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GEVREY PROBLEM FOR PARABOLIC EQUATIONS WITH
CHANGING TIME DIRECTION

IGOR S. PULKIN

Abstract. This article concerns parabolic equations with changing time di-
rection and Gevrey’s boundary condition. Using expansion series and biorthog-

onal systems, we prove the existence of classical solutions.

1. Introduction and Main Result

This paper is devoted to the study of existence of classical solution of the para-
bolic problem

∂u

∂t
− sign(x)

∂2u

∂x2
= 0 (1.1)

in a domain Ω = {(x, t) : x ∈ (−1; 0) ∪ (0; 1), t ∈ (0;T )} with Gevrey boundary
conditions (see [1, 5])

u(−1; t) = u(1; t) = 0,

u(x; 0) = u0(x), t ∈ (0; 1),

u(x;T ) = uT (x), t ∈ (−1; 0);
(1.2)

Also with sewing conditions (see [2])

u(−0; t) = u(+0; t),
∂u

∂x
(−0; t) = −∂u

∂x
(+0; t).

(1.3)

Note that (1.1) is a parabolic equation with changing time direction. The boundary-
value problems with such sewing conditions appear when modelling, for example,
process of interaction between two reciprocal flows with mutual permeating, or
when designing certain heat exchangers. Furthermore, the results obtained in the
linear case, may be used for investigating nonlinear problems with changing time
direction. Such problems arise in supersonic dynamics, boundary layer theory [3].

The main aim of the paper is to prove the existence of a classical solution. We
call a function u : [−1, 1]× [0;T ] → R a classical solution of the problem (1.1)-(1.2)-
(1.3) if u ∈ C2(Ω) and satisfies to equation (1.1) in Ω, Gevrey condition (1.2) and
sewing conditions (1.3) at 0.
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To state our main result, we need some preliminary constructions. First using
separation of variables technique we obtain the following problem for X(x), where
u(x, t) = X(x)T (t),

sign(x)
X ′′

X
=
T ′

T
= µ, (1.4)

sign(x)X ′′ = µX. (1.5)

X(−1) = X(1) = 0,

X|x=+0 = X|x=−0,

∂X

∂x
|x=+0 = −∂X

∂x
|x=−0.

 (1.6)

Consider the set of twice differentiable functions for x ∈ (−1, 0) and x ∈ (0, 1)
satisfying boundary conditions (1.2) and sewing conditions(1.3). Denote by Wx the
completion of this set with respect to the norm

‖h‖2 =
∫ 0

−1

(
h2 + h2

x + h2
xx

)
dx+

∫ 1

0

(
h2 + h2

x + h2
xx

)
dx.

It can be shown that Wx is a Hilbert space. Now introduce the operator Lx : Wx →
L2(−1, 1) defined by LxX = sign(x)X ′′ for every X ∈ Wx. It is easy to see that
Lx is symmetric. Hence there exists denumerable set of eigenvalues, both positive
and negative. The corresponding eigenfunctions are: For µ = λ2 > 0,

Xλ =

{
sin λ(x+1)

sin λ , x < 0
sinh λ(1−x)

sinh λ , x > 0,
(1.7)

For µ = −λ2 < 0,

Xλ =

{
sinh λ(x+1)

sinh λ , x < 0
sin λ(1−x)

sin λ , x > 0,
(1.8)

In both cases eigenvalues are the solutions of the equation

tanλ = tanhλ. (1.9)

In addition, there exists an eigenfunction for µ = 0,

X0 =


√

3
2 (x+ 1), x < 0√
3
2 (1− x), x > 0.

(1.10)

Functions (1.7)–(1.10) form orthogonal complete basis in Wx. As it follows from
(1.9), the negative eigenvalues µk = −λ2

k satisfy asymptotic relations

λn ∼ −π
4
− πn, n ∈ N

and the positive eigenvalues µk = λ2
k satisfy asymptotic relations

λn ∼
π

4
+ πn, n ∈ N .

We will seek solutions of the problem (1.1)–(1.3) in the form

u(x, t) =
∞∑

k=0

(
Ake

−λ2
kt sinhλk(x+ 1)

sinhλk
+Bke

−λ2
k(T−t) sinλk(x+ 1)

sinλk

)
+ C(x+ 1),

(1.11)
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for x < 0, and

u(x, t) =
∞∑

k=0

(
Ake

−λ2
kt sinλk(x− 1)

sinλk
+Bke

−λ2
k(T−t) sinhλk(x− 1)

sinhλk

)
+ C(1− x),

(1.12)
for x > 0.

