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EXISTENCE OF POSITIVE PERIODIC SOLUTIONS FOR
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

ZHIXIANG LI, XIAO WANG

Abstract. We find sufficient conditions for the existence of positive periodic
solutions of two kinds of neutral differential equations. Using Krasnoselskii’s
fixed-point theorem in cones, we obtain results that extend and improve previ-
ous results. These results are useful mostly when applied to neutral equations
with delay in bio-mathematics.

1. Introduction

In this paper, we investigate the existence of positive periodic solutions of the
following two kinds of nonlinear neutral functional differential equations

d

dt
(x(t)− cx(t− τ(t))) = −a(t)x(t) + g(t, x(t− τ(t))), (1.1)

and

d

dt
(x(t)−c

∫ 0

−∞
K(r)x(t+r)dr) = −a(t)x(t)+b(t)

∫ 0

−∞
K(r)g(t, x(t+r))dr, (1.2)

where a, τ ∈ C(R; R),
∫ ω

0
a(t)dt > 0, b ∈ C(R; (0,∞)), g ∈ C(R × [0,∞), [0,∞)),

and a(t), b(t), τ(t), g(t, x) are ω-periodic functions. ω > 0 and c ∈ [0, 1) are two
constants. Moreover, K ∈ C((−∞, 0], [0,∞)) and

∫ 0

−∞K(r)dr = 1. The function
a(t) admits negative values in bad conditions, since the environment fluctuates
randomly.

Our work is motivated by [8, 9, 14], where the equations

d

dt
x(t) = −a(t)x(t) + g(t, x(t− τ(t))),

d

dt
x(t) = −a(t)x(t) + b(t)

∫ 0

−∞
K(s)g(t, x(t + s))ds,

are considered. Since these equations include many important models in mathemat-
ical biology, such as Hematopoiesis models, blood cell production and the Nichol-
son’s blowflies models in [2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15], the sufficient conditions
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for the existence of positive periodic solutions of these equations in [8, 9, 14] are
interesting.

Meanwhile, since a growing population is likely to consume more (or less) food
than a matured one, depending on individual species, this leads to the neutral
functional differential equations. Moreover, it is well-known that periodic solutions
of differential equations describe the important modality of the systems. So it is
important to study the existence of periodic solutions to (1.1) and (1.2).

Equations (1.1) and (1.2) include many mathematical ecological models and
population models (directly or after some transformation). For example, there are
many Hematopoiesis models, which are modifications from models in [2, 8, 9, 11,
12, 14, 15]:

d

dt
(x(t)− cx(t− τ(t))) = −a(t)x(t) + b(t)e−β(t)x(t−τ(t)), (1.3)

d

dt
(x(t)− c

∫ 0

−∞
K(r)x(t + r)dr) = −a(t)x(t) + b(t)

∫ 0

−∞
K(r)e−β(t)x(t+r))dr.

(1.4)

There are more general models for blood cell production, which are variations of
models in [2, 3, 8, 9, 11, 12, 14, 15]:

d

dt
(x(t)− cx(t− τ(t))) = −a(t)x(t) + b(t)

1
1 + xn(t− τ(t))

, n > 0, (1.5)

d

dt
(x(t)− cx(t− τ(t))dr) = −a(t)x(t) + b(t)

x(t− τ(t))
1 + xn(t− τ(t))

, n > 0, (1.6)

d

dt
(x(t)− c

∫ 0

−∞
K(r)x(t + r)dr)

= −a(t)x(t) + b(t)
∫ 0

−∞
K(r)

1
1 + xn(t + r)

dr, n > 0,

(1.7)

d

dt
(x(t)− c

∫ 0

−∞
K(r)x(t + r)dr)

= −a(t)x(t) + b(t)
∫ 0

−∞
K(r)

x(t + r)
1 + xn(t + r)

dr, n > 0.

(1.8)

Meanwhile, there are more Nicholson’s blowflies models, which are modifications
from models in [2, 6, 8, 9, 12, 14]:

d

dt
(x(t)− cx(t− τ(t))) = −a(t)x(t) + b(t)x(t− τ(t))e−β(t)x(t−τ(t)), (1.9)

d

dt
(x(t)− c

∫ 0

−∞
K(r)x(t + r)dr)

= −a(t)x(t) + b(t)
∫ 0

−∞
K(r)x(t + r)e−β(t)x(t+r)dr.

