), 2(0) = zo, £(0) = yo
under the following assumptions:

(H1) Qy, Q5 are open subsets in H and F : Q1 x Qy — 2 is upper semicontinuous
(i.e for all € > 0 there exists 6 > 0 such that ||z — 2| < § implies F(z) C
F(z) + €B) with compact values.

(H2) There exist v € I'(H) and a locally Lipschitz S-uniformly regular function
g : H — R over 25 such that

F(x,y) C v(0%(y)) for all (z,y) € Q; x Qs. (2.1)

(H3) f: RT x H x H — H is a Carathéodory function, (i.e. for every x,y €
H,t — f(t,z,y) is measurable, for t € RT, (z,y) — f(¢,z,y) is contin-
uous) and for any bounded subset B of H x H, there is a compact set K
such that f(t,z,y) € K for all (t,z,y) € RT x B.

By a solution of problem we mean an absolutely continuous function z(.) :
[0,7] — H with absolutely continuous derivative z(.) such that x(0) = zo,%(0) =
yo and Z(t) € F(x(t),z(t)) + f(t,x(t),&(t)) a.e. on [0,T]. For more details on
differential inclusions, we refer to [1].

3. MAIN RESULT

Our main result is the following.

Theorem 3.1. Consider F : Q3 x Qy — 28 f RxHxH —-H, g: H— R and
v € I(H) satisfy Hypotheses (H1)-(H3). Then, for every (zg,yo) € Q1 x Qg there
exist T >0 and x(.) : [0,T) — H solution to problem (1.1)).

Proof. Let r > 0 be such that B(yo,r) C Qo and g is L-Lipschitz on B(yo, 7).
Then we have that 9 ¢(y) C LB, whenever y € B(yo,r). By our assumption (H3)
there is a positive constant m such that f(¢t,z,y) € K C mB for all (¢,z,y)

)
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R* x B(zo,7) x B(yo, 7). Moreover, since v € T'(H), the set K, := v(LB) is convex
compact in H and so there exists m; > 0 such that K; C m;B. Choose T such that

my +m T+Hyoll}

Set I := [0,T]. For each integer n > 1 and for 1 < i < n —1 we set t} := oL

n?
I = [t ,t?and ] =T, I = T. Let define the following approximate sequences

0<T<m1n{

t

yna>::yn@?>ﬁ—j{[f<sah<t> yn(£2)) + ulds

' t
Zn(t) :xn(t?)Jr/ yn(s)ds
tn
whenever ¢t € I ,,0 < i < n — 1, where 2,(0) = zo, yn(0) = vo, and u} €

Fan(t?), yn(t?'))-
For every 0 < i <n — 1, take 27 € 9“g(y,(t?)) such that u? = v(2"). Now let
us define the step functions from [0, 7] to [0,T] by

On(t) =17, un(t) = uj', zp(t) = 2 telj.
Then, for all n € N* and all ¢ € [0,T], we have the following properties:

0<t—0, (t)g%
n (6

yn(t) = o +/0 [f (8,20 (0n(5)), yn(On(5))) + un(s)]ds (3-2)

xn(t) = zg —|—/O yn(s)ds

(
un(t) € F(2n(0n (1)), yn(0n(1))) (3.4
2n(t) € 9%9(yn(Bn(t))) (3.5
un(t) = v(zn(t))- (3.6
Observe that y,(t) € B(yo,r) and ,,(t) € B(zq,r) for all n € N* and all ¢ € [0, T].