Theroem 1.1. Assume u0, uT ∈ L2(0; 1). Then there exists unique classical so-
lution u(x, t) of the problem (1.1)-(1.2)-(1.3). Furthermore, there exists unique
collection of coefficients Ak, Bk ∈ l2 such that the solution u(x, t) on the set Ω
express by the series expansion (1.11) and (1.12), respectively. If x < 0, t = T
then the sum of series (1.11) is u(x, T ) = uT , if x > 0, t = 0 then the sum of
series (1.12) is u(x, 0) = u0. Moreover, if u0, uT ∈ C2

0 [0; 1], then (1.11) and (1.12)
converge absolutely in rectangular Ω = (−1; 0)× (0;T ) ∪ (0; 1)× (0;T ).

2. Proof of the main result

First, we substitute initial data (1.6) into (1.11) and (1.12). Hence we obtain
that for t = T, x < 0,

u(x, T ) =
∞∑

k=0

(
Ake

−λ2
kT sinhλk(x+ 1)

sinhλk
+Bk

sinλk(x+ 1)
sinλk

)
,

and for t = 0, x > 0

u(x, 0) =
∞∑

k=0

(
Ak

sinλk(1− x)
sinλk

+Bke
−λ2

kT sinhλk(1− x)
sinhλk

)
.

Now we make the change of variables setting x = y− 1 for x < 0 and x = 1− y for
x > 0. Then the foregoing equations will take the form

u0(y) =
∞∑

k=1

(
Ak

sinλky

sinλk
+Bke

−λ2
kT sinhλky

sinhλk

)
+ Cy, (2.1)

uT (y) =
∞∑

k=1

(
Ake

−λ2
kT sinhλky

sinhλk
+Bk

sinλky

sinλk

)
+ Cy, (2.2)

where

u0(y) = u0(1− x),

uT (y) = uT (1 + x).

Adding and subtracting (2.1) and (2.2) term by term we obtain

u0 + uT − 2Cy =
∞∑

k=1

(
Ak +Bk

)( sinλky

sinλk
+ e−λ2

kT sinhλky

sinhλk

)
, (2.3)

u0 − uT =
∞∑

k=1

(
Ak −Bk

)( sinλky

sinλk
− e−λ2

kT sinhλky

sinhλk

)
. (2.4)

It is easy to see that both these equations represent the expansion of given functions
with respect to

αk =
( sinλky

sinλk
+ e−λ2

kT sinhλky

sinhλk

)
(2.5)
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and

βk =
( sinλky

sinλk
− e−λ2

kT sinhλky

sinhλk

)
. (2.6)

Suppose that there exist biorthogonal systems {ψn}, {ωn}, n = 1, . . .∞ in
L2(0, 1), such that

(αk;ψn) = δkn,

(βk;ωn) = δkn,

where δkn is the delta Kronecker, and (·; ·) is a scalar product in L2(0, 1). Then
coefficients Ak and Bk could be found for arbitrary left sides of (2.3) and (2.4). It
means that the following equalities will satisfy:∫ 1

0

ψn

( sinλky

sinλk
+ e−λ2

kT sinhλky

sinhλk

)
dy = δkn,∫ 1

0

ωn

( sinλky

sinλk
− e−λ2

kT sinhλky

sinhλk

)
dy = δkn.

Now we prove the existence of biorthogonal systems.

Proposition 2.1. Let {hn}, be a biogthogonal system with {σn}, n = 1, . . .∞ and
{hn} uniformly bounded. Then there exists a biorthogonal system for {σn + τn},
provided that for all k,

∞∑
n=1

|(τk, hn)|2 < δ < 1; (2.7)

and
∞∑

n=1

|τn| <∞. (2.8)

Proof. We look for a biorthogonal system in the form

h̃n = hn +
∞∑

i=1

binhi.

Then

δkn = (σk + τk;hn +
∞∑

i=1

binhi) = δkn + (τk;hn) + bkn +
∞∑

i=1

bin(τk;hi).