(1.10)

In this paper, we obtain sufficient conditions for the existence of positive periodic
solutions for the neutral delay differential equations (1.1) and (1.2). Our results
improve and generalize the corresponding results of Jiang and Wei [8, 9] and Wan
[14], when c = 0 in (1.1) and (1.2). In fact, Theorem 2.1 extends and improves
the corresponding results in [14, Theorem 2.1] and [9, Theorem 2.1]. Meanwhile,
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Theorem 2.2 improves the corresponding results in [8, Theorem 2.1]. For a(t) > 0
in [14] and g(t, x) sub-linear or super-linear in [9], the assumptions in Theorem 2.1
and Theorem 2.2 are weaker than theirs. When c 6= 0, our main results are new.

Due to c 6= 0, the methods used by the authors [8, 9, 14] can not be directly
applied to (1.1) and (1.2). The proofs of the main results in our paper are based
on an application of Krasnoselskii’s fixed point theorem in cones (See [1, 4, 5]). To
make use of fixed point theorem in a cone, firstly, we introduce the definition of a
cone in a Banach space.
Definition. Let X be a Banach space. K is called a cone if K is a closed nonempty
subset of X and satisfies

(i) αx + βy ∈ K, for all x, y ∈ K and α, β > 0;
(ii) x,−x ∈ K implies x = 0.

The following Lemma is due to Krasnoselskii (See [1, 4, 5]).

Lemma 1.1. Let X be a Banach space, and let K ⊂ X be a cone in X. Assume
Ω1,Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

Φ : K ∩ (Ω̄2 \ Ω1) → K

be a completely continuous operator that satisfies one of the following conditions:
(i) ‖Φx‖ ≥ ‖x‖,∀x ∈ K ∩ ∂Ω1 and ‖Φx‖ ≤ ‖x‖,∀x ∈ K ∩ ∂Ω2;
(ii) ‖Φx‖ ≥ ‖x‖,∀x ∈ K ∩ ∂Ω2 and ‖Φx‖ ≤ ‖x‖,∀x ∈ K ∩ ∂Ω1.

Then Φ has a fixed point in K ∩ (Ω̄2 \ Ω1).

For convenience, we need to introduce a few notations and assumptions. Let

G(t, s) =
exp(

∫ s

t
a(r)dr)

exp(
∫ ω

0
a(r)dr)− 1

,

A := min{G(t, s) : 0 ≤ t, s ≤ ω} = G(t, t) > 0,

B := max{G(t, s) : 0 ≤ t, s ≤ ω} = G(t, t + ω) > 0,

0 < σ =
A

B
< 1,

m(y) = max
(t,x)∈[0,ω]×[0,y]

g(t, x), y ≥ 0.

For (1.1), we assume that

(H1) lim infx→0
g(t,x)

x = α(t) and lim supx→∞
g(t,x)

x = β(t), where α(t), β(t) are
continuous ω-periodic functions on R.

(H2)
∫ ω

0
α(t)dt > c

∫ ω

0
a(t)dt+ 1

Aσ (1−cσ) and
∫ ω

0
β(t)dt < c

∫ ω

0
a(t)dt+ 1

B (1−c).
(H3) g(t, x) ≥ ca(t)x,∀(t, x) ∈ R× [0, r2].

From (H1), there exist two constants r1 and n with 0 < r1 < n such that

g(t, x) ≥ α(t)x, 0 ≤ x ≤ r1,

g(t, x) ≤ β(t)x, x > n.

Let r2 > max{ Bm
1−c−B

R ω
0 [β(t)−ca(t)]dt

, n} > r1, where m = ω(m(n) + cn‖a(t)‖). For
(1.2), we suppose that (H1) holds and

(P2)
∫ ω

0
b(t)α(t)dt > c

∫ ω

0
a(t)dt + 1

Aσ (1− cσ) and
∫ ω

0
b(t)β(t)dt < c

∫ ω

0
a(t)dt +

1
B (1− c).

(P3) g(t, x) ≥ ca(t)
b(t) x, for all (t, x) ∈ R× [0, R2].
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From (H1) there exist two constants R1 and N with 0 < R1 < N such that

g(t, x) ≥ α(t)x, 0 ≤ x ≤ R1,

g(t, x) ≤ β(t)x, x > N.

