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GENERALIZED VISCOSITY SOLUTIONS OF ELLIPTIC PDES
AND BOUNDARY CONDITIONS

GUSTAF GRIPENBERG

Abstract. Sufficient conditions are given for a generalized viscosity solution
of an elliptic boundary value problem to satisfy the boundary values in the

strong sense.

1. Introduction

When studying nonlinear elliptic equations of the form

F (x, u,Du,D2u) = 0, x ∈ Ω, (1.1)

one very fruitful approach may be to use the notion of viscosity solutions. We
say that u is a viscosity solution if it is both a subsolution and supersolution and
u is a subsolution in Ω if it is upper semicontinuous in Ω and for every x0 ∈ Ω
the following implication holds: If ψ ∈ C2(Rd) and u(x) ≤ ψ(x) + u(x0) − ψ(x0),
x ∈ Ω, |x − x0| < δ, for some δ > 0 then F

(
x0, u(x0), Dψ(x0), D2ψ(x0)

)
≤ 0.

Supersolutions are defined symmetrically, for details and further information and
references, see e.g. [4]. Since one wants to be sure that classical solutions are
viscosity solutions, one has to assume that F is nonincreasing in its last argument
(with the natural ordering for symmetric matrices).

One way of proving existence is to use Perron’s method, introduced in the vis-
cosity setting in [6]. That is, one proves that the supremum of a suitable set of
subsolutions is the solution. For this to work one needs a subsolution u and a super-
solution u such that u ≤ u and a comparison result saying that a subsolution is less
than or equal to a supersolution if both lie between u and u. If u(x) = u(x) when
x ∈ ∂Ω then all functions between u and u will automatically satisfy a Dirichlet
boundary condition but if this is not the case then the situation is not so simple any
more. One can, however, take another approach and consider a boundary condition
G(x, u(x)) = 0 in the viscosity sense which means that one considers the equation
H(x, u,Du,D2u) = 0 in Ω where

H(x, r,p, X) =

{
F (x, r,p, X), x ∈ Ω,
G(x, r), x ∈ ∂Ω.
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For the use of Perron’s method in this case, see also [5, Thm. 6.1]. It turns out
that when dealing with subsolutions the function H should be lower semicontinuous
and when considering supersolutions H should be upper semicontinuous. Thus one
has to introduce upper and lower semicontinuous envelopes defined as follows: If
v : A → [−∞,∞], A ⊂ RN , then v∗(z) = lims↓0 sup{v(y) | y ∈ A, |y − x| ≤ s}
and v∗(z) = lims↓0 inf{u(y) | y ∈ A, |y−x| ≤ s}, for z ∈ RN . Thus a generalized
viscosity solution of (1.1) with boundary condition G(x, u(x)) = 0 should be a
subsolution of H∗ = 0 and a supersolution of H∗ = 0. Observe that if both F
and G are lower semicontinuous (otherwise replace F and G below by F∗ and G∗,
respectively) and Ω is open then

H∗(x, r,p, X) =

{
F (x, r,p, X), x ∈ Ω,
min{G(x, r), F (x, r,p, X)}, x ∈ ∂Ω.

One consequence of studying equation H∗ = 0 is that the boundary conditions may
not be satisfied at all points, and this in turn will cause grave problems when one
tries to prove comparison results. Thus the purpose of this note is to study under
what assumptions it follows that if u is a subsolution of H∗ = 0, then one actually
has G(x, u(x)) ≤ 0 for all points x on the boundary. By symmetry one can then get
corresponding results for supersolutions, because u is a supersolution ofH = 0 if and
only if −u is a subsolution of

←→
H = 0 where

←→
H (x, r,p, X) = −H(x,−r,−p,−X).