Indeed it is obvious that

0 0) =30l = [ 17650050, On 1) + ()]sl < Om )T < 0
and .
Ja(t) = zoll = | | (5)dsl < (o]l + )T < 7
0
Hence

[y (t) =y ()| < (m1 +m)|t' — 1|
whenever 0 <t <t <T and n € N*. On the other hand, we have

[n () — 2n ()] S/t lyn (s)llds < (r + llyoll) [t — #']

whenever 0 < ¢t < ¢ < T and n € N*. Hence (2, )nen+ and (yn)nen+ are equi-
Lipschitz subsets of C([0,T],H). The sets {x,(t) : n € N*} and {y,(t) : n € N*}
are relatively compact in H for every t € [0, T]. Indeed we have for all n € N* and
all t € [0,T]

yn(t) €Eyo + [0, TH{ K1 + K} := K>



EJDE-2006/33 SECOND-ORDER NONCONVEX DIFFERENTIAL INCLUSION 5

which is compact. We have also
Zn(t) € xo + [0, T K2

for all n € N* and all ¢ € [0, T]. Then by Ascoli’s theorem, (2, )nen+ and (Yn)nen-
are relatively compact in the Banach space C([0,7],H). Further, the sequences
(un)nen and (2, )nen are relatively o(L([0,T],H); L°°([0,7T],H))-compact and
a(L>=([0,T],H); L([0, T, H))-compact respectively since we have a.e.

Vn e N* wu,(t) € K; and z,(t) € LB.
Therefore, by extracting subsequences if necessary, we can assume that there exist
z in C([0,T],H), y in C([0,T],H), u in L'([0,T],H) and z in L*([0,T],H) such
that x, — z in C([0,T],H), ¥, — vy in C([0,T],H), u,, — u for o(L* ([0, T],H);
L*°([0,T], H))-topology and z, — z for a(L>([0,T], H); L*([0, T], H))-topology.
Also, we have f(.,2,(0n(.),yn(0,())) — f(.,z(.),y(.)) in the norm of the space
Ll([O T],H). Consequently, for all ¢ € [0, 7],

t t t
Zo +/ z(s)ds = z(t) = lim x,(t) = 2o + lim yn(8)ds = xg —|—/ y(s)ds

which gives the equality
z(t) = y(t) for almost t € [0, T]. (3.7

Now we assert that u = v(z) a.e. Indeed, for any w € H and any measurable set A

in [0, 7], one has
tw, [ utnan

[ twutmydn

= lim (w,un(n))dn

n—oo

= lim (w, /A ¥(2n(n))dn)

n— oo

T -~ /A 2n (7))

n— oo

= (w,( /A 2(n)dn))
= (w, /A A(2(n)dn)).

Hence u(t) = y(2(t)) for almost every t € [0, T]. Note that lim,,_, xn(ﬂn( )) = x(t)
and lim, o0 yn(0n(t)) = y(t), for all ¢ € [0,T] where y(t) = yo + fo y(s)ds, for all
t € [0,T]. Then it follows from that y(t) = f(¢, z(¢),y(t)) + u(t) for almost
t € [0,T] and by we obtain that

B(t) = f(t, (), y(t) + u(t)
for almost ¢ € [0,T]. By construction, we have for a.e t € [0,T],
i (t) = fn(t) = un(t) € F(@n(0n(t)), yn(0n(t)))
C 1(0%g(yn(6a(1)))) (3.8)
=7(0" g(yn (6. (1))))-
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Since yn, (0, (t) € B(yo,7) C Qs, the last equality follows from the uniform regularity
of g over 9 and the part (ii) in proposition The convergence of z, to z for
a (L ([0, T), H); L1([0, T], H))-topology and Mazur’s Lemma entails

z € n@"{zm :m>n}, forae. te€0,7]

n

(here o = o(L>([0,T],H); L*([0,T],H)). Fix any such ¢ and consider any ¢ € H.
Then, the last relation above yields

(€:2(1)) < inf sup (6, 2,(1)

and by proposition part (iii) and yield
(€, 2(t)) < limsup (&, 07 g(yn(0n(1))))
< 6%(§,0%g(y(t))) for any £ € H,

So, by [9, Theorem VI.4], the convexity and the closeness of the set 9Pg(y(t))
ensures

() € Pg(u(t) )

Now, since g is uniformly regular over Q9 and @(t) = y(t) € B(yo,r) C Q2 for all
t € [0, T] we have by proposition part (iv)

%(g ox)(t) = (0%g(&(1)), £(t)) = (2(t), (1))
= (2(), f(t, x(t),y(t)) + u(?)).
Consequently,

g(ﬂb(T))—g(yo)Z/O <Z(t)7f(tvw(t),y(t))>dt+/0 (2(1), u(t))dt (3.9)

