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POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER
BOUNDARY-VALUE PROBLEMS

YUJUN CUI, YUMEI ZOU

Abstract. In this paper, we present necessary and sufficient conditions for
the existence of positive C3[0, 1]∩C4(0, 1) solutions for the singular boundary-

value problem

x′′′′(t) = p(t)f(x(t)), t ∈ (0, 1);

x(0) = x(1) = x′(0) = x′(1) = 0,

where f(x) is either superlinear or sublinear, p : (0, 1) → [0, +∞) may be
singular at both ends t = 0 and t = 1. For this goal, we use fixed-point index

results.

1. Introduction

In this paper, we consider the fourth order differential equation

x′′′′(t) = p(t)f(x(t)), t ∈ (0, 1); (1.1)

x(0) = x(1) = x′(0) = x′(1) = 0. (1.2)

where f(x) is either superlinear or sublinear, p : (0, 1) → [0,+∞) may be singular
at both ends t = 0 and t = 1.

Recently, the existence and multiplicity of positive solutions of (1.1)-(1.2) in the
non-singular case has been extensively studied in the literature; see [7, 5, 8] and
references therein. However for singular fourth order boundary-value problems,
the research has proceeded very slowly. Ma and Tisdell [6] studied the singular
sublinear fourth order boundary value problems

x′′′′(t) = p(t)xλ(t), t ∈ (0, 1); (1.3)

x(0) = x(1) = x′(0) = x′(1) = 0. (1.4)

where λ ∈ (0, 1) is given, and p : (0, 1) → [0,∞) may be singular at both ends t = 0
and t = 1. Base upon the method of lower and upper solutions, Ma and Tisdell
showed that (1.3)-(1.4) has a positive solution in C2[0, 1] ∩ C4(0, 1) if and only if

0 <

∫ 1

0

t1+2λ(1− t)1+2λp(t)dt < +∞.
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Moreover, this positive solution is in C3[0, 1] ∩ C4(0, 1) if and only if

0 <

∫ 1

0

t2λ(1− t)2λp(t)dt < +∞.

But necessary and sufficient conditions for the existence of positive solution of
superlinear BVPs (1.3)-(1.4) still remain unknown. In this paper, by using the
fixed point index, we give some necessary and sufficient conditions for the existence
of C3[0, 1] ∩ C4(0, 1) positive solutions to the singular boundary value problem
(1.1)-(1.2).

In our discussion, by a Ck[0, 1] solution (k = 2, 3) of (1.1)-(1.2) we mean a
function y(t) ∈ Ck[0, 1] ∩ C4(0, 1) which satisfies (1.2) and (1.1) on (0,1). We call
a solution y(t) is a positive solution if y(t) > 0 for t ∈ (0, 1).

This paper is organized as follows. Section 2 gives some preliminary lemmas
corresponding to (1.1)-(1.2). Section 3 is devoted to the the existence of C3[0, 1] ∩
C4(0, 1) positive solutions for (1.1)-(1.2). At the end of this section we state some
lemmas of the fixed point theory, which will be used in Section 3.

Let E be a Banach space, P a cone in E, Ω a bounded open set in E.

Lemma 1.1 ([3]). Let θ ∈ Ω, A : Ω ∩ P → P be completely continuous. Suppose
that there exists u0 ∈ P\{θ} such that

u−Au 6= µu0, ∀ u ∈ ∂Ω ∩ P, µ ≥ 0,

then the fixed point index i(A, Ω ∩ P, P ) = 0.

Lemma 1.2 ([3]). Let θ ∈ Ω, A : Ω ∩ P → P be completely continuous. Suppose
that

Au 6= µu, ∀ u ∈ ∂Ω ∩ P, µ ≥ 1,

then the fixed point index i(A, Ω ∩ P, P ) is equal to 1.

