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ON THE ψ-DICHOTOMY FOR HOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS

PHAM NGOC BOI

Abstract. In this article we present some conditions for the ψ-dichotomy of

the homogeneous linear differential equation x′ = A(t)x. Under our condition

every ψ-integrally bounded function f the nonhomogeneous linear differential
equation x′ = A(t)x+ f(t) has at least one ψ-bounded solution on (0,+∞).

1. Introduction

The problem of solutions being ψ-bounded and ψ-stable for systems of ordinary
differential equations has been studied by many authors; see for example Akinyele
[1], Avramescu [2], Constantin [3]. In particular, Diamandescu [6, 7] presented
some necessary and sufficient conditions for existence of a ψ-bounded solution to
the linear nonhomogeneous system x′ = A(t)x+ f(t).

Denote by Rd the d-dimensional Euclidean space. Elements in this space are
denoted by x = (x1, x2, . . . , xd)T and their norm by ‖x‖ = max{|x1|, |x2|, . . . , |xd|}.
For real d × d matrices, we define norm |A| = sup‖x‖61 ‖Ax‖. Let R+ = [0,+∞)
and ψi : R+ → (0,∞), i = 1, 2, . . . , d be continuous functions. Set

ψ = diag[ψ1, ψ2, . . . , ψd].

Definition 1.1 ([6]). A function f : R+ → Rd is said to be
• ψ-bounded on R+ if ψ(t)f(t) is bounded on R+.
• ψ-integrable on R+ if f(t) is measurable and ψ(t)f(t) is Lebesgue integrable

on R+.

In Rd, consider the following equations

x′ = A(t)x+ f(t) (1.1)

x′ = A(t)x (1.2)

where A(t) is continuous matrix on R+.
By solution of (1.1), (1.2), we mean an absolutely continuous function satisfying

the system for all t ∈ R+. Let Y (t) be fundamental matrix of (1.2) with Y (0) = Id,
the identity d×d matrix. By X1 denote the subspace of Rd consisting of the initial
values of all ψ-bounded solutions of equation (1.2) and letX2 be the closed subspace
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of Rd, supplementary to X1. Also let P1, P2 denote the corresponding projections
of Rd on to X1, X2.

Definition 1.2. The equation (1.2) is said to has a ψ-exponential dichotomy if
there exist positive constants K,L, α, β such that

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)| 6 Ke−α(t−s) for 0 6 s 6 t, (1.3)

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)| 6 Keβ(t−s) for 0 6 t 6 s. (1.4)

The equation (1.2) is said to be has a ψ-ordinary dichotomy if (1.3), (1.4) hold with
α = β = 0.

We say that (1.2) has ψ-bounded grow if for some fixed h > 0 there exists a
constant C > 1 such that every solution x(t) of (1.2) is satisfied

‖ψ(t)x(t)‖ 6 C‖ψ(s)x(s)‖ for 0 6 s 6 t 6 s+ h. (1.5)

Remark 1.3. For ψi = 1, i = 1, 2, . . . , d, we obtain the notion exponential and
ordinary dichotomy [4, 5].

Diamandescu proved the following results.

Theorem 1.4 ([6]). The equation (1.1) has at least one ψ-bounded solution on
R+ for every ψ-integrable function f on R+ if and only if (1.2) has a ψ-ordinary
dichotomy.

Theorem 1.5 ([8]). Let

|ψ(t)A(t)ψ−1(t)| 6 M for all t > 0,

|ψ(t)ψ−1(s)| 6 L for 0 6 s 6 t.

Then (1.1) has at least one ψ-bounded solution on R+ for every ψ-bounded function
f on R+ if and only if (1.2) has ψ-exponential dichotomy.

In this paper we prove some condition of the ψ-dichotomy for a homogeneous
linear differential equations and we concerted that with the preceding results. Fi-
nally, it is noted that the concept of ψ-dichotomy for linear differential equations
remain valid in Banach spaces. In this case we need a few changes for the definition
of ψ. It seems to us that the majority of the results of this paper remain true for
Banach spaces.