These results improve those that can be found in [5] (see also [2]), in particular
concerning the assumptions on the domain Ω. Concerning the equations studied
in e.g. [1] on sees that the assumptions in the theorems below are satisfied for
the p-Laplacian equation −div(|Du|p−2Du) = 0 when 1 < p < ∞ where one thus
has F (x, r,q, X) = −|q|p−2 tr(X) − (p − 2)|q|p−4〈q, Xq〉 when q 6= 0 and for the
infinity-Laplacian equation −∆∞u = 0 where F (x, r,q, X) = −〈q, Xq〉. (Here
〈·, ·〉 denotes the standard inner product in Rd.) However, the assumptions are
not satisfied for the 1-Laplacian equation, nor for the minimal surface equation
−div

(
1√

1+|Du|2
Du

)
= 0 where F (x, r,q, X) = − tr(X)√

1+|q|2
+ 〈q,Xq〉√

1+|q|2
3 .

2. Statement of results

We shall prove two theorems that differ only in a tradeoff between the assump-
tions on the domain Ω and the nonlinearity F . Note also that we do not have
to assume that F and G are nondecreasing in the second variable, but this as-
sumption is essential in comparison results. Below S(d) denotes the set of real
symmetric d× d-matrices with X ≥ Y for X,Y ∈ S(d) if all eigenvalues of X − Y
are nonnegative, and n⊗ n is the matrix with (i, j)-element ninj .

Theorem 2.1. Assume that d ≥ 1 and that
(i) Ω ⊂ Rd is open;
(ii) x� ∈ ∂Ω satisfies an exterior ball condition, i.e., there is a vector n� ∈ Rd

with |n�| = 1 and numbers ρ� > 0 and β� > 0 such that {x ∈ Rd |
|x− x� − ρ�n�| ≤ ρ�, |x− x�| ≤ β�} ∩ Ω = {x�};

(iii) F : Ω×R×Rd ×S(d)→ [−∞,∞] is lower semicontinuous and degenerate
elliptic, i.e., nonincreasing in its last variable;

(iv)

lim inf F
(
x, r, λn,−ηλ2 n⊗ n +

1
ρ�
λI

)
> 0,
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where the limit is taken as x → x�, x ∈ Ω, n → n�, |n�| = 1, r → u(x�),
λ→∞, and η →∞;

(v) G : ∂Ω× R→ [−∞,∞] is lower semicontinuous;
(vi) u : Ω→ R is a subsolution of H∗ = 0 in Ω where

H(x, r,p, X) =

{
F (x, r,p, X), x ∈ Ω,
G(x, r), x ∈ ∂Ω.

Then G(x�, u(x�)) ≤ 0.

Theorem 2.2. Assume that d ≥ 1 and that

(i) Ω ⊂ Rd is open;
(ii) x� ∈ ∂Ω satisfies an exterior cone condition, i.e., there is a vector n� ∈ Rd

with |n�| = 1 and numbers θ� ∈ (0, π
2 ] and β� > 0 such that {x ∈ Rd |

〈x− x�,n�〉 ≥ cos(θ�)|x− x�|, |x− x�| ≤ β�} ∩ Ω = {x�};
(iii) F : Ω×R×Rd ×S(d)→ [−∞,∞] is lower semicontinuous and degenerate

elliptic, i.e., nonincreasing in its last variable;
(iv)

lim inf F
(
x, r, λn,−µλ2(ηn⊗ n− I)

)
> 0,

where the limit is taken as x → x�, x ∈ Ω, r → u(x�) |n| = 1, λ → ∞,
µ→∞, and η →∞;

(v) G : ∂Ω× R→ [−∞,∞] is lower semicontinuous;
(vi) u : Ω→ R is a subsolution of H∗ = 0 in Ω where

H(x, r,p, X) =

{
F (x, r,p, X), x ∈ Ω,
G(x, r), x ∈ ∂Ω.

Then G(x�, u(x�)) ≤ 0.