Let
R2 > max{ BM

1− c−B
∫ ω

0
[β(t)− ca(t)]dt

,N} > R1,

where M = ω(m(N) + cN‖a(t)‖).
The rest of this paper is organized as follows. In the second section, we give and

prove our main results. As applications, in the final section, we apply our main
results to some population models and several new results are obtained.

2. Existence of Positive Periodic Solutions

Now we state our main results.

Theorem 2.1. Assume that (H1)-(H3) hold, then (1.1) has at least one positive
ω-periodic solution.

Theorem 2.2. Assume that (H1),(P2) and (P3) hold, then (1.2) has at least one
positive ω-periodic solution.

Remark 2.3. When c = 0, (H3) and (P3) hold obviously. In this case, Theorem
2.1 extends and improves the corresponding results in [14, Theorem 2.1] and [9,
Theorem 2.1], Meanwhile, Theorem 2.2 improves the corresponding results in [8,
Theorem 2.1]. If assumes a(t) > 0 in [14] and g(t, x) is sub-linear or super-linear
in [9], clearly, then the assumptions in Theorem 2.1 and Theorem 2.2 are weaker
than theirs.

We remark that when c 6= 0, our main results are new.
Now, we should construct a Banach space X and a cone K. Let X = {x(t) :

x(t) ∈ C(R, R), x(t) = x(t+ω), for all t ∈ R} and defining ‖x(t)‖ = supt∈[0,ω] |x(t)|,
for all x ∈ X. Then X is a Banach space with the norm ‖ · ‖. Let K = {x ∈ X :
x(t) ≥ 0, x(t) ≥ σ‖x(t)‖}, it is not difficult to verify that K is a cone in X.

First, we consider the integral equation

x(t) =
∫ t+ω

t

G(t, s)[g(s, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t)). (2.1)

It is easy to see that ϕ(t) is an ω-periodic solution of (1.1) if and only if ϕ(t) is an
ω-periodic solution of (2.1).

Define an operator on X, x = Φx, for x ∈ X, where Φ is given by

(Φx)(t) =
∫ t+ω

t

G(t, s)[g(s, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t)). (2.2)

Clearly, Φ is not a completely continuous operator on X, since cx is not a completely
continuous operator on X. Since Ω1 and Ω2 defined in [8, 9, 14] are not suitable to
here, we should construct two different sets Ω1 and Ω2.

Proof of Theorem 2.1. We define

Ω1 := {x ∈ X : ‖x‖ < r1, ‖x′‖ < r̄1},
Ω2 := {x ∈ X : ‖x‖ < r2, ‖x′‖ < r̄2},
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where r̄1 = ‖a(t)‖r1+m(r1)
1−c and r̄2 = ‖a(t)‖r2+m(r2)

1−c , where r1 and r2 are given in
above. Obviously, 0 ∈ Ω1, Ω̄1 ⊂ Ω2.

We will show that Φ is a completely continuous operator on Ω1 and Ω2, respec-
tively. It is not difficult to see Φ(Ω1) is a uniformly bounded set and Φ is continuous
on Ω1, so it suffices to show Φ(Ω1) is equi-continuous by Ascoli-Arzela theorem.
For any x ∈ Ω1, by (2.2), we have

‖(Φx)′(t)‖ ≤ ‖a(t)‖r1 + ‖g(t, x)‖+ c‖x′‖ ≤ ‖a(t)‖r1 + m(r1) + cr̄1 ≤ r̄1.

This implies Φ(Ω1) is equi-continuous. So Φ is a completely continuous operator
on Ω1.

Thus, if x ∈ K ∩ ∂Ω1, then x(t) ≥ σr1 and ‖x‖ = r1, ‖x′‖ ≤ r̄1 or ‖x‖ ≤
r1, ‖x′‖ = r̄1. It follows from (2.2) and (H1), (H2), either ‖x‖ = r1, ‖x′‖ ≤ r̄1 or
‖x‖ ≤ r1, ‖x′‖ = r̄1, we all have

(Φx)(t) ≥ A

∫ t+ω

t

(g(s, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t))

≥ A

∫ ω

0

[α(s)− ca(s)]x(s− τ(s))ds + cx(t− τ(t))