2. Preliminaries

lemma 2.1. The equation (1.2) has a ψ-exponential dichotomy if there exist posi-
tive constants K ′, L′, T , α, β such that

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)| 6 K ′e−α(t−s), for T 6 s 6 t (2.1)

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)| 6 L′eβ(t−s), for T 6 s 6 t. (2.2)

Proof. We will show that (1.3) holds. Using a lemma of Coppel [4],

|Y −1(s)| 6 (2d − 1)
|Y (s)|d−1

|detY (s)|
.

On the other hand Y (s) is continuous, we deduce |Y −1(s)| 6 N1 < +∞ for 0 6 s 6
T . It follows from the continuity of ψ(t), ψ−1(t), Y (t), that |ψ(t)|, |ψ−1(t)|, |Y (t)|are
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bounded on [0, T ]. Thus |ψ(t)Y (t)P1Y
−1(s)ψ−1(s)| 6 N < +∞ for 0 6 s 6 T ,

0 6 t 6 T . If 0 6 s 6 T 6 t, then

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)|

6 |ψ(t)Y (t)P1Y
−1(T )ψ−1(T )||ψ(T )Y (T )Y −1(s)ψ−1(s)|

6 N |ψ(t)Y (t)P1Y
−1(T )ψ−1(T )|

6 NK ′e−α(t−T ) 6 NK ′eαT e−α(t−s).

If 0 6 s 6 t 6 T , then

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)|

6 |ψ(t)Y (t)Y −1(T )ψ−1(T )||ψ(T )Y (T )P1Y
−1(T )ψ−1(T )|

|ψ(T )Y (T )Y −1(s)ψ−1(s)|

6 N2K ′ 6 N2K ′eαT e−α(t−s).

Thus the inequality (1.3) holds for K = max{K ′, NK ′eαT , N2K ′eαT }. Similarly,
inequality (1.4) holds for L = max{L′, NL′eαT , N2L′eαT }. �

lemma 2.2. Equation (1.2) has a ψ-exponential dichotomy if only if following
statements are satisfied

‖ψ(t)Y (t)P1ξ‖ 6 K ′e−α(t−s)‖ψ(s)Y (s)P1ξ‖, for all ξ ∈ Rd and t > s > 0 (2.3)

‖ψ(t)Y (t)P2ξ‖ 6 L′eβ(t−s)‖ψ(s)Y (s)P2ξ‖, for all ξ ∈ Rd and s > t > 0 (2.4)

|ψ(t)Y (t)P1Y
−1(t)ψ−1(t)| 6 M for t > 0 (2.5)

where K ′, L′, M are positive constants.

Proof. If (1.2) has a ψ-exponential dichotomy then for any vector y ∈ Rd, we get

‖ψ(t)Y (t)P1Y
−1(s)ψ−1(s)y‖ 6 Ke−α(t−s)‖y‖ for 0 6 s 6 t.

Choose y = ψ(s)Y (s)P1ξ, we obtain (2.3). The proof of (2.2) is similar. Inequality
(2.5) evidently holds. Conversely, if inequality (2.3), (2.4), (2.5) are true. For any
vector y ∈ Rd, putting ξ = Y −1(s)ψ−1(s)y we get

‖ψ(t)Y (t)P1Y
−1(s)ψ−1(s)y‖ 6 K ′e−α(t−s)‖ψ(s)Y (s)P1Y

−1(s)ψ−1(s)y‖

6 MK ′e−α(t−s)‖y‖ for t > s > 0.

Thus, we have (1.3). The proof of (1.4) is similar. �

Remark 2.3. By Lemma 2.1 and in the same way as in the proof of Lemma 2.2,
we can show that (1.2) has ψ-exponential dichotomy if there exists positive constant
Q such that

‖ψ(t)Y (t)P1ξ‖ 6 K ′e−α(t−s)‖ψ(s)Y (s)P1ξ‖, for all ξ ∈ Rd and t > s > Q,
(2.6)