It seems to be quite difficult to get a counterexample showing, for example, that
one cannot replace (iv) in Theorem 2.2 by (iv) in Theorem 2.1) but a modification
of a classical example due to Lebesgue (see e.g. [3, p. 303] where the notion of
viscosity solutions is not considered) shows that one cannot hope to be able to
significantly weaken the external cone condition. In this example one considers
Laplace’s equation −∆u = 0.

Example 2.3. Let d ≥ 4 and assume that ω is a nondecreasing continuous function
on [0, 1] with ω(0) = 0 such that

∫ 1

0

ω(t)
t

dt <∞ but
∫ 1

0

ω(t)
t2

dt = +∞.
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Furthermore, let

Ω = {x ∈ Rd | |x| < 1, |(x2, . . . , xd)| > ω(|x1|)
1

d−3x1},

ϕ(x) = −
∫ 1

0

td−3ρ(t)d−2

|((x1 − t), x2, . . . , xd)|d−2
dt, x 6= (s, 0, . . . , 0), s ∈ [0, 1],

F (x, r,p, X) = − tr(X),

G(x, r) =

{
r − ϕ(x), x ∈ ∂Ω \ {0},
r +

∫ 1

0
ω(t)

t dt+ 1
d−3 , x = 0,

u(x) =

{
ϕ(x), x ∈ Ω \ {0},
−

∫ 1

0
ω(t)

t dt, x = 0.

Then all assumptions of Theorem 2.2 are satisfied except (ii) and the conclusion of
Theorem 2.2 does not hold when x� = 0.

For Ω in the example above to satisfy the exterior cone condition one would
have to assume that inft∈(0,1) ω(t) > 0. Note also that if Ω = {x ∈ Rd | |x| <
1, |(x2, . . . , xd)| > (log(|log(x1)|))−1x1}, then the exterior cone condition is not
satisfied at 0 but neither can the example above be applied for any d.

In the next example we show that for the 1-Laplacian equation the claim of
Theorem 2.1 (or 2.2) does not hold. This example shows that one cannot replace
assumption (iv) by an assumption of the form F (x, r,p,−ηI) > 0 for some η > 0
when p 6= 0.

Example 2.4. Let

Ω = {x ∈ R2 | |x| < 1},

F = F̃∗ where F̃ (x, r,p, X) = − tr(X)
|p|

+
〈p, Xp〉
|p|3

, p 6= 0,

G(x, r) = r, u(x) = 1, x ∈ Ω.

Then all assumptions of Theorem 2.1 are satisfied except (iv) and the conclusion
of Theorem 2.1 does not hold.

We need a special case of the following lemma, which is closely related to [4,
Lemma 3.1]. Here inequalities for vectors are to be taken component wise and 1 is
the vector with all components equal to 1.

Lemma 2.5. Assume that A ⊂ Rd, w : A → R is upper semicontinuous and
Ψ : [1,∞)m ×A → [0,∞) nondecreasing in its first m arguments and lower semi-
continuous with respect to the last one. Suppose furthermore that

N = ∩α≥1{z ∈ A | Ψ(α, z) = 0} 6= ∅,
lim

α→∞
Ψ(α, z) =∞, z ∈ A \ N ,

and that
sup
z∈A

(
w(z)−Ψ(1, z)

)
<∞.

Let Mα = supz∈A(w(z)−Ψ(α, z)) for α ≥ 1 and assume that zα ∈ A is such that

lim
α→∞

(
Mα −

(
w(zα)−Ψ(α, zα)

))
= 0.
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If z� ∈ A is a cluster point of zα as α →∞, then z� ∈ N and w(z) ≤ w(z�) for
all z ∈ N and if limj→∞ zαj = z� then limj→∞ Ψ(αj , zαj ) = 0. Moreover, if A is
compact, then

lim
α→∞

Ψ(α, zα) = 0.

If A is not compact then it is not necessarily true that limα→∞ Ψ(α, zα) = 0 as
can be seen by taking A = [0,∞), w(z) = 2z

z+1 and Ψ(α, z) = zmax{0, α−z}+ z
z+1 .

