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ON THE DYNAMICS OF THE CHARACTERISTIC CURVES
FOR THE LSW MODEL

JUAN J. L. VELÁZQUEZ

Abstract. This paper describes in a rigorous manner how the dynamics of the

characteristic curves for the Lifshitz-Slyozov-Wagner (LSW) model of coars-

ening transforms a class of noncompactly supported initial data in functions
that behave in a self-similar manner for long times.

1. Introduction

The purpose of this paper is to obtain in a rigorous way some properties for the
dynamics of the characteristic curves associated with the Lifshitz-Slyozov-Wagner
(LSW) model

∂f(R, t)
∂t

+
∂

∂R

((
− 1
R2

+
∆(t)
R

)
f(R, t)

)
= 0, t > 0 , R > 0 , (1.1)

f(R, 0) = f0(R) ≥ 0 , R > 0 , (1.2)

∆(t) =

∫∞
0
f(R, t) dR∫∞

0
f(R, t)RdR

. (1.3)

This system was introduced to study the coarsening stage of the so-called Oswald
ripening (cf. [4, 15]). The choice of ∆(t) above ensures that the volume density of
the particles

∫∞
0
f(R, t)R3 dR is preserved during their evolution. Rigorous deriva-

tions of this system using homogenization techniques, that take as starting point
the Mullins-Sekerka free boundary problem, have been obtained in different scaling
limits in [5, 6, 10].

The system (1.1)–(1.3) has a family of explicit self-similar solutions with the
form (cf. [4]):

f(R, t) =
1
t4/3

Φ(ρ), ρ =
R

t1/3
(1.4)

The solutions of (1.1)–(1.3) with the form (1.4) having finite volume fraction

φ ≡
∫ ∞

0

f(R, t)R3 dR <∞
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are compactly supported on the space ρ. For each given value of the volume fraction
filled by the particles φ there exists a one-parameter family of self-similar solutions
of (1.1)–(1.3).

It was rigorously proved in [7] that the long time asymptotics of the compactly
supported solutions of (1.1)–(1.3) depends very sensitively on the asymptotics of
the initial data near the maximum radius. Additional results concerning the long
time asymptotics of the LSW system (1.1)–(1.3) for compactly supported initial
data can be found in [11], [12].

The long time asymptotics of the solutions of (1.1)–(1.3) for noncompactly sup-
ported initial data has been studied in [14]. In that paper was shown that there
exist noncompactly supported initial data f0(R) yielding nonselfsimilar behaviour
as t → ∞. Moreover, in that paper were derived approximations of the noncom-
pactly supported solutions of the LSW model for long times by means of asymptotic
arguments. The resulting approximate LSW equations are a set of integrodifferen-
tial equations with two different time scales as t→∞.

The main goal of this paper is to provide some rigorous basis for some results
that were just obtained in a formal manner in [14].

It was already implicit in the arguments of the seminal paper [4] that the key
problem in order to understand the dynamics of the LSW model is to describe the
behaviour of the characteristic curves associated to (1.1)–(1.3) near the so-called
critical radius. In an informal manner we can say that the critical radius is the value
of the radius for which the velocity of the characteristics in the space of radii, written
in self-similar variables is close to zero. Due to this fact the characteristic curves
“leak” very slowly from the region of supercritical radii to the region of subcritical
radii. To compute in detail the rate of “leaking” is crucial in order to describe
asymptotically the long time behaviour of noncompactly supported solutions of
(1.1)–(1.3) behaving in a self-similar manner as t→∞. In particular, the analysis
of the “leaking” phenomenon yields an asymptotics for the rate of change of the
particles in the form

1
t2

+
1

t2(log(t))2
+

1
t2(log(t))2(log(log(t)))2

+ . . . as t→∞ (1.5)

This type of formula were already obtained in [4]. A more detailed study of these
asymptotics was made in [13]. On the other hand, the analysis in [14] provides a
simpler and more general explanation for the onset of the asymptotics (1.5).

The main contribution of this paper is to develop mathematical methods that
allow to analyze the behaviour of the characteristic curves near the critical radius
in a fully rigorous manner. Only a small fraction of the formal arguments in [14]
are proved rigorously in this paper. Nevertheless, the mathematical results in this
paper show that some of the main ideas in [14] can indeed be made mathematically
rigorous. Note that the results of this paper are not obtained for the full LSW
model, but for a simplified problem that takes into account only the transition of
the characteristic curves near the critical line. Such transition is the most relevant
part in the transformation of general, noncompactly supported initial data in self-
similar solutions as t→∞.