‖ψ(t)Y (t)P2ξ‖ 6 L′eβ(t−s)‖ψ(s)Y (s)P2ξ‖, for all ξ ∈ Rd and s > t > Q, (2.7)

|ψ(t)Y (t)P1Y
−1(t)ψ−1(t)| 6 M for t > Q. (2.8)

lemma 2.4. Equation (1.2) has ψ-bounded grow if and only if there exist positive
constants K, γ such that

|ψ(t)Y (t)Y −1(s)ψ−1(s)| 6 Keγ(t−s), for t > s > 0. (2.9)
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Proof. Suppose that (1.2) has a ψ-bounded grow. For arbitrary vector ξ ∈ Rd, we
consider the solution x(t) of (1.2), with x(0) = Y −1(s)ψ−1(s)ξ. Setting n = [ t−sh ],
we get

‖ψ(t)x(t)‖ = ‖ψ(nh+ s)x(nh+ s)‖
6 C‖ψ(nh+ s− h)x(nh+ s− h)‖
6 · · · 6 Cn‖ψ(s)x(s)‖

6 C
t−s
h ‖ψ(s)x(s)‖ for 0 6 s 6 t.

Set K = C, γ = h−1 lnC, we obtain

‖ψ(t)x(t)‖ 6 Keγ(t−s)‖ψ(s)x(s)‖.
Therefore, ‖ψ(t)Y (t)Y −1(t)ψ−1(s)ξ‖ 6 Keγ(t−s)|ξ‖. It follows (2.9).

Conversely, if (2.9) is true, then we can take C = Keγh. Thus (1.5) is satisfied.
�

Remark 2.5. The preceding proof shows that the condition of ψ-bounded grow of
(1.2) is independent of the choice of h.

3. The main results

Theorem 3.1. If (1.2) has a ψ-exponential dichotomy, then for any 0 < θ < 1
there exists constants T > 0 such that every solution x(t) of (1.2) satisfies

‖ψ(t)x(t)‖ 6 θ sup
‖s−t‖6T

‖ψ(s)x(s)‖ for all t > T. (3.1)

Proof. Set x1(t) = Y (t)P1Y
−1(t)x(t), x2(t) = Y (t)P2Y

−1(t)x(t). Suppose that

‖ψ(s)x2(s)‖ > ‖ψ(s)x1(s)‖.
It follows from (2.3) that

‖ψ(s)x1(s)‖ 6 K ′e−α(t−s)‖ψ(s)x1(s)‖ 6 K ′e−α(t−s)‖ψ(s)x2(s)‖ for 0 6 s 6 t.

Applying (2.4) for ξ = Y −1(s)x2(s),

‖ψ(t)x2(t)‖ = ‖ψ(t)Y (t)P2Y
−1(s)x2(s)‖

> L′
−1
eβ(t−s)‖ψ(s)Y (s)P2Y

−1(s)x2(s)‖ for 0 6 s 6 t.

Note that x2(t) = Y (t)P2Y
−1(t)x2(t). Thus

‖ψ(t)x2(t)‖ > L′
−1
eβ(t−s)‖ψ(s)x2(s)‖ for 0 6 s 6 t.

Therefore,

‖ψ(t)x(t)‖ >
1
2
[L′−1

eβ(t−s) −K ′e−α(t−s)]‖ψ(s)x(s)‖ for 0 6 s 6 t.

Similarly, if ‖ψ(s)x1(s)‖ > ‖ψ(s)x2(s)‖, then

‖ψ(t)x(t)‖ >
1
2
[K ′−1

eα(t−s) − L′e−β(t−s)]‖ψ(s)x(s)‖ for 0 6 t 6 s.

For any 0 < θ < 1 we can choose T > 0 large so that

L′
−1
eβT −K ′e−αT > 2θ−1 and K ′−1

eαT − L′e−βT > 2θ−1.

Thus for t > T ,

‖ψ(t)x(t)‖ 6 max{θ‖ψ(t+ T )x(t+ T )‖, θ‖ψ(t− T )x(t− T )‖}.
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Then (3.1) is satisfied. �

Definition 3.2. The function f : R+ → Rd is said to be ψ-integrally bounded if
it is measurable and Lebesgue integrals

∫ t+1

t
‖ψ(u)f(u)‖du are uniformly bounded

for any t ∈ R+.

Theorem 3.3. Equation (1.1) has at least one ψ-bounded solution on R+ for every
ψ-integrally bounded function f if and only if (1.2) has a ψ-exponential dichotomy.

