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MULTIPLE SOLUTIONS FOR THE p-LAPLACE EQUATION
WITH NONLINEAR BOUNDARY CONDITIONS

JULIAN FERNANDEZ BONDER

ABSTRACT. In this note, we show the existence of at least three nontrivial
solutions to the quasilinear elliptic equation
—Apu+ [ulP"Pu = f(z,u)

in a smooth bounded domain © of RY with nonlinear boundary conditions
|Vu|p*2% = g(z,u) on 8. The proof is based on variational arguments.

1. INTRODUCTION

Let us consider the nonlinear elliptic problem
—Apu+ |ulP"2u = f(z,u) inQ

(1.1)
|Vu\p_2% = g(z,u) on IQ,

where (2 is a bounded smooth domain in RY, Aju = div(|Vu[P=2Vu) is the p-
laplacian and 9/dv is the outer unit normal derivative.

Problem appears naturally in several branches of pure and applied math-
ematics, such as the study of optimal constants for the Sobolev trace embedding
(see [Bl M0, M2, M1]); the theory of quasiregular and quasiconformal mappings in
Riemannian manifolds with boundary (see [7, [16]); non-Newtonian fluids, reaction
diffusion problems, flow through porus media, nonlinear elasticity, glaciology, etc.
(see [T, 2 3, [6]).

The purpose of this note, is to prove the existence of at least three nontrivial
solutions for under adequate assumptions on the sources terms f and g. This
result extends previous work by the author [, [9].

Here, no oddness condition is imposed in f or g and a positive, a negative and
a sign-changing solution are found. The proof relies on the Lusternik—Schnirelman
method for non-compact manifolds (see [I4]).

For a related result with Dirichlet boundary conditions, see [I5] and more re-
cently [4, [I7]. The approach in this note follows the one in [I5].
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Throughout this work, by (weak) solutions of (1.1]) we understand critical points
of the associated energy functional acting on the Sobolev space WP (£2):

1
D(v) = 5/ [VolP + |v|P do — / F(z,v)dz — G(z,v)dS, (1.2)
o0

where F(x,u) fo (z,2)dz, G(z,u) fo x,z)dz and dS is the surface mea-

sure.
We will denote
F(v) = / F(z,v)dz and G(v)= [ G(z,v)dS, (1.3)
Q o0

so the functional ® can be rewritten as

B(0) = - [0l ) = Fl0) = G(0).

2. ASSUMPTIONS AND STATEMENT OF THE RESULTS

The precise assumptions on the source terms f and g are as follows:

(F1) f: QxR — R, is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every = € Q. Moreover, f(x,0) = 0 for every = € Q.

(F2) There exist constants p < ¢ < p* = Np/(N —p), s > p*/(p* —q), t =
sq/(2+ (¢ —2)s) > p*/(p* — 2) and functions a € L*(Q), b € L*(Q), such
that for z € Q, u,v € R,

|fulz, )| < a()|ul?™? + b(2),
|(ful,u) = fulz,v))ul < (a(@)(juT™? + [v|"72) + b(@))u - v].

(F3) There exist constants ¢; € (0,1/(p — 1)), ca > p, 0 < ¢3 < ¢4, such that for
any u € LI(Q)

03||quLq(Q) Scz/F(x,u)dxg/f(a:,u)udx
Q Q

< cl/ fulz, w)u? dr < callull Ty
Q

(G1) g: 09 xR — R is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every y € 99Q). Moreover, g(y,0) = 0 for every y € 9.

(G2) There exist constants p < r < p. = (N — 1)p/(N —p), 0 > p./(p« — 1),
T=o0r/(24+(r—2)o) > p./(p«—2) and functions a € L7(09), 5 € L™ (9Q),
such that for y € 09, u,v € R,

|9u(y, w)] < aly)lul""* + B(y),
[(gu(y: w) = guy, v))ul < (aly)(Jul"=* + [0]"72) + By))lu - o].