2. Preliminaries

We give some notations, which will be used below. Let C[0, 1], Ck[0, 1] and
L1[0, 1] be the classical Banach spaces with their usual norms ‖ · ‖, ‖ · ‖Ck and
‖·‖L1 , respectively. Let AC[0, 1] be the space of all absolutely continuous functions
on [0,1]. Let

ACk[0, 1] = {u ∈ Ck[0, 1] : u(k) ∈ AC[0, 1]}.
Clearly AC0[0, 1] = AC[0, 1]. Let I be an interval of R. We denote by L1

locI the
spaces of functions defined by

L1
locI = {u : I → R : u|[c,d] ∈ L1[c, d] for every compact interval [c, d] ⊂ I}.

For n, m ∈ N , we denote by X[n, m] the Banach space

X[n, m] = {ϕ ∈ L1
loc(0, 1)

∣∣∣ ∫ 1

0

tn(1− t)m|ϕ(t)|dt < +∞},

equipped with the norm

‖ϕ‖X[n,m] =
∫ 1

0

tn(1− t)m|ϕ(t)|dt.

Now let G(t, s) be the Green’s function of the linear problem

x′′′′(t) = 0, t ∈ (0, 1);

x(0) = x(1) = x′(0) = x′(1) = 0,
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which can be explicitly given by

G(t, s) =
1
6

{
t2(1− s)2[(s− t) + 2(1− t)s], 0 ≤ t ≤ s ≤ 1,

s2(1− t)2[(t− s) + 2(1− s)t], 0 ≤ s ≤ t ≤ 1.

It is clear that for all t, s ∈ [0, 1],
1
3
t2(1− t)2s2(1− s)2 ≤ G(t, s) ≤ 1

2
t2(1− t)2, G(t, s) ≤ 1

2
s2(1− s)2. (2.1)

Suppose that ϕ ∈ X[2, 2]. We denote

T (ϕ)(t) =
∫ 1

0

G(t, s)ϕ(s)ds,

i.e.

T (ϕ)(t) =
1
6

∫ t

0

s2(1− t)2[(t− s) + 2(1− s)t]ϕ(s)ds

+
1
6

∫ 1

t

t2(1− s)2[(s− t) + 2(1− t)s]ϕ(s)ds.

Lemma 2.1 ([6]). Let ϕ ∈ X[2, 2]. Then T (ϕ)(t), [T (ϕ)]′(t), [T (ϕ)]′′(t), [T (ϕ)]′′′(t)
are ACloc(0, 1) ∩ C1(0, 1), and

[T (ϕ)]′′′′(t) = ϕ(t), a.e. t ∈ (0, 1).

Lemma 2.2 ([6]). Let ϕ ∈ X[2, 2]. Then

T (ϕ)(0) = T (ϕ)(1) = T (ϕ)′(0) = T (ϕ)′(1) = 0.

Lemma 2.3 ([6]). Let ϕ ∈ L1(0, 1). Then [T (ϕ)](t) ∈ AC3[0, 1].

3. Main Result

We shall assume the following conditions:
(H1) f : [0,∞) → [0,∞) is continuous and nondecreasing in x, f(x) > 0 on

(0,∞), and there exists λ > 1 such that

f(cx) ≤ cλf(x), ∀ c ≥ 1, x ∈ [0,+∞). (3.1)

(H2) p : (0, 1) → [0,∞) is continuous,
∫ 1

0
s2(1 − s)2p(s)ds < +∞, and there

exists θ ∈ (0, 1/2) such that

0 <

∫ 1−θ

θ

s2(1− s)2p(s)ds.

(H3) 0 ≤ lim supx→0+
f(x)

x < M1,m1 < lim infx→+∞
f(x)

x ≤ +∞, where

M1 = ( max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds)−1,

m1 = ( min
t∈[θ,1−θ]

∫ 1−θ

θ

G(t, s)p(s)ds)−1.