≥ Aσr1

∫ ω

0

[α(s)− ca(s)]ds + cσr1 > r1,

which implies that ‖Φx‖ > ‖x‖ for x ∈ K ∩ ∂Ω1.
On the other hand, by using the same type of argument as in above, we will

obtain that Φ is a completely continuous operator on Ω2.
Thus, if x ∈ K ∩∂Ω2, then ‖x‖ = r2, ‖x′‖ ≤ r̄2 or ‖x‖ ≤ r2, ‖x′‖ = r̄2. It follows

from (2.2) and (H3), either ‖x‖ = r2, ‖x′‖ ≤ r̄2 or ‖x‖ ≤ r2, ‖x′‖ = r̄2. We have

(Φx)(t) ≤ B

∫ t+ω

t

(g(s, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t))

≤ B

∫
x(t−τ(t))≤n

[g(t, x(s− τ(s)))− ca(s)x(s− τ(s))]ds

+ B

∫
x(t−τ(t))>n

[g(t, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t))

≤ Bm + Br2

∫ ω

0

[β(t)− ca(t)]dt + cr2 < r2.

This implies ‖Φx‖ < ‖x‖ for x ∈ K ∩ ∂Ω2 and Φ(Ω2) ⊆ Ω̄2. Next, we prove that

Φ : K ∩ (Ω̄2 \ Ω1) → K.

For any x ∈ K ∩ (Ω̄2 \ Ω1), we have

‖Φx‖ ≤ B

∫ t+ω

t

[g(s, x(s− τ(s)))− ca(s)x(s− τ(s))]ds + cx(t− τ(t))

and

(Φx)(t) ≥ A

∫ t+ω

t

[g(s, x(s− τ(s)))− ca(s)x(s− τ(s)))]ds + cx(t− τ(t)).
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So, we have

(Φx)(t) ≥ A

B
[B

∫ t+ω

t

(g(s, x(s− τ(s)))− ca(s)x(s− τ(s)))ds + cx(t− τ(t))]

+ c(1− A

B
)x(t− τ(t))

≥ σ‖Φx‖+ c(1− σ)x(t− τ(t)) ≥ σ‖Φx‖.

Hence (Φx)(t) ≥ 0 and (Φx)(t) ∈ K for all x(t) ∈ K ∩ (Ω̄2 \ Ω1), i.e., Φ(K ∩ (Ω̄2 \
Ω1)) ⊂ K.

From the above arguments, we know Φ : K ∩ (Ω̄2 \ Ω1) → K is a completely
continuous operator. Therefore, Φ has a fixed point x ∈ K ∩ (Ω̄2 \ Ω1) by Lemma
1.1. Furthermore, r1 ≤ ‖x‖ ≤ r2 and x(t) ≥ σr1 > 0, which means x(t) is a positive
ω-periodic solution of (1.1). �

Next, we consider the integral equation

x(t) =
∫ t+ω

t

G(t, s)[b(s)
∫ 0

−∞
K(r)g(s, x(s + r))dr

− ca(s)
∫ 0

−∞
K(r)x(s + r)dr]ds + c

∫ 0

−∞
K(r)x(t + r)dr.

(2.3)

Similarly, we see that ϕ(t) is an ω-periodic solution of (1.2) if and only if ϕ(t) is
an ω-periodic solution of above equation.

Define an operator on X x = Ψx, for x ∈ X, where Ψ is given by

(Ψx)(t) =
∫ t+ω

t

G(t, s)[b(s)
∫ 0

−∞
K(r)g(s, x(s + r))dr

− ca(s)
∫ 0

−∞
K(r)x(s + r)dr]ds + c

∫ 0

−∞
K(r)x(t + r)dr.

(2.4)

Proof of Theorem 2.2. We define

Ω1 := {x ∈ X : ‖x‖ < R1, ‖x′‖ < R̄1},
Ω2 := {x ∈ X : ‖x‖ < R2, ‖x′‖ < R̄2},

where R̄1 = ‖a(t)‖R1+m(R1)
1−c and R̄2 = ‖a(t)‖R2+m(R2)

1−c , where R1 and R2 are given
in above. Obviously, 0 ∈ Ω1, Ω̄1 ⊂ Ω2.