Proof. First we prove the “if” part. Suppose that (1.2) has a ψ-exponential di-
chotomy. Consider the function

x̃(t) =
∫ t

0

ψ(t)Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

ψ(t)Y (t)P2Y
−1(s)f(s)ds

=
∫ t

0

ψ(t)Y (t)P1Y
−1(s)ψ−1(s)ψ(s)f(s)ds

−
∫ ∞

t

ψ(t)Y (t)P2Y
−1(s)ψ−1(s)ψ(s)f(s)ds

for t > 0. The function x̃(t) is bounded. In fact, suppose that∫ t+1

t

‖ψ(s)f(s)‖ds 6 c for t > 0.

Then ∫ t

0

e−α(t−s)‖ψ(s)f(s)‖ds 6 c(1− e−α)−1,∫ ∞

0

eβ(t−s)‖ψ(s)f(s)‖ds 6 c(1− e−β)−1,

by using a Lemma in Massera and Schaffer. Set

x(t) = ψ−1(t)x̃(t) =
∫ t

0

Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds.

Then x(t) is the ψ-bounded and continuous function on R+.

x′(t) = A(t)
[ ∫ t

0

Y (t)P1Y
−1(s)f(s)ds−

∫ ∞

t

Y (t)P2Y
−1(s)f(s)ds

]
+ Y (t)P1Y

−1(t)f(t) + Y (t)P2Y
−1(t)f(t)

= A(t)x(t) + f(t).

It follows that x(t) is a solution of (1.1).
Now, we prove the “only part”. We define the set

Cψ = {x : R+ → Rd;x is ψ-bounded and continuous on R+}.
It is well-known that Cψ is real Banach space with the norm

‖x‖Cψ = sup
t>0

‖ψ(t)x(t)‖.

First we show that (1.1) has a unique ψ-bounded solution x(t) with x(0) ∈ X2 for
each f ∈ Cψ. Further, there exists a positive constant r independent of f such that

‖x‖cψ 6 r‖f‖cψ . (3.2)
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We prove the existence. Suppose f ∈ Cψ. By hypothesis, there exists a ψ-bounded
solution x(t) of (1.1). We denote by y(t) the solution of the Cauchy problem

y′ = A(t)y; y(0) = −P1x(0).

This solution y(t) is ψ-bounded by definition of the subset X1. But then z = x+ y
is a ψ-bounded solution of (1.1) for which

P1z(0) = P1x(0)− P 2
1 x(0) = 0.

Thus z(0) ∈ X2. Hence z(t) is a ψ-bounded solution of (1.1) with z(0) ∈ X2.
We prove the uniqueness. Let x(t) and y(t) be the ψ-bounded solutions of

equation (1.1) with x(0) ∈ X2, y(0) ∈ X2. Hence x− y is a ψ-bounded of (1.2) and
x(0)− y(0) ∈ X2. But x(0)− y(0) ∈ X1. we obtain x(0) = y(0), hence x = y.

We prove the inequality (3.2) Consider the map T : cψ → cψ which is defined
Tf = x, where x is the ψ-bounded solution of (1.1) with x(0) ∈ X2. We will show
that T is continuous. Suppose that xn = Tfn, fn → f and xn → x. For any fixed
t, we have

lim
n→∞

‖
∫ t

0

[fn(s)− f(s)]ds‖ 6 lim
n→∞

∫ t

0

|ψ−1(s)|‖ψ(s)fn(s)− ψ(s)f(s)‖ds

6 lim
n→∞

‖fn − f‖Cψ
∫ t

0

|ψ−1(s)|ds = 0.
(3.3)

On the other hand

lim
n→∞

‖
∫ t

0

A(s)[xn(s)− x(s)]ds‖

6 lim
n→∞

∫ t

0

|A(s)ψ−1(s)|‖ψ(s)xn(s)− ψ(s)x(s)‖ds

6 lim
n→∞

‖xn − x‖Cψ
∫ t

0

|A(s)ψ−1(s)|ds = 0.