Theorem 3.1. Under assumptions (H1)-(H3), a necessary and sufficient condition
for (1.1)-(1.2) to have a positive solution in C3[0, 1] ∩ C4(0, 1) is that∫ 1

0

p(s)f(s2(1− s)2)ds < +∞. (3.2)
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Remark 3.2. Inequality (3.1) implies

f(cx) ≥ cλf(x), ∀ c ∈ (0, 1), x ∈ [0,+∞). (3.3)

Conversely, (3.3) implies (3.1).

Remark 3.3. (H2) is equivalent to
(H2’) p ∈ C((0, 1), [0,+∞)) ∩X[2, 2], and there exists t0 ∈ (0, 1) with p(t0) > 0.

Proof of Theorem 3.1. Necessity. Let x ∈ C2[0, 1] ∩ C4(0, 1) be a positive solution
of (1.1) and (1.2). Then by the fact

x′′(t) =
1
6

∫ t

0

{2s2[(t− s) + 2(1− s)t]− 4s2(1− t)[1 + 2(1− s)]}p(s)f(x(s))ds

+
1
6

∫ 1

t

{2(1− s)2[(s− t) + 2(1− t)s] + 4t(1− s)2[−1− 2s]}p(s)f(x(s))ds.

we have that

x′′(0) =
∫ 1

0

(1− s)2sp(s)f(x(s))ds > 0,

x′′(1) =
∫ 1

0

s2(1− s)p(s)f(x(s))ds > 0.

and accordingly, there exist I1, I2 ∈ (0,+∞) such that

I1t
2(1− t)2 ≤ x(t) ≤ I2t

2(1− t)2, t ∈ [0, 1].

Let c1 ≥ max{1, 1/I1}, then

t2(1− t)2 ≤ c1x(t), t ∈ [0, 1].

So by (H1), ∫ 1

0

p(s)f(s2(1− s)2)ds ≤
∫ 1

0

p(s)f(c1x(s))ds

≤ cλ
1

∫ 1

0

p(s)f(x(s))ds

= cλ
1

∫ 1

0

x′′′′(s)ds

≤ cλ
1 [x′′′(1)− x′′′(0)] < ∞.

On the other hand, if c2 ≤ min{1/2, 1/I2}, then

t2(1− t)2 ≥ c2x(t), t ∈ [0, 1].

So by (H1) and (3.3),∫ 1

0

p(s)f(s2(1− s)2)ds ≥
∫ 1

0

p(s)f(c2x(s))ds ≥ cλ
2

∫ 1

0

p(s)f(x(s))ds ≥ 0

Notice that
∫ 1

0
p(s)f(x(s))ds > 0, for otherwise p(s)f(x(s)) ≡ 0 on (0,1). In this

case (1.1)-(1.2) has only trivial solution x ≡ 0. This contradicts the assumption
that x is a positive solution. Thus (3.2) holds.

Sufficiency. Suppose that (3.2) holds. we define a set P ⊂ C[0, 1] by

P =
{
x ∈ C[0, 1] : ∃cx > 0, 0 ≤ x(t) ≤ cxt2(1− t)2,
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x(t) ≥ 2
3
t2(1− t)2‖x‖, t ∈ [0, 1]

}
.

By its definition, it is easy to verify that P is a cone. We define T : P → C[0, 1] by

T (x)(t) =
∫ 1

0

G(t, s)p(s)f(x(s))ds, t ∈ [0, 1], x ∈ P.

In the following, we prove that T : P → P is completely continuous.
1. We first show that T : P → P is well defined. For x ∈ P , there exist cx ≥ 1 such
that 0 ≤ x(t) ≤ cxt2(1− t)2 and for t ∈ [0, 1], by (2.1), we get

(Tx)(t) =
∫ 1

0

G(t, s)p(s)f(x(s))ds ≤ 1
2
cλ
xt2(1− t)2

∫ 1

0

p(s)f(s2(1− s)2)ds.

This implies that p(t)f(x(t)) ∈ L1[0, 1], by Lemma 2.3, we have Tx ∈ C[0, 1]. Let
cTx = 1

2cλ
x

∫ 1

0
p(s)f(s2(1− s)2)ds. By (3.2), we know cTx > 0, so

(Tx)(t) ≤ cTxt2(1− t)2, t ∈ [0, 1].