(G3) There exist constants k1 € (0,1/(p — 1)), k2 > p, 0 < k3 < k4, such that
for any uw € L™(99)

k:3||u|\’ir(m)§k2/ G(x,u)ng/ o(z, wyudS
oQ o0

<k / gu (2, w0)u? dz < K|l o
oN
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Remark 2.1. Assumptions (F1)—(F3) imply, since the immersion W1?(Q) —
L9(Q) with 1 < g < p* is compact, that F is C! with compact derivative. Analo-
gously, (G1)—(G3) implies the same facts for G by the compactness of the immersion
WhP(Q) — L™(0Q) for 1 < r < p..

The main result of the paper reads as follows.

Theorem 2.2. Under assumptions (F1)—(F3), (G1)-(G3), there exist three dif-
ferent, montrivial, (weak) solutions of (L.1). Moreover these solutions are, one
positive, one negative and the other one has non-constant sign.

3. PROOF OF THE THEOREM

The proof uses the same approach as in [I5]. That is, we will construct three
disjoint sets K; # () not containing 0 such that ® has a critical point in K;. These
sets will be subsets of smooth manifolds M; C WP () that will be constructed by
imposing a sign restriction and a normalizing condition.

In fact, let

M = {ue W (Q): / wp dS > 0, [us By = (F/ () us) + (G (w), ur)},

o9
My = {u e W) [ dS >0, i) = (), un) + (00 u)),
o9
Mz =M N M2>
where uy = max{u,0}, u_ = max{—wu,0} are the positive and negative parts of u,

and (-,-) is the duality pairing of WP ().
Finally we define

Klz{U,EM1|UZO}, KQZ{UEM2|USO}7 K3 = Ms.
For the proof of the main theorem, we need the following Lemmas.

Lemma 3.1. There exist c; > 0 such that, for everyu € K;, 1 =1,2,3,

- cl(/ﬂf(x,u)udac + /m glw, upuds) < e30(u) < csllullfr -

Proof. Since u € K;, we have

||“H€Vl,p(g) :/f(x,u)udm—i—/ g(z,u)uds.
Q o

This proves the first inequality. Now, by (F3) and (G3)

/QF( x<—/fgcuudac

G(z,u)dS < —/ g(x,u)udS.

o0 o0

So, for C' = max{ 2 T C2} < = we have

1
P(u) < (5 - C)H“”@yl,p(g)-

This proves the third inequality.
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To prove the middle inequality we proceed as follows:

1
D) = 2l —/F(a:,u) da:—/ Gz, u)dS
p Q a0

_ %(/Qf(z,u)udﬁLﬂg(x,u)uds) - (/QF(:c,u)dz+/aQ G(z,u)ds)
> (%—C)(/Qf(x,u)udz+/mg(x,u)uds).

This completes the proof. ([l

Lemma 3.2. There exists ¢ > 0 such that

lugllwiv)y > ¢ forue K,
lu_lwir@) >c forue K,

||u+||W1,p(Q), ||U,HW1.p(Q) >c forue Ks.

Proof. By the definition of K;, by (F3) and (G3), we have

s Wy = /Q Flarsu)us da + /6 gl ds
< c(llutllTagqy + 1utlLra0))-

Now the proof follows by the Sobolev immersion Theorem and by the Sobolev trace
Theorem, as p < q,r. ([

Lemma 3.3. There ezists ¢ > 0 such that ®(u) > c||uH€V1,p(Q) for every u €
WP(Q) such that ||ulwir@) < c.

Proof. By (F3), (G3) and the Sobolev immersions we have

B(0) = - [l ) — F(0) = G(0)

1 .
;HUHWl v — CUlullzaq) + Il aa))

“p
> el

[l gy = clullynn ) + lullvis)

if |ullw1.p () is small enough, as p < q,7. O

The following lemma describes the properties of the manifolds M;.

Lemma 3.4. M; is a CY' sub-manifold of W1P(Q) of co-dimension 1 (i = 1,2),
2 (i = 3) respectively. The sets K; are complete. Moreover, for every u € M; we
have the direct decomposition

TWP(Q) = TuM; @ span{uy,u_},

where T, M is the tangent space at u of the Banach manifold M. Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of M;.
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Proof. Let us denote

Mlz{u€W17P(Q)1/ u+dS>0},
1919)

My = {u e Whr(Q): / u_ds > 0},
_ _ Jo0
My = My N M.