Let us denote A the matrix whose elements are (τk;hn) and B the matrix with
elements bkn. Then we obtain the equation

A+B +BA = 0, or B(E +A) = −A

where E is an identity matrix. Note that under condition (2.7) this equation is
resolvable as there exists an inverse matrix

(E +A)−1 = E −A+A2 −A3 + . . .

Hence,
B = −A+A2 −A3 + . . . ,

Furthermore,

‖B‖ ≤ ‖A‖
1− ‖A‖

.
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Thus B is the matrix of certain linear bounded operator on the space l2, that is why
the collection {bik}, i = 1, 2, . . . belongs l2 for all k. As |hi| is uniformly bounded
and (2.8) is fulfilled, then all series

∑∞
i=1 binhi converge. �

Proposition 2.2. There exists T0 > 0 such that for arbitrary T > T0 there exists
biorthogonal systems for systems of functions αk and βk .

Proof. As follows from [4], for the system

σn =
sin(π

4 + πn)x
sin(π

4 + πn)
(2.9)

there exists a biorthogonal system {hn}; moreover the functions {hn} are uniformly
bounded, for example by the constant 10.

The difference τk of αk and (2.9) (note that for βk all reasonings are the same)
consists of two terms

τ
(1)
k =

sin(π
4 + πk)x

sin(π
4 + πk)

− sinλkx

sinλk
;

τ
(2)
k = e−λ2

kT sinhλkx

sinhλk
.

By virtue of Lagrange theorem for τ (1)
k ,

|τ (1)
k | ≤

√
2 cosλk(λk −

π

4
− πk).

Taking into account that λk is a root of the equation tanλ = tanhλ, we obtain

|τ (1)
k | ≤

√
2 cosλk| tanhλk − 1| · 1

cos2 λk

≤ 2| tanhλk − 1| = 2
coshλk(coshλk + sinhλk)

,

hence, norms τ (1)
k are rapidly decreasing (at the rate e−Ck2

). Thus, for τ (1)
k con-

dition (2.8) holds. In order to prove (2.7) we need to estimate sum of the series.
Direct calculation shows that even first root λ1 ≈ 3, 9266 differ from 5π

4 ≈ 3, 9270
less than by 0, 5 · 10−3, then the sum of squares τ (1)

k can be bounded above by
geometric progression

∞∑
k=1

10−6e−2πk =
10−6

1− e−2π
≤ 10−5.

The validity of (2.8) for τ (2)
k is obvious for all positive T , and in order to estimate

the sum of squared norms we calculate at first∫ 1

0

( sinhλky

sinhλk

)2

dy =
1

2λk tanλk
− 1

2 sinh2 λk

.

Hence the series of sums of the squared norms is majorized by
∞∑

k=1

e10
−3−( π

2 +2πk)T 2

λk
.
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Direct calculations show that the sum of this series for T = 0, 15 is 1, 25 · 10−3.
From the estimate

∞∑
k=1

|(τk, hn)|2 ≤
∞∑

k=1

|τk|2 · |hn|2

≤
∞∑

k=1

100|τ (1)
k + τ

(2)
k |2

≤
∞∑

k=1

200(|τ (1)
k |2 + |τ (2)

k |2) < 0, 3

we can see that if T0 = 0, 15 it is sufficient for concluding the proof. �

Proposition 2.3. The following two systems{
X+

0 =
√

3y, X+
k =

sinλky

sinλk
+

sinhλky

sinhλk

}
, (2.10){

X−
k =

sinλky

sinλk
− sinhλky

sinhλk

}
, (2.11)

k = 1 . . .∞, are complete and orthogonal in L2(0; 1).

Proof. The first system is a complete system of eigenfunctions of operator L4u =
uIV in the space of smooth functions, satisfying boundary conditions

u(0) = u′′(0) = u′′(1) = u′′′(1) = 0.

It is easy to see if we integrate by parts that this operator is symmetric in this
space, then eigenfunctions are orthogonal. As this system consists of all eigenfunc-
tions then it is complete. Indeed, if we denote a4, an eigenvalue of L4, then all
eigenfunctions, corresponding a4, take the form

A sin ax+B cos ax+ C sinh ax+D cosh ax.

Since u(0) = u′′(0) = 0, it follows that B = D = 0. From the boundary condition
u′′(1) = 0 we obtain the equation

−Aa2 sin a+ Ca2 sinh a = 0.