(3.4)

From (3.3) and (3.4) we obtain

x(t)− x(0) = lim
n→∞

(xn(t)− xn(0))

= lim
n→∞

∫ t

0

[A(s)xn(s) + x′n(t)−A(s)xn(s)]ds

= lim
n→∞

∫ t

0

[A(s)xn(s) + fn(s)]ds
∫ t

0

[A(s)x(s) + f(s)]ds.

Thus x(t) is a solution of (1.1). Since x(t) is ψ-bounded and

x(0) = lim
n→∞

xn(0) ∈ X2

we have x = Tf . It follows from the Closed Graph Theorem that the linear map T
is continuous. Hence (3.2) is proved. Now, put

G(t, s) =

{
Y (t)P1Y

−1(s) for0 6 s 6 t

−Y (t)P2Y
−1(s) for0 6 t 6 s.

If f̃ ∈ Cψ, f̃(t) = 0 for t > t1 > 0, then

x̃(t) =
∫ t1

0

G(t, s)f̃(s)ds (3.5)
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is a solution of (1.1). Moreover x̃ ∈ Cψ, since

ψ(t)x̃(t) =
∫ t1

0

ψ(t)Y (t)P1Y
−1(s)ψ−1(s)ψ(s)f̃(s)ds for t > t1.

On the other hand, x̃(0) = −P2

∫ t1
0
Y −1(s)f̃(s)ds ∈ X2. Thus

‖x̃‖cψ 6 r‖f̃‖cψ . (3.6)

Let x is an nontrivial solution of (1.2) and let α(t) be any continuous real-valued
function such that 0 6 α(t) 6 1 for all t > 0, α(t) = 0 for t > t2, α(t) = 1 for
0 6 t0 6 t 6 t1 6 t2. Set

f̃(t) = α(t)x(t)‖ψ(t)x(t)‖−1.

Then f̃ ∈ Cψ. From (3.5) and (3.6), we have

‖
∫ t1

t0

ψ(t)G(t, s)x(s)‖ψ(s)x(s)‖−1ds‖cψ = r for t1 > t0 > 0. (3.7)

By continuity, (3.7) remains true also in the case t = s. Choose x(0) = P1ξ, ξ ∈ Rd.
By the arbitrary of t1, from (3.7) we get

‖ψ(t)Y (t)P1ξ‖
∫ t

t0

‖ψ(u)Y (u)P1ξ‖−1du 6 r for t > t0 > 0.

Choose x(0) = P2ξ, ξ ∈ Rd. By the arbitrary of t0, from (3.7) we get

‖ψ(t)Y (t)P2ξ‖
∫ t1

t

‖ψ(u)Y (u)P2ξ‖−1du 6 r for 0 6 t 6 t1.

Next, putting x1(t) = Y (t)P1Y
−1(s)x(s) = Y (t)P1ξ, we have

‖ψ(t)x1(t)‖
∫ t

t0

‖ψ(u)x1(u)‖−1du 6 r for t > t0 > 0. (3.8)

Also putting x2(t) = Y (t)P2Y
−1(s)x(s) = Y (t)P2ξ, we get

‖ψ(t)x2(t)‖
∫ t1

t

‖ψ(u)x2(u)‖−1du 6 r for t1 > t > 0. (3.9)

It follows by integration that∫ s

t0

‖ψ(u)x1(u)‖−1du 6 e−r
−1(t−s)

∫ t

t0

‖ψ(u)x1(u)‖−1du for t > s > t0. (3.10)∫ t1

s

‖ψ(u)x2(u)‖−1du 6 er
−1(s−t)

∫ t1

t

‖ψ(u)x2(u)‖−1du for t1 > s > t. (3.11)

Because a ψ-integrable function is ψ-locally integrable, by Theorem 1.4 there exists
a positive constant K such that

‖ψ(t)x1(t)‖ 6 K‖ψ(s)x(s)‖ for 0 6 s 6 t, (3.12)

‖ψ(t)x2(t)‖ 6 K‖ψ(s)x(s)‖ for 0 6 t 6 s. (3.13)

Thus

rK−1‖ψ(s)x(s)‖−1 6
∫ r+s

s

‖ψ(u)x1(u)‖−1du for s > 0.
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Using (3.10), replacing t0 by s, s by s+ r we deduce∫ r+s

s

‖ψ(u)x1(u)‖−1du 6 e−r
−1(t−r−s)

∫ t

s

‖ψ(u)x1(u)‖−1du

6 ee−r
−1(t−s)

∫ t

s

‖ψ(u)x1(u)‖−1du for t > s+ r.