In addition, for t ∈ [0, 1], by (2.1), we get

(Tx)(t) =
∫ 1

0

G(t, s)p(s)f(x(s))ds ≥ 1
3
t2(1−t)2

∫ 1

0

s2(1−s)2p(s)f(x(s))ds, (3.4)

and

(Tx)(t) =
∫ 1

0

G(t, s)p(s)f(x(s))ds ≤ 1
2

∫ 1

0

s2(1− s)2p(s)f(x(s))ds.

Hence

‖Tx‖ ≤ 1
2

∫ 1

0

s2(1− s)2p(s)f(x(s))ds.

Combining the above with (3.4), we have

(Tx)(t) ≥ 1
3
t2(1− t)2

∫ 1

0

s2(1− s)2p(s)f(x(s))ds ≥ 2
3
t2(1− t)2‖Tx‖,

i.e., T (P ) ⊂ P .
2. We show that T : P → P is compact. Let D ⊂ P be bounded, i.e., ‖x‖ ≤ M for
all x ∈ D and some M > 0. It is clear that if x ∈ P satisfies x ∈ D, by (H2) we
have

|(Tx)(t)| ≤ 1
2

∫ 1

0

s2(1− s)2p(s)f(x(s))ds ≤ 1
2

∫ 1

0

s2(1− s)2p(s)f(M)ds.

So T (D) is uniformly bounded.
Next we prove that ‖(Tx)′‖ ≤ N for all x ∈ D and some N > 0. In fact, for

x ∈ D. By Lemma 2.3, we know Tx ∈ C2[0, 1] and

|(Tx)′(t)|

=
∣∣∣1
6

∫ t

0

{−2s2(1− t)[(t− s) + 2(1− s)t] + s2(1− t)2[1 + 2(1− s)]}p(s)f(x(s))ds

+
1
6

∫ 1

t

{2t(1− s)2[(s− t) + 2(1− t)s] + t2(1− s)2[−1− 2s]}p(s)f(x(s))ds
∣∣∣

≤ 1
6

∫ t

0

{2s2(1− s)[(1− s) + 2(1− s)] + s2(1− s)2[1 + 2(1− s)]}p(s)f(M)ds
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+
1
6

∫ 1

t

{2t(1− s)2[s + 2s] + s2(1− s)2[1 + 2s]}p(s)f(M)ds

≤ 9
6

∫ t

0

s2(1− s)2p(s)f(M)ds +
9
6

∫ 1

t

s2(1− s)2p(s)f(M)ds

=
3
2

∫ 1

0

s2(1− s)2p(s)f(M)ds = N.

This means that T (D) is equicontinuous. From the Ascoli-Arzela theorem, T (D)
is relatively compact. This completes the proof that T is compact.
3. We prove T : P → P is continuous. Assume that xn, x ∈ P and xn → x. Then
there exists M > 0 such that ‖x‖ ≤ M, ‖xn‖ ≤ M for every n > 0. Since f(x) is
continuous, we have

|f(xn(s))− f(x(s))| → 0, as n →∞, ∀ s ∈ [0, 1],

and
|f(xn(s))− f(x(s))| ≤ 2f(M), ∀ t ∈ [0, 1], (n = 1, 2, 3 . . . ).