The plan of the paper is the following: In Section 2 we introduce some basic no-
tation and formulate the main result proved in the paper. In Section 3 we compute
in a formal manner the stretching generated by the dynamics of the characteristic
curves. In particular we will formally obtain in this Section that the transition of
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the characteristic curves through the critical region can be approximated by means
of the problem (4.1 )-(4.4). This problem can be solved in an explicit manner, as
it was noticed in [14]. This fact plays an essential role in many of the arguments
in the rest of the paper. For this reason we will recall the solution of (4.1)–(4.4) in
Section 4.

The rest of the paper consists studying the evolution of the characteristic curves
associated to (1.1), (1.2) by means of a perturbative argument. More precisely, it
will be seen in Section 5 that the transition of the characteristic curves of (1.1), (1.2)
near the critical region can be approximated in some sense by means of the solution
of the problem (4.1)–(4.4). To make precise the “closedness” of the solutions of these
two problems it is convenient to reformulate the solutions of the problem described
in Section 5 by means of an integral equations whose local solvability in time is
obtained in Section 6. The local solvability of this integral equation is given in
Section 7, as well as the long time asymptotics of the resulting solutions.

Some technical properties of some auxiliary functions f are given in Appendix
A at the end of the paper.

2. Statement of the main result

It is convenient, in order to simplify some computations, to replace the density
in the space of radii by the density in the space of volumes. We define f̄(v, t) by
means of:

v = R3

f(R, t) dR = f̄(v, t)dv

t̄ = 3t

whence f̄(v, t̄) = 1
3v2/3 f(v1/3, t). Using this change of variables, equations (1.1)-

(1.3) become

∂f̄(v, t̄)
∂t̄

+
∂

∂v

(
(−1 + ∆(t̄)v1/3)f̄(v, t̄)

)
= 0 , t̄ > 0 , v > 0 (2.1)

f̄(v, 0) =
1

3v2/3
f0(v1/3) ≡ f̄0(v) , v > 0 (2.2)

∆(t̄) =

∫∞
0
f̄(v, t̄)dv∫∞

0
v1/3f̄(v, t̄)dv

(2.3)

The analysis of these equations becomes simpler if the density f̄(v, t̄) is replaced
by the distribution function

F (v, t̄) ≡
∫ ∞

v

f̄(ξ, t̄)dξ . (2.4)

Using this new variable the system (2.1)-(2.3) becomes:

∂F (v, t̄)
∂t̄

+
(
− 1 + ∆(t̄)v1/3

)∂F (v, t̄)
∂v

= 0 , t̄ > 0 , v > 0 (2.5)

F (v, 0) = F0(v) ≡
∫ ∞

v

f̄0(v)dξ , v > 0 (2.6)

∆(t̄) =
3F (0+, t̄)∫∞

0
v−2/3F (v, t̄)dv

. (2.7)
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Global well posedness for this problem has been studied in [8] for compactly
supported initial data and in [9] for noncompactly supported initial data with fast
enough decay. We can assume that f̄(v, t̄) is a (nonnegative) measure satisfying∫
vf̄dv < ∞, whence F (v, t̄) is in general a decreasing bounded function. Note

that the volume preservation satisfied by the solutions of (2.5) becomes in these
variables,

∂

∂t̄
(
∫ ∞

0

vf̄(v, t̄)dv) =
∂

∂t̄
(
∫ ∞

0

F (v, t̄)dv) = 0 .

We introduce self-similar variables by means of:

F (v, t) =
G(W, τ)

t̄
, W =

2v
t
, τ = log(t̄) (2.8)

In these set of variables (2.5)-(2.7) become

∂G

∂τ
+ (−2 + 3λ(τ)W 1/3 −W )

∂G

∂W
= G (2.9)

λ(τ) =
2G(0+, τ)∫∞

0
W−2/3G(W, τ)dW

(2.10)

G(W, 0) = G0(W ) (2.11)

The self-similar solution of the LSW system having maximal support becomes,
in this set of variables,

Gs(W ) = exp
(
−

∫ W

0

dξ

2− 3ξ1/3 + ξ

)
, (2.12)

0 ≤W < 1 , Gs(W ) = 0 if W > 0. (2.13)

λ(τ) = 1 (2.14)

where we have used the normalization Gs(0) = 1.
Let us define β(τ) = λ(τ)− 1. Since

∫∞
0
W−2/3G(W, τ)dW = 2, it follows that

β(τ) =

∫∞
0
W−2/3(G(W, τ)−G(0+, τ)Gs(W ))dW∫∞

0
W−2/3G(W, τ)dW

(2.15)

and (2.9) might be written as

∂G

∂τ
+

(
− 2 + 3W 1/3 −W + 3β(τ)W 1/3

) ∂G
∂W

= G (2.16)