Hence

r
( ∫ s

t

‖ψ(u)x1(u)‖−1du
)−1

6 eK‖ψ(s)x(s)‖e−r
−1(t−s) for t > s+ r.

From (3.8), replacing t0 by s, s by s+ r, we get

‖ψ(t)x1(t)‖ 6 eK‖ψ(s)x(s)‖e−r
−1(t−s) for t > s+ r.

It is easy to see that the inequality holds also for s 6 t 6 s + r. Since x1(t) =
Y (t)P1Y

−1(s)x(s), it follows that

‖ψ(t)Y (t)P1Y
−1(s)ψ−1(s)‖ 6 K ′e−α(t−s) for t > s > 0

where K ′ = eK, α = r−1. By the same way, using (3.9), (3.11), (3.13), we get

‖ψ(t)Y (t)P2Y
−1(s)ψ−1(s)‖ 6 K ′eα(s−t) for s > t > 0.

The proof is complete. �

Now, we are going to show some conditions for (1.2) has a ψ-exponential di-
chotomy in the case it has ψ-bounded grow.

Theorem 3.4. Suppose that (1.2) has ψ-bounded grow. Equation (1.2) has a ψ-
exponential dichotomy if there exists constants T > 0, 0 < θ < 1 such that every
solution of (1.2) satisfies (3.1).

Proof. By Remark 2.3, we shall show that (2.6), (2.7), (2.8) are satisfied for some
Q > 0. We may consider x(t) is nontrivial solution of (1.2). The first we prove that
every solution x(t) of (1.2) with x(0) ∈ X1 satisfies

‖ψ(t)x(t)‖ 6 Ke−α(t−s)‖ψ(s)x(s)‖ for 0 6 s 6 t.

By Remark 2.5 we can choose h = T , so that

‖ψ(t)x(t)‖ 6 C‖ψ(s)x(s)‖ for 0 6 s 6 t 6 s+ T. (3.14)

Hence ‖ψ(t)x(t)‖ 6 θ supu>s ‖ψ(u)x(u)‖ for s > 0, t > s+ T . Therefore,

sup
u>s

‖ψ(u)x(u)‖ > ‖ψ(t)x(t)‖

for t > s+ T . It follow that

sup
u>s

‖ψ(u)x(u)‖ = sup
s6τ6s+T

‖ψ(τ)x(τ)‖. (3.15)
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Hence (3.14) and (3.15) yield ‖ψ(t)x(t)‖ 6 C‖ψ(s)x(s)‖ for 0 6 s 6 t. Set n = [ t−sT ]
then

‖ψ(t)x(t)‖
6 θ sup

‖u−t‖6T
‖ψ(u)x(u)‖

6 θ sup
‖u−t‖6T

{θ sup
‖u−v‖6T

‖ψ(v)x(v)‖} 6 θ2 sup
‖v−t‖62T

‖ψ(v)x(v)‖

6 θn sup
‖v−t‖6nT

‖ψ(v)x(v)‖ leqslantθnC‖ψ(s)x(s)‖ 6 θ−1Cθ
t−s
T ‖ψ(s)x(s)‖.

Put K = θ−1C > 1, α = −T−1lnθ > 0, we get

‖ψ(t)x(t)‖ 6 Ke−α(t−s)‖ψ(s)x(s)‖ for 0 6 s 6 t.

Now, for each ξ ∈ Rd, consider the solution x(t) of the equation (1) with x(0) = P1ξ.
Apply this inequality we deduce (2.6) for any Q > 0.

Now, suppose that x(t) is any solution x(t) of (1.2) with x(0) ∈ X2.
May be consider ‖ψ(0)x(0)‖ = 1. We can define sequence tn → +∞ by

‖ψ(tn)x(tn)‖ = θ−nC, ‖ψ(t)x(t)‖ < θ−nC for 0 6 t 6 tn.