Consequently, for all t ∈ [0, 1],

‖(Txn)(t)− (Tx)(t)‖ ≤
∫ 1

0

s2(1− s)2p(s)|f(xn(s))− f(x(s))|ds → 0. (3.5)

We now show
‖Txn − Tx‖ → 0 as n →∞). (3.6)

If (3.6) is not true, then there exist a positive number ε > 0 and a sequence
{xni} ⊂ {xn} such that

‖Txni − Tx‖ ≥ ε, (i = 1, 2, 3 . . .). (3.7)

Since {xn} is bounded, {Txn} is relatively compact and there is a subsequence of
{Txni

} which converges in C[0, 1] to some y ∈ C[0, 1]. Without loss of generality,
we may assume that {Txni

} itself converges to y:

‖Txni
− y‖ → 0, as i →∞. (3.8)

By virtue of (3.5) and (3.8), we have y = Tx, and so, (3.8) contradicts (3.7).
Hence, (3.6) holds, and the continuity of T is proved. To sum up, we have proved
T : P → P is completely continuous.

For all x ∈ P , from the above proof, we know Tx ∈ P , By Lemma 2.1 and
Lemma 2.2, the fixed point of the equation

Tx = x, x ∈ P.

is the solution of (1.1)-(1.2). Next we will look for the fixed point.
By the first part of (H3), there exist 1 > r > 0, ε > 0 such that 0 < u < r

implies f(x)/x ≤ (M1 − ε). Therefore, we have

f(x) ≤ (M1 − ε)x ≤ (M1 − ε)r, 0 < x ≤ r.

Set Br = {x ∈ C[0, 1] : ‖x‖ < r}. For ∀ x ∈ ∂Br ∩ P , we have

‖Tx‖ = max
t∈[0,1]

∫ 1

0

G(t, s)p(s)f(x(s))ds ≤ (M1 − ε)r max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds

≤ r − εr max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds < r.
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Then for x ∈ ∂Br ∩ P and µ ≥ 1, we have

Tx 6= µx.

In not, there exist x0 ∈ ∂Br ∩ P and µ0 ≥ 1 such that Tx0 = µ0x0, then ‖Tx0‖ ≥
‖x0‖, which is a contradiction. According to Lemma 1.2, we have

i(T, Br ∩ P, P ) = 1. (3.9)

By the second part of (H3), m1 < lim infx→+∞
f(x)

x ≤ +∞, there exist R1 >
max{θr, 1}, ε1 > 0 such that

f(x) ≥ (m1 + ε1)x, x ≥ R1.

Let R2 > 3R1
2θ2(1−θ)2 , and BR2 = {x ∈ C[0, 1] : ‖x‖ < R2}, then

min
t∈[θ,1−θ]

x(t) ≥ min
t∈[θ,1−θ]

2
3
t2(1− t)2‖x‖ ≥ R1, ∀ x ∈ ∂BR2 ∩ P.

We now prove that

x− Tx 6= µt2(1− t)2, for µ ≥ 0 and x ∈ ∂BR2 ∩ P.

If not, then there are µ1 ≥ 0 and x1 ∈ ∂BR2 ∩P such that x1−Tx1 = µ1t
2(1− t)2.

So µ1 > 0, otherwise there is a fixed point in ∂BR2 ∩ P and this would complete
the proof. Let η = mint∈[θ,1−θ] x1(t). Then if t ∈ [θ, 1− θ], we have

x1(t) =
∫ 1

0

G(t, s)p(s)f(x1(s))ds + µ1t
2(1− t)2

≥
∫ 1−θ

θ

G(t, s)p(s)f(x1(s))ds + µ1t
2(1− t)2

≥ (m1 + ε1)
∫ 1−θ

θ

G(t, s)p(s)x1(s)ds + µ1t
2(1− t)2

≥ η(m1 + ε1)
∫ 1−θ

θ

G(t, s)p(s)ds + µ1t
2(1− t)2

≥ η + ηε1

∫ 1−θ

θ

G(t, s)p(s)ds + µ1t
2(1− t)2.

Therefore,
x1(t) > η, t ∈ [θ, 1− θ],

which is a contradiction. According to Lemma 1.1, we get

i(T,BR2 ∩ P, P ) = 0. (3.10)

By (3.9) and (3.10), we have

i(T, (BR2\Br) ∩ P, P ) = i(T, BR2 ∩ P, P )− i(T, Br ∩ P, P ) = −1.