3. Proofs

Proof of Lemma 2.5. If α ≥ β ≥ 1 then we have Ψ(α, z) ≥ Ψ(β, z) for all z ∈ A
and henceMα ≤Mβ as well. On the other hand,N is nonempty and supz∈N w(z) ≤
Mα, so Mα is bounded from below and M∞ := limα→∞Mα exists (and is finite).

Assume next that zαj → z� ∈ A where αj → ∞. If z� /∈ N then there exists
a vector α� such that Ψ(α�, z�) ≥ w(z�) −M∞ + 2. Since z → Ψ(α�, z) is lower
semicontinuous and w is upper semicontinuous we see that for sufficiently large j
we have Ψ(α�, zαj

) > w(zαj
) − M∞ + 1. Since αj ≥ α� for sufficiently large

values of j and Ψ is nondecreasing in the first variables we see that Ψ(αj , zαj ) >
w(zαj ) −M∞ + 1 for all sufficiently large j. But this contradicts the assumption
that 0 = limα→∞(Mα −w(zα) + Ψ(α, zα)) = M∞ − limα→∞(w(zα)−Ψ(α, zα)).

Since Ψ is nonnegative and w is upper semicontinuous we have

w(z�) ≥ lim sup
j→∞

(
w(zαj )−Ψ(αj , zαj )

)
= lim sup

j→∞

(
w(zαj )−Ψ(αj , zαj )−Mαj

)
+ lim

j→∞
Mαj

= M∞ ≥ sup
z∈N

w(z).

Since z� ∈ N and w(z�) ≥ lim supj→∞ w(zαj ) this inequality implies in addition
that limj→∞ Ψ(αj , zαj

) = 0.
Finally, if we assume that A is compact then every subsequence (αj)∞j=1 has

a subsequence for which limk→∞ zαjk
→ z� ∈ A and the claim follows from the

results already proven. �

Proof of Theorem 2.1. Suppose to the contrary that G(x�, u(x�)) > 0. Let n� and
ρ� be the unit vector and number in assumption (ii), let η > 1 be such that (possible
by (iv))

lim inf F
(
x, r, λn,−ηλ2 n⊗ n +

1
ρ�
λI

)
> 0, (3.1)

where the limit is taken as x → x�, x ∈ Ω, n → n�, |n�| = 1, r → u(x�), and
λ→∞.

Furthermore, let y� = x� + ρ�n�, and define the function Ψ by

Ψ(α,x) = ψ(α(|x− y�| − ρ�)), α ≥ 1, x ∈ Ω,

where ψ is some twice continuously differentiable function with ψ′(t) ≥ 1
2 , t ≥ 0,

ψ(0) = 0, ψ′(0) = 1 and ψ′′(0) = −2η. (Take for example ψ(t) = t
2 + 1

8η−2

(
1 −

1
(1+t)4η−1

)
when t > − 1

2 .) Let A = Ω ∩ {x | |x − x�| ≤ β�} and observe that the
only point x ∈ A where Ψ(α,x) = 0 is x�. Since u is upper semicontinuous in the
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compact set A it is bounded from above there and for each α ≥ 1 there is a point
xα ∈ A such that

u(xα)−Ψ(α, xα) = sup
x∈A

(
u(x)−Ψ(α,x)

)
.

It follows from Lemma 2.5 that limα→∞ Ψ(α,xα) = 0 and that limα→∞ xα = x�.
Thus we see that if α is sufficiently large, then xα is a local maximum point of u(x)−
Ψ(α,x) in Ω. Clearly we have u(xα) ≥ u(x�) and since u is upper semicontinuous
we conclude that limα→∞ u(xα) = u(x�). Since G is lower semicontinuous this
implies that if α is sufficiently large and xα ∈ ∂Ω then G(xα, u(xα)) > 0. The
assumption that u is a subsolution of H∗ = 0 then implies that

F (xα, u(xα), DxΨ(α,xα), D2
xΨ(α,xα)) ≤ 0. (3.2)

Now a calculation shows that

DxΨ(α,x) = α
ψ′(α(|x− y�| − ρ�))

|x− y�|
(x− y�),

and

D2
xΨ(α,x) = α

ψ′(α(|x− y�| − ρ�))
|x− y�|

I

+
(
α2ψ

′′(α(|x− y�| − ρ�))
|x− y�|2

− αψ
′(α(|x− y�| − ρ�))
|x− y�|3

)
(x− y�)⊗ (x− y�).