Observe that M; C M;.

By the Sobolev trace Theorem, the set M; is open in W1P(Q), therefore it is
enough to prove that M; is a smooth sub-manifold of M;. In order to do this, we
will construct a C1! function ¢; : M; — R? with d =1 (i = 1,2),d = 2 (i = 3)
respectively and M; will be the inverse image of a regular value of ¢;.

In fact, we define: For u € My,

e1(u) = lus[f10 () = (F'(u),us) — (G (u), uy).
For u € Mo,

p2() = llu— B2,y = (F'(w)su_) = (G (), u).
For u € Ms,

p3(u) = (k1(u), k2(u)).

Obviously, we have M; = cp[l(O). We need to show that 0 is a regular value for ;.
To this end we compute, for u € My,

(Tt s) =plus ey = [ Fulocnid + o wus do
- [ gulwud + glo.wuy ds
oQ
=) [ fewudo= [ fuewd do

+ (- 1)/ 9(@, u)uy dS—/ gu(, u)u? dS.
o9 o9
By (F3) and (G3) the last term is bounded by

p=1=c") [ ot p=1-K") [ gwu s

Recall that ¢1,k1 < 1/(p — 1). Now, by Lemma this is bounded by

_C||u+”€vl,p(g)
which is strictly negative by Lemma Therefore, M is a smooth sub-manifold
of WP(£). The exact same argument applies to Mo.

Since trivially

(Ver(u),u-) = (Vea(u),uq) =0
for u € M3, the same conclusion holds for Mj.

To see that K; is complete, let u; be a Cauchy sequence in K;, then up — u in
WP(Q). Moreover, (uj)+ — ug in WHP(Q). Now it is easy to see, by Lemma [3.2]
and by continuity that v € K;.

Finally, by the first part of the proof we have the decomposition

T, W'P(Q) = TuM; ® span{uy,u_}.
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Now let v € T,WP(Q) be a unit tangential vector, then v = v; + vo where v; are
given by

v2 = (Voi(u)lspanfuy 1) (Vei(u),v) € spanfuy, u_},
vy =0 — vy € T, M;.

From these formulas and from the estimates given in the first part of the proof, the
uniform continuity follows. O

Now, we need to check the Palais-Smale condition for the functional ® restricted
to the manifold M;.

Lemma 3.5. The functional ®|g, satisfies the Palais-Smale condition.

Proof. Let {ux} C K; be a Palais-Smale sequence, that is ®(uy) is uniformly
bounded and V®|g, (ux) — 0 strongly. We need to show that there exists a subse-
quence ug, that converges strongly in Kj.

Let v; € T,,,W"?(Q) be a unit tangential vector such that

(V®(uj),v5) = [[VO(u;) [ (wrr (-
Now, by Lemma vj = w; + z; with w; € T, M; and z; € span{(u;)+, (u;)_}.
Since ®(u;) is uniformly bounded, by Lemma u; is uniformly bounded in
WP () and hence w; is uniformly bounded in W*P(Q). Therefore

[P (us) | (wrr@)y = (VO(u)),v5) = (VO|K, (u;),v;) — 0.

As u; is bounded in W1P(Q), there exists u € WHP(Q) such that u; — u,
weakly in W1P(Q). As it is well known that the unrestricted functional ® satisfies
the Palais-Smale condition (cf. [9] and [13]), the lemma follows. See [I5] for the
details. ]

We obtain immediately the following result.

Lemma 3.6. Let u € K; be a critical point of the restricted functional ®|x,. Then
u 18 also a critical point of the unrestricted functional ® and hence a weak solution

to .

With all this preparatives, the proof of the Theorem follows easily.

Proof of the Theorem. The proof now is a standard application of the Lusternik—
Schnirelman method for non-compact manifolds. See [I4]. g
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