Since ‖ψ(t)x(t)‖ 6 C for 0 6 t 6 T and ‖ψ(t1)x(t1)‖ = Cθ−1 > C we get T < t1.
Consequently,

T < t1 < t2 < · · · < tn < . . . .

From
‖ψ(tn)x(tn)‖ 6 θ sup

06u6tn+T
‖ψ(u)x(u)‖

and
‖ψ(u)x(u)‖ 6 θ−1‖ψ(tn)x(tn)‖ for 0 6 u 6 tn

we get tn+1 < tn + T . Suppose that 0 6 s 6 t and tm 6 t 6 tm+1, tn 6 s 6 tn+1

(1 6 m 6 n). Then

‖ψ(t)x(t)‖ < θ−m−1C = θn−m‖ψ(tn+1)x(tn+1)‖
6 Cθ−1θn−m+1‖ψ(s)x(s)‖

6 Cθ−1θ
s−t
T ‖ψ(s)x(s)‖.

Thus ‖ψ(t)x(t)‖ 6 Ke−α(s−t)‖ψ(s)x(s)‖ for t1 6 t 6 s.
For any unit vector ξ ∈ X2, let x(t, ξ) be the solution of (1.2) with ψ(0)x(0) = ξ.

Then x(t, ξ) is unbounded, and hence there is a value t = t1(ξ) such that

‖ψ(t1)x(t1)‖ = θ−1C.

We will show that the values t1(ξ) are bounded. In fact, otherwise there exists
a sequence of unit vector ξk ∈ X2 such that tk1 = t1(ξk) → +∞ as k → +∞.
By the compactness of the unit sphere in X2 we may suppose that ξk → ξ as
k → +∞, where ξ is a unit vector. Then x(t, ξk) → x(t, ξ) for every t > 0. Since
‖ψ(t)x(t, ξk)‖ < θ−1C for 0 6 t > tk1 and tk1 → +∞ we get

‖ψ(t)x(t, ξ)‖ 6 θ−1C for all t > 0

which is a contradiction because ξ ∈ X2. Thus there exists Q > 0 such that t1(ζ) for
all unit vector ζ and every solution x(t) of equation (1.2) with x(0) ∈ X2 satisfies

‖ψ(t)x(t)‖ 6 Ke−α(s−t)‖ψ(s)x(s)‖ for Q 6 t 6 s.
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Thus |ψ(t)Y (t)P2Y
−1(s)ψ−1(s)| 6 Leβ(t−s), for Q 6 t 6 s. Thus (2.7) is proved.

Note that (2.8) is proved in [8, Theorem 2.1, estimate (12)]. So the proof is cimplete.
�

From Theorem 3.1 and Theorem 3.4, we have the following result.

Corollary 3.5. Suppose that (1.2) has ψ-bounded grow. Then equation (1.2) has
a ψ-exponential dichotomy if and only if there exists constants T > 0, 0 < θ < 1
such that every solution of (1.2) is satisfied (3.1).

Theorem 3.6. Suppose that (1.2) has ψ-bounded grow. Then (1.1) has at least
one ψ-bounded solution on R+ for every ψ-bounded function f on R+ if and only if
(1.2) has ψ-exponential dichotomy.

Proof. Diamandescu presented this Theorem. In the proof [8, Theorem 1.2], the
author proved that |ψ(t)A(t)ψ−1(t)| 6 M for all t > 0 and |ψ(t)ψ−1(s)| 6 L for
t > s > 0 deduce (2.9). Throughout the proof, he only used condition (2.9). By
lemma 2.4, condition (2.9) is satisfied if and only if (1.2) has ψ-bounded grow. The
proof is complete �

Now, consider the perturbed equation

x′(t) = [A(t) +B(t)]x(t) (3.16)

where B(t) is a d × d continuous matrix function on R+. We have the following
result.