Now we know that xα → x� and ψ(α(|xα − y�| − ρ�)) → 0 and hence α(|xα −
y�|−ρ�)→ 0 as α→∞. Thus we see that if we define nα = 1

|xα−y�| (xα−y�) then

nα → n�,

ψ′(α(|xα − y�| − ρ�))→ 1,

ψ′(α(|xα − y�| − ρ�))
|xα − y�|

→ 1
ρ�
,

ψ′′(α(|xα − y�| − ρ�))→ −2η,

as α→∞.
If we let λ = αψ′(α(|xα−y�|−ρ�)) then we see that for sufficiently large α (and

hence λ) we have
α2ψ′′(α(|xα − y�| − ρ�)) ≤ −λ2η.

Thus we see (recall that |xα − x�| ≥ ρ�) that

D2
xΨ(α,xα) ≤ λ

ρ �
I − ηλ2nα ⊗ nα,

Combining this result with the degenerate ellipticity of F and (3.1) we get a con-
tradiction from inequality (3.2). �

Proof of Theorem 2.2. Suppose to the contrary that G(x�, u(x�)) > 0. In order to
derive a contradiction we start by choosing a number of parameters and points.

Since G is lower semicontinuous there is a number ε > 0 such that

G(x, r) > 0, |x− x�| ≤ ε, x ∈ ∂Ω, |r − u(x�)| ≤ ε. (3.3)
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By assumption (iv) there is a number k so that

F (x, r, λn,−µλ2(ηn⊗ n− I)) > 0 when

x ∈ Ω, |x− x�| <
1
k

, |r − u(x�)| <
1
k

, λ > k, |n| = 1, µ > k, and η > k. (3.4)

Choose a number m ≥ 2 so that

m >
2(k − 1)
sin(θ�)

,
2m+2

3ε(m+ 1)(2− sin(θ�))m
> k, ε

(
1− sin(θ�)

2

)m+1

<
1
k
. (3.5)

Since u is upper semicontinuous there is a number δ ∈ (0,min{ε, β�}) such that

u(x) < u(x�) + 2−m−2ε, |x− x�| < δ, x ∈ Ω. (3.6)

and hence it follows from (3.3) that

if |x− x�| ≤ δ, x ∈ ∂Ω, and G(x, u(x)) ≤ 0 then u(x) < u(x�)− ε. (3.7)

Choose β ∈ (0, β�) so that

β <
δ

3
, β <

2
5k
, β <

ε(m+ 1)
22m+1 k

, (3.8)

and define
yβ = x� + βn�, β ∈ (0, β�).

As a test function we take

ψ(x) =

{
−ε(2β)−m−1

(
2β − |x− yβ |

)m+1
, |x− yβ | ≤ 2β,

0, |x− yβ | > 2β.

Since m ≥ 2 this function is twice continuously differentiable when x 6= yβ .
Since u is upper semicontinuous there is a point xβ ∈ Ω, so that |xβ − yβ | ≤ 2β

and
u(xβ)− ψ(xβ) ≥ u(x)− ψ(x), |x− yβ | ≤ 2β, x ∈ Ω.