On the other hand, since y,, (6, (t) € B(yg, ) C Q2 and by (3.8) and definition
we have for all ¢ € {0,...,n — 1}

9(wi1) — 9(yi)
> (2t — vl = Bllyi — vt P

n

tit1

s / n(5)ds) — Bllylar — o0

n
i

= (za(t), / (5 20(0n(5)), n (0n())) + un(5)]ds) — By s — v7]1?

i i
> / (e (5), £ (5,20 (0 (5)), yn (Bu (5)))) s + / (o (8), tn () ds
tn tn
~ Blma + m)A(E — )2
By adding, we obtain

9(@(T)) — 9(yo)

T T (3.10)
> / (2n(3), (5, 20 (0 (5)), U (Bn(s))))ds + / (2n(8), tn(5))ds — e
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with

2T2
o = Bt m)T™
n

as n — 0o. We have also have
T

T
lim [ (zn(5), £(5, 20 (0n(5))s ya(On(s))))ds = / (2(3). £ (5. 2(5), y(s)))ds.

n—oo 0
Indeed, for all t € [0,7] and all n € N*,
(2n (), f(t, 20 (00 (1)), yn (O (1)) — (2(2), [ (L, 2(1), y(t))) = an(t) + Bu(t)
where
an(t) = <Zn(t)’f(t7xn(9n(t))’yn(an(t))) f(t x(t) y(t))),
Bu(t) = (zn(t) — 2(1), f(t, z(1),y
Since z,,(t) — 2(t) — 0 for o(L> ([0, T],H); L' ([0, T], H

/ Brn(s)ds — 0

and f, — f strongly in L([0, 7], H) which implies

T
/ an(s)ds — 0.
0

Taking the limit superior in (3.10)) when n — oo and using the continuity of g, we
obtain

T T
o(D) = gl) = [ (9. F(s.(5). ) s + Timsup [ (s).uas)ds

This inequality compared with (3.9) yields

T T
hmsup/O (zn(s),un(s»dsg/o (z(s),u(s))ds (3.11)

n

~—
—

The values of the function z, are in the convex weakly compact C := LB, further
the application A : (H, o) — [0. 4 oo] defined by

Aa) = {(a,v(a» if a € C’
400 otherwise

is lower semicontinuous and strictly convex on C' (According to a) and b) ). The

condition (3.11)) is equivalent to

T T
limsup [ A(zn(s))ds < /O A(x(s))ds.

n 0
Then [3, Proposition 3.2] yields

z(t) € ﬂ@”{zm(t) :m >mn}, foraetel0,T].

Hence there is a negligible N such that for ¢t ¢ N, we have
u(t) =y(2(t))
t) € ()@ {zm(t) : m > n}.
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Now let ¢ ¢ N be fixed. Then we can extract from (z,(t))n,en & subsequence
(2n, (t))ken, such that z,, (t) — z(t) weakly in H so that vy(z,, (t)) — ~v(z(t)) for
the norm topology since v € I'(H). By (3.4) and (3.6), recalling that

un(t) = v(zn(t)) € F(zn(0n(t)), yn(0n(t)))

for every t € [0,7] and every n € N* that lim, .o z,(0,(t)) = z(t),
limy, oo Yn (00 (1)) = y(t) = &(t), for all t € [0,7] and that the graph of F' is
closed, we obtain

u(t) = v(2(t)) € F(x(t)),z(t)) a.e. (3.12)
Since Z(t) = f(t, z(t), y(t)) + u(t) for almost ¢ € [0, 7] it follows from that

i(t) € F(z(t), &(t)) + f(t, =(t),2(t)) a.e. on[0,T].
Therefore, differential inclusion (|1.1)) admits a solution. (Il

Remark 3.2. An inspection of the proof of Theorem [3.I]shows that the uniformity
of the constant [ was needed only over the ball B(yg, p) and so it was not necessary
over all the set Qs.
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