Suppose that G(W, τ) behaves in a self-similar manner as t → ∞. Then (2.15)
implies that

lim
τ→∞

β(τ) = 0 (2.17)

Therefore, the speed of the characteristics of (2.16) might be approximated by
means of the function (−2 + 3W 1/3 −W ) that has a double zero at W = 1. The
line W = 1 will be termed from now on as “critical line”. Due to (2.17) the
characteristic curves associated to (2.16) remain trapped near the critical line for
long times. For long times the only characteristic curves that contribute to the
asymptotics of G(W, τ) are those starting at points W = W0 with W0 → ∞.
Since G0(W0) → 0 as W0 → ∞, and the values of G increase exponentially on τ
along characteristics, it follows that in order to obtain G(W, τ) of order one for
W ∈ (0, 1) as τ → ∞ the characteristics starting at W = W0 with W0 → ∞ must
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remain trapped near the critical line W = 1 a very precisely tuned amount of time.
A detailed computation of the trapping time can be found in Section 3 below.

The purpose of this paper is to obtain detailed information in a rigorous manner
on the transformations G0(W ) → G(W,∞) induced by the transition of the char-
acteristic curves along the critical line W = 1. The main result obtained in this
paper is the following:

Theorem 2.1. Suppose that G0(W ) satisfies:

lim
W0→∞

sup
0≤ζ≤1

∣∣∣G0(W0e
Λ(W0)ζ)

G0(W0)
− e−ζ

∣∣∣ = 0, (2.18)

where
dkΛ
dW k

0

(W0) ∼
dk

dW k
0

(
C

(W0)α
) as W0 →∞ (2.19)

for some α > 0 and C > 0, k = 0, 1, 2. Then there exists a family of functions
β(τ) ∈ L∞[0,∞) satisfying

lim
τ→∞

β(τ) = 0 (2.20)

such that the corresponding solution of (2.9) with initial data (2.11) satisfies

lim
W→∞

G(W, τ)
G(0+, τ)

= Gs(W ) (2.21)

uniformly on W ∈ R+.

Condition (2.18) is reminiscent of some similar conditions on the initial data that
might be found in [7], [11], [12]. In those papers it was proved that the initial data
G0(W ) must satisfy rather strong conditions in order to yield self-similar behaviours
for long times. Roughly speaking, the conditions on those papers, as well as (2.18),
impose that a suitable functional transformation of G0(W ) behaves asymptotically
in a self-similar manner as W →∞.

The main shortcoming of Theorem 2.1 concerning the LSW theory is that the
function β(τ) there is not necessarily given by (2.15). Theorem 2.1 shows only that
it is possible to transform initial data satisfying (2.18) into a self-similar behaviour
by means of the evolution equation (2.16). In other words, the transformation
induced by the trapping of the characteristics associated to (2.16) near the critical
line is able to bring initial data satisfying (2.18) into self-similar behaviour. In
particular, the choice of the function β(τ) derived in Theorem 2.1 does not yield
preservation of the total volume of the particles. To obtain an unique function β(τ)
preserving the total volume of the particles it would be needed to take into account
also the dynamics of the characteristics in the regions 0 < W < 1 and W > 1 as it
was made at the formal level in [14]. On the other hand, as it was seen in [14], the
feasibility of the transformation described in Theorem 2.1 is the key feature that
must be required on G0 in order to obtain also volume conservation.

Assumption (2.19) looks very restrictive and certainly is not the most general one
possible. The main reason for this choice of Λ(W0) is because under this assumption
it will be possible to handle easily many of the formula later. Nevertheless (2.19)
could be weakened much. In any case (2.18), (2.19) covers several interesting initial
data G0. For instance if G0 satisfies

G0(W ) ∼ CWB(log(W ))De−W
A

as W →∞ , A > 0, B,D ∈ R (2.22)
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then formulae (2.18), (2.19) hold with

Λ(W ) ∼ 1
A

1
(W )A

as W →∞.

3. A heuristic computation of the stretching generated by the
evolution of the characteristics

In this Section we describe in a heuristic manner the key argument in this paper.
This argument has been described in a different, but essentially equivalent manner
in [14]. We recall it here for further reference.

The basic problem is to estimate the transformation induced by the characteris-
tics of the equation (2.16) for small functions β(τ). Let us formulate the problem
in a more precise manner. We denote as W (τ ;W0) the solution of the differential
equation:

Wτ = −2 + 3W 1/3 −W + 3β(τ)W 1/3 (3.1)

W (0;W0) = W0 . (3.2)

Our goal is to obtain approximations for the solutions of this equation for small
β(τ) uniformly valid in time. Since β(τ)is small it follows that the evolution of
W (τ ;W0) takes place