If |x− x�| < δ < β� and x ∈ Ω, then if follows from assumption (ii) that

|x− yβ | ≥ β sin(θ�), (3.9)

and hence we have

u(x�)− ψ(x�) ≤ u(xβ)− ψ(xβ) ≤ u(xβ) + ε
(
1− sin(θ�)

2

)m+1

,

so that we conclude, since ψ(x�) ≤ 0 that

u(xβ) ≥ u(x�)− ε
(
1− sin(θ�)

2

)m+1

. (3.10)

then |x− x�| < δ since β < δ
3 and hence by (3.6)

u(x)− ψ(x) < u(x�) + 2−m−2ε+ 4−m−1ε < u(x�)− ψ(x�).

Thus we see that we must have

|xβ − yβ | <
3
2
β, (3.11)

that is, xβ is a local maximum point for u− ψ in Ω.
Furthermore, since 3

2β < ε we note by (3.7) that if x ∈ ∂Ω, |x − yβ | < 3
2β and

G(x, u(x)) ≤ 0, then u(x) < u(x�) − ε so that by (3.9) we have u(x) − ψ(x) <
u(x�) − ε + ε

(
1 − sin(θ�)

2

)m+1
< u(x�) < u(x�) − ψ(x�) so we conclude that if
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xβ ∈ ∂Ω, then G(xβ , u(xβ)) > 0. Thus it follows from the assumption that u is a
subsolution of the equation H∗ = 0 that we in fact have

F
(
xβ , u(xβ), Dψ(xβ), D2ψ(xβ)

)
≤ 0.

It remains to show that this is a contradiction.
When we use the notation

nβ =
1

|xβ − yβ |
(xβ − yβ),

we get

Dψ(xβ) = ε(2β)−m−1(m+ 1)
(
2β − |xβ − yβ |

)m
nβ ,

D2ψ(xβ) = ε(2β)−m−1(m+ 1)
(
2β − |xβ − yβ |

)m 1
|xβ − yβ |

(I − nβ ⊗ nβ)

− ε(2β)−m−1m(m+ 1)
(
2β − |xβ − yβ |

)m−1
nβ ⊗ nβ .

Let

λ = ε(2β)−m−1(m+ 1)(2β − |xβ − yβ |)m,

µ =
1

λ|xβ − yβ |
,

η = m
|xβ − yβ |

2β − |xβ − yβ |
+ 1.

Thus we see that

Dψ(xβ) = λnβ and D2ψ(xβ) = −µλ2(η nβ ⊗ nβ − I).

From (3.9) and (3.11) a we get

ε(m+ 1)(2− sin(θ�))m

2m+1β
≥ λ ≥ ε(m+ 1)

22m+1 β
,

µ ≥ 2m+2

3ε(m+ 1)(2− sin(θ�))m
,

η ≥ m sin(θ�)
2− sin(θ�)

+ 1.

Now it follows from (3.5) that η > k and µ > k and from (3.8) that λ > k.
Furthermore, the last inequality in (3.5) guarantees by (3.6) and (3.10) that |u(xβ)−
u(x�)| < 1

k . Finally, since |xβ−yβ | < 3
2β and β < 2

5k by (3.8) we have |xβ−x�| < 1
k .

Thus it follows from (3.4) that F
(
xβ , u(xβ), Dψ(xβ), D2ψ(xβ)

)
> 0 and we have a

contradiction. �

Proof of the claims in Example 2.3. A straightforward calculation shows that ϕ is
harmonic in the set {x ∈ Rd | x 6= (s, 0, . . . , 0), s ∈ [0, 1]} and thus we see that the
only point which may cause problems for the assumptions or the claim is the origin.

Using Fatou’s lemma we immediately conclude that u is upper semicontinuous. If
we define k(s) = ϕ((s, s, 0, . . . , 0)), then we deduce that lims→0 k(s) = −

∫ 1

0
ω(t)

t dt
by the dominated convergence theorem and the fact that (t − s)2 + s2 ≥ 1

2 t
2, but

limt↑0 k
′(t) = −(d − 2)

∫ 1

0
ω(t)
t2 dt = −∞. Since (s, s, 0, . . . , 0) ∈ Ω for s sufficiently

small we conclude that there cannot be a function ψ ∈ C2(Rd) such that u−ψ has
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a local maximum in Ω at 0 and hence there is nothing to check in the definition of
a viscosity subsolution at 0.