Then T has at least a fixed point x∗ in (BR2\Br)∩P satisfying 0 < r ≤ ‖x∗‖ ≤ R2.
Since x∗ ∈ P , there exists rx∗ > 1 such that x∗ ≤ rx∗t

2(1− t)2, then∫ 1

0

p(s)f(x∗(s))ds ≤
∫ 1

0

p(s)f(rx∗s
2(1− s)2)ds

≤ rλ
x∗

∫ 1

0

p(s)f(s2(1− s)2)ds < +∞,
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that is p(t)f(x∗(t)) ∈ L1(0, 1), then by Lemma 2.3, we have x∗ ∈ AC3[0, 1], so x∗

is a C3[0, 1] ∩ C4(0, 1) positive solution of (1.1)-(1.2). This completes the proof of
sufficiency. �

Corollary 3.4. Let p be as above, 0 <
∫ 1

0
s2(1 − s)2p(s)ds < +∞, and λ > 1.

Then BVP (1.3)-(1.4) has at least a positive solution in C3[0, 1] ∩ C4(0, 1)

Proof. The hypotheses on the function p(s) implies 0 <
∫ 1

0
(s(1−s))2λp(s)ds < +∞

for λ > 1. The result now follows from Theorem 3.1. �

Theorem 3.5. Assume that (H1) and (H2) are satisfied. If

lim
x→0+

f(x)
x

= 0, lim
x→+∞

f(x)
x

+∞,

Then a necessary and sufficient condition for (1.1)-(1.2) to have a positive solution
in C3[0, 1] ∩ C4(0, 1) is that∫ 1

0

p(s)f(s2(1− s)2)ds < +∞.

Proof. Clearly (H1)-(H3) hold, and result follows from Theorem 3.1. We omit the
detail. �

Next, we shall study (1.1)-(1.2) in the sublinear case. We assume:
(H1’) f : [0,∞) → [0,∞) is continuous and nondecreasing in x, f(x) > 0 on

(0,∞), and there exists 0 < λ1 < 1 such that

f(cx) ≥ cλ1f(x), ∀ c ∈ (0, 1), x ∈ [0,+∞).

(H3’) 0 ≤ lim supx→+∞
f(x)

x < M1,m1 < lim infx→0+
f(x)

x ≤ +∞, where

M1 = ( max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds)−1,

m1 = ( min
t∈[θ,1−θ]

∫ 1−θ

θ

G(t, s)p(s)ds)−1.

Theorem 3.6. Assume (H1’), (H2), and (H3’). Then a necessary and sufficient
condition for (1.1)-(1.2) to have a positive solution in C3[0, 1] ∩ C4(0, 1) is that∫ 1

0

p(s)f(s2(1− s)2)ds < +∞. (3.11)

Proof. By (H1’), we have f(cx) ≤ cλ1f(x), c ≥ 1, x ∈ [0,+∞). The proof of
necessity is almost the same as that in Theorem 3.1.

We will show the roof of the sufficiency. We base the proof on the argument in
Theorem 3.1 and need only show completely continuous operator T : P → P has a
fixed point.

By the first part of (H3’), there are R3 > 1, ε3 > 0 such that x ≥ R3 implies
f(x) ≤ (M1 − ε3)x. Let M = max{f(x) : 0 ≤ x ≤ R3}, then

f(x) ≤ (M1 − ε3)x + M, x ∈ [0,+∞).

Choose R4 > max{Mε−1
3 , 1}. Let BR4 = {x ∈ C[0, 1] : ‖x‖ < R4}. Then for all

x ∈ ∂BR4 ∩ P , we have

‖Tx‖ = max
t∈[0,1]

∫ 1

0

G(t, s)p(s)f(x(s))ds
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≤ (M + (M1 − ε3)‖x‖) max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds

≤ M1R4 max
t∈[0,1]

∫ 1

0

G(t, s)p(s)ds + (M − ε3R4)
1
2

∫ 1

0

s2(1− s)2p(s)ds

= R4 + (M − ε3R4)
1
2

∫ 1

0

s2(1− s)2p(s)ds

< R4 = ‖x‖.