It turned out that

A =
Z

sin a
, C =

Z

sinh a
,

where Z is certain nontrivial parameter and without loss of generality we may let
Z = 1. It follows from u′′′(1) = 0, that

−Aa3 cos a+ Ca3 cosh a = 0.

Substituting the expression obtained for A and C, into this equation, we have the
relation

tan a = tanh a,

which must be valid for all eigenvalues. Using precisely the same reasoning, we
prove the statement for second system; the only difference is that the boundary
conditions are in the form

u(0) = u(1) = u′(1) = u′′(0) = 0.
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It should be noted that

µ2
0 = |X+

0 | = 1; µ2
k = |X+

k | = |X−
k | =

1
2 sin2 λk

− 1
2 sinh2 λk

. (2.12)

By (1.9) and the asymptotic behavior of eigenvalues, the norms of the vectors tend
to unit as k →∞. �

Proposition 2.4. The biorthogonal systems for (2.5)– (2.6), are unique.

Proof. The validity of this statement will follow immediately from the completeness
of systems αk and βk. We prove the completeness only for the first system as the
proof for the second is similar. Assume that the system αk is not complete.Then
there exists a vector Z such that for all k

(αk, Z) = 0.

Since the system of vectors X+
k is complete, we may expand vector Z with respect

to this system:

Z =
∞∑

i=1

ziXi.

We denote here

Xk =
X+

k

µk
,

which form an orthonormal system. Also denote

α∗k =
αk

µk
,

γk = Xk − α∗k =
1
µk

(1− e−λ2
kT )

sinhλky

sinhλk
.

Then for all k,

(Xk − γk;
∞∑

i=1

ziXi) = 0,

zk −
∞∑

i=1

zi(γk;Xi) = 0.

Hence {zk} are eigenvectors of the matrix with elements Mki = (γk;Xi), and cor-
responding eigenvalue +1. The operator associated with this matrix is

M : Xk 7−→ γk.

Then the operator
E −M : Xk 7−→ α∗k,

and {zk} is and eigenvector of this operator, corresponding to eigenvalue 0. In
other words,

∞∑
k=1

zkα
∗
k = 0.

Existence of such liner combination with not only trivial zk contradicts with the
fact of linearly independence of αk. �

Proposition 2.5. Assume u0, uT are in C2
0 [0; 1]. Then the coefficients Ak and Bk

belong l1.
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Proof. To prove this statement note that

αk =
1
2
((X+

k +X−
k ) + e−λ2

kT (X+
k −X−

k )),

βk =
1
2
((X+

k +X−
k )− e−λ2

kT (X+
k −X−

k )).

The outcome of these formulas is that if both series of coefficients when expanding
with respect to X+

k and X−
k converge absolutely, then both series of coefficients

when expanding with respect to αk and βk also converge absolutely.
Let a f be a function in C2

0 [0; 1]. Then there exists an expansion with respect
to X−

k ,

f =
∞∑

k=1

ckX
−
k ,

where the coefficients can be calculated using the orthogonality by formulas:

ck =
1
µ2

k

∫ 1

0

f ·X−
k dx.

Since the second derivative of f is square integrable, there exists similar expansion
with respect to X+

k ,

f ′′ =
∞∑

k=0

dkX
+
k

where the coefficients are

dk =
1
µ2

k

∫ 1

0

f ′′ ·X+
k dx.

Note that if we differentiate the system X−
k twice, it will turn into the system

−λ2
kX

+
k . So that, if we integrate twice and take into account that f and f ′ vanish

in the boundary points of segment [0; 1], we derive the relation

dk = −λ2
kck,

which implies the inclusion ck ∈ l1.
The coefficient C of (2.3) may be found from the boundary condition if y = 1,

C =
1
2
(u0 + uT −

∞∑
k=1

(Ak +Bk)(1 + e−λ2
kT )).

To complete the proof of the theorem we need only to show that functional series
(1.11)–(1.12) and the series of their first and second derivatives with respect to x
and t converge uniformly. For 0 < t1 < t2 < T convergence on a segment [t1; t2] is
a consequence of majoring criterion for convergence. Since [t1 and t2] are arbitrary
the series converge uniformly for every interior point of the interval (0;T ). The
proof of the theorem is complete. �
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