It remains to show that G is lower semicontinuous in ∂Ω × R and it suffices to
show that

lim inf
x↓0

∫ 1

0

td−3ω(t)√
(x− t)2 + ω(x)

2
d−3x2

d−2
dt ≥

∫ 1

0

ω(t)
t

dt+
1

d− 3
. (3.12)

By the triangle inequality and a series expansion we have∫ 1

0

td−3ω(t)√
(x− t)2 + ω(x)

2
d−3x2

d−2
dt

≥
∫ 1

x

td−3ω(t)

(t− x(1− ω(x)
1

d−3 ))d−2
dt

=
∫ 1

x

ω(t)
t

dt+
∞∑

n=1

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3

)n

xn

∫ 1

x

ω(t)
tn+1

dt.

(3.13)

Since ω is nondecreasing we have∫ 1

x

ω(t)
tn+1

dt ≥ ω(x)
n

(x−n − 1).

This inequality implies that
∞∑

n=1

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3

)n

xn

∫ 1

x

ω(t)
tn+1

dt

≥ ω(x)
∞∑

n=1

1
n

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3

)n

− ω(x)
∞∑

n=1

1
n

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3

)n

xn.

(3.14)

Because 1
n

(
n+d−3

d−3

)
≥ 1

d−3

(
n+d−4

d−4

)
we get

ω(x)
∞∑

n=1

1
n

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3Big)n

≥ ω(x)
d− 3

∞∑
n=0

(
n+ d− 4
d− 4

)(
1− ω(x)

1
d−3Big)n − ω(x)

d− 3

=
ω(x)

(d− 3)(1− (1− ω(x)
1

d−3 ))d−3
− ω(x)
d− 3

=
1− ω(x)
d− 3

.

This inequality, (3.13) and (3.14) imply that (3.12) holds since limx↓0 ω(x) = 0 and

lim
x↓0

∫ 1

x

ω(t)
t

dt =
∫ 1

0

ω(t)
t

dt,

lim
x↓0

∞∑
n=1

ω(x)
n

(
n+ d− 3
d− 3

)(
1− ω(x)

1
d−3

)n

xn = 0.

�
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Proof of the claims in Example 2.4. A straightforward calculation shows that F̃ is
nonincreasing in its last variable when p 6= 0 and then F has the same property
(for all p). Since F (x, r,0, X) = −∞ when X ≥ 0 it is clear that u is a subsolution
of F = 0 in Ω so it remains to check the boundary points and we may without
loss of generality assume that x0 = (1, 0). Assume thus that u(x) ≤ ψ(x) for all
x ∈ Ω with |x − x0| < δ for some δ > 0 and u(x0) = ψ(x0). Clearly ψx(x0) ≤ 0
and since the function t 7→ ψ(cos(t), sin(t)) has a local minimum at t = 0 we see
that ψy(x0) = 0 and ψyy(x0) ≥ 0. If ψx(x0) = 0 it follows from the fact that
ψyy(x0) ≥ 0 that F (x0, 1, Dψ(x0), D2ψ(x0)) = −∞ and if ψx(x0) < 0 it follows
from that fact that ψy(x0) = 0 that

F (x0, 1, Dψ(x0), D2ψ(x0)) = F̃ (x0, 1, Dψ(x0), D2ψ(x0)) = −ψyy(x0)
|ψx(x0)|

≤ 0.

�
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Corrigendum: Posted September 5, 2006

In Example 2.4 (page 4), replace “Ω = {x ∈ R2 | |x| < 1}” by

Ω = {(x, y) ∈ R2 | x < 1}
and in the proof of the claims in Example 2.4 (page 10), replace “the function
t 7→ ψ(cos(t), sin(t))” by “the function t 7→ ψ(1, t)”.
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