So it is easy to know that Tx 6= µx for x ∈ ∂BR4 ∩ P and µ ≥ 1. According to
Lemma 1.2, we have

i(T, BR4 ∩ P, P ) = 1. (3.12)

By the second part of (H3’), m1 < lim infx→+∞
f(x)

x ≤ +∞, there exist 0 < r1 < 1,
ε5 > 0 such that 0 < x < r1 implies

f(x)
x

≥ (m1 + ε5)x.

Let Br1 = {x ∈ C[0, 1] : ‖x‖ < r1}. We now prove that

x− Tx 6= µt2(1− t)2, for µ ≥ 0 and x ∈ ∂BR1 ∩ P.

If not, there are µ2 ≥ and x2 ∈ ∂Br1 ∩ P such that x2 − Tx2 = µ2t
2(1 − t)2. So

µ2 > 0, otherwise there is a fixed point in ∂Br1 ∩ P and this would complete the
proof. Let η = mint∈[θ,1−θ] x2(t). Then if t ∈ [θ, 1− θ], we have

x2(t) =
∫ 1

0

G(t, s)p(s)f(x2(s))ds + µ2t
2(1− t)2

≥
∫ 1−θ

θ

G(t, s)p(s)f(x2(s))ds + µ2t
2(1− t)2

≥ (m1 + ε5)
∫ 1−θ

θ

G(t, s)p(s)x2(s)ds + µ2t
2(1− t)2

≥ η(m1 + ε5)
∫ 1−θ

θ

G(t, s)p(s)ds + µ2t
2(1− t)2

≥ η + ηε5

∫ 1−θ

θ

G(t, s)p(s)ds + µ2t
2(1− t)2.

Therefore,
x2(t) > η, t ∈ [θ, 1− θ].

which is a contradiction. According to Lemma 1.1, we get

i(T, Br1 ∩ P, P ) = 0. (3.13)

By (3.12) and (3.13), we have

i(T, (BR4\Br1) ∩ P, P ) = i(T, BR4 ∩ P, P )− i(T, Br1 ∩ P, P ) = 1.

Then T has at least a fixed point x∗ in (BR4\Br1) ∩ P , satisfying 0 < r1 ≤ ‖x∗‖ ≤
R4, and x∗ is also a C3[0, 1]∩C4(0, 1) positive solution of (1.1)-(1.2). This completes
the proof. �
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Corollary 3.7. Let p be as above, 0 <
∫ 1

0
s2(1− s)2p(s)ds < +∞, and 0 < λ < 1.

Then a necessary and sufficient condition for (1.3)-(1.4) to have a positive solution
in C3[0, 1] ∩ C4(0, 1) is that

0 <

∫ 1

0

(s(1− s))2λp(s)ds < +∞.

Example 3.8. The singular boundary-value problem

x′′′′(t) = t−5/2(1− t)−4/3xλ, t ∈ (0, 1), λ > 1,

x(0) = x(1) = x′(0) = x′(1) = 0,

has a solution x ∈ C3[0, 1] ∩ C4(0, 1) with x(t) > 0 on (0, 1). To see this, we will
apply Theorem 3.1 with p(t) = t−5/2(1 − t)−4/3, f(x) = xλ (λ > 1). Clearly (H1)
holds. Note that∫ 1

0

p(s)s2(1− s)2ds =
∫ 1

0

s−1/2(1− s)2/3ds ≤ 2.

Consequently (H2) holds (with θ = 1/4). Also note that (H3) holds since

lim
x→0+

f(x)
x

= 0, lim
x→+∞

f(x)
x

= +∞.

Finally note that
∫ 1

0
p(s)f(s2(1− s)2)ds =

∫ 1

0
p(s)(s(1− s))2λds < +∞. The result

now follows from Theorem 3.1.
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