Theorem 3.7. (a) Suppose that (1.2) has a ψ-exponential dichotomy. If δ =
supt>0 |ψ(t)B(t)ψ−1(t)| is sufficiently small, then (3.16) has a ψ-exponential di-
chotomy.
(b) Suppose that (1.2) has a ψ-exponential dichotomy or ψ-ordinary dichotomy. If∫∞
0
|ψ(t)B(t)ψ−1(t)|dt <∞, then (3.16) has a ψ-ordinary dichotomy.

Proof. (a) By Theorem 3.3 it suffices to show that the equation

x′(t) = [A(t) +B(t)]x(t) + f(t) (3.17)

has at least a ψ-bounded solution for every ψ-integrally bounded f function. Denote
Y (t), P1, P2 as in the proof of the Theorem 3.3.

Consider the map T : Cψ → Cψ which is defined by

Tz(t) =
∫ t

0

Y (t)P1Y
−1(s)[B(s)z(s) + f(s)]ds

−
∫ ∞

t

Y (t)P2Y
−1(s)[B(s)z(s) + f(s)]ds.
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It is easy verified that Tz ∈ Cψ. More ever if z1, z2 ∈ Cψ then

‖Tz1 − Tz2‖

6
∫ t

0

|ψ(t)Y (t)P1Y
−1(s)ψ−1(s)||ψ(s)B(s)ψ−1(s)|‖ψ(s)z1(s)− ψ(s)z2(s)‖ds

+
∫ ∞

t

|ψ(t)Y (t)P2Y
−1(s)ψ−1(s)||ψ(s)B(s)ψ−1(s)|‖ψ(s)z1(s)− ψ(s)z2(s)‖ds

6 Kδ‖z1 − z2‖Cψ
∫ t

0

e−α(t−s)ds+ Lδ‖z1 − z2‖Cψ
∫ ∞

t

eβ(t−s)ds

6 δ(Kα−1 + Lβ−1)‖z1 − z2‖Cψ .

Hence, by the contraction principle, if δ(Kα−1 + Lβ−1) < 1, then the mapping T
has a unique fixed point. Denoting this fixed point by z, we have

z(t) =
∫ t

0

Y (t)P1Y
−1(s)[B(s)z(s)+f(s)]ds−

∫ ∞

t

Y (t)P2Y
−1(s)[B(s)z(s)+f(s)]ds.

It follows that z(t) is a solution of (3.17).
(b) We can assume that (1.2) has a ψ-ordinary dichotomy. By Theorem 1.4 it
suffices to show that (3.17) has at least a ψ - bounded solution for every ψ-integrable
f . From

∫∞
0
|ψ(t)B(t)ψ−1(t)|dt <∞, it follows that

k = K

∫ ∞

T

|ψ(t)B(t)ψ−1(t)|dt < 1

for a sufficiently large and positive T . Let CT,ψ be the Banach space of all ψ -
bounded and continuous functions z(t) on [T,∞) equipped with the norm

‖z‖CT,ψ = sup
t>T

‖ψ(t)z(t)‖.

Consider the map T : CT,ψ → CT,ψ which is defined by

Tz(t)

=
∫ t

T

Y (t)P1Y
−1(s)[B(s)z(s) + f(s)]ds−

∫ ∞

t

Y (t)P2Y
−1(s)[B(s)z(s) + f(s)]ds.

It is easy to check that Tz ∈ CT,ψ. Moreover if z1, z2 ∈ CT,ψ then

‖Tz1 − Tz2‖CT,ψ 6 K

∫ ∞

T

|ψ(s)B(s)ψ−1(s)|‖ψ(s)z1(s)− ψ(s)z2(s)‖ds

6 k‖z1 − z2‖CT,ψ .

It follows from the contraction principle that the equation Tz = z has a unique
solution z̃ ∈ CT,ψ. Denote by y the solution of (3.16), which is extension of z̃ on
R+. Clearly y is a ψ - bounded solution of (3.16). The proof is complete. �

We remark that (1.2) has a ψ-ordinary dichotomy with P1 = Id if and only if it
is ψ-uniformly stable. Theorem 3.7 follows [7, Theorem 3.4].
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Universitãtii din Timisoara, Seria Stiinte Matamatice-Fizice, Vol. VI, 1968, 41-55.
[3] Constantin. A; Asymptotic properties of solution of differential equation, Analele
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