Next, by using the same arguments in the proof of Theorem 2.1, one can obtain
that the operator Ψ satisfies all the conditions in Lemma 1.1. Therefore, Ψ has a
fixed point x ∈ K ∩ (Ω̄2 \ Ω1). Furthermore, R1 ≤ ‖x‖ ≤ R2 and x(t) ≥ σR1 > 0,
which means x(t) is a positive ω-periodic solution of (1.2). �

3. Some Applications

In this section, we apply the results obtained in previous section to the study
equations (1.3)-(1.10). In view of Theorem 2.1 and Theorem 2.2, we obtain the
following results.

Theorem 3.1. Assume that
(1) a, τ ∈ C(R; R), β, b ∈ C(R; (0,∞)),

∫ ω

0
a(t)dt > 0, and a(t), β(t), τ(t) are

ω-periodic functions, ω > 0 and c ∈ [0, 1) are two constants.
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(2) b(t)e−β(t)x ≥ ca(t)x for all (t, x) ∈ R× [0, r2], where the definition of r2 is
similar to (H3) in section 1.

Then (1.3) has at least one positive ω-periodic solution.

Theorem 3.2. Assume that
(1) a, τ ∈ C(R; R), b ∈ C(R; (0,∞)),

∫ ω

0
a(t)dt > 0, and a(t), τ(t) are all ω-

periodic functions, ω > 0 and c ∈ [0, 1) are two constants.
(2) b(t) 1

1+xn ≥ ca(t)x for all (t, x) ∈ R × [0, r2], where the definition of r2 is
similar to (H3) in section 1.

Then (1.5) has at least one positive ω-periodic solution.

Theorem 3.3. Assume (1) in Theorem 3.2 holds and
(2) b(t) 1

1+xn ≥ ca(t) for all (t, x) ∈ R × [0, r2], where the definition of r2 is
similar to (H3) in section 1.

Then (1.6) has at least one positive ω-periodic solution.

Theorem 3.4. Assume (1) in Theorem 3.1 holds and
(2) b(t)e−β(t)x ≥ ca(t) for all (t, x) ∈ R × [0, r2], where the definition of r2 is

similar to (H3) in section 1.
Then (1.9) has at least one positive ω-periodic solution.

Theorem 3.5. Assume that
(1) a ∈ C(R; R),

∫ ω

0
a(t)dt > 0, b, β ∈ C(R; (0,∞)), and a(t), b(t), β(t) are all

ω-periodic functions, ω > 0, 0 ≤ c < 1 are constants. Moreover, K(r) ∈
C((−∞, 0], [0,∞)) and

∫ 0

−∞K(r)dr = 1.

(2) e−β(t)x ≥ ca(t)
b(t) x for all (t, x) ∈ R × [0, R2], where the definition of R2 is

similar to (P3) in section 1.
Then (1.4) has at least one positive ω-periodic solution.

Theorem 3.6. Assume that
(1) a ∈ C(R; R),

∫ ω

0
a(t)dt > 0, b ∈ C(R; (0,∞)) and a(t), b(t) are all ω-

periodic functions, ω > 0 and c[0, 1) are two constants. Moreover, K(r) ∈
C((−∞, 0], [0,∞)) and

∫ 0

−∞K(r)dr = 1.

(2) 1
1+xn ≥ ca(t)

b(t) x for all (t, x) ∈ R × [0, R2], where the definition of R2 is
similar to (P3) in section 1.

Then (1.7) has at least one positive ω-periodic solution.

Theorem 3.7. Assume (1) in Theorem 3.6 holds and

(2) 1
1+xn ≥ ca(t)

b(t) for all (t, x) ∈ R× [0, R2], where the definition of R2 is similar
to (P3) in section 1.

Then (1.8) has at least one positive ω-periodic solution.

Theorem 3.8. Assume (1) in Theorem 3.5 holds and

(2) e−β(t)x ≥ ca(t)
b(t) for all (t, x) ∈ R × [0, R2], where the definition of R2 is

similar to (P3) in section 1.
Then (1.10) has at least one positive ω-periodic solution.

We remark that when c = 0, Theorems 3.1–3.8 improve the results in [8, 9, 14].
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Addendum: Posted April 17, 2007

Professor Youssef N. Raffoul pointed out that the proof of the main result in this
article is incorrect: Because the sets ω1 and ω2 are not open in the Banach space
X, Krasnoselskii’s fixed-point theorem in cones can not be applied.

We encourage the readers to find (and publish) a proof for the existence of
periodic solutions to neutral functional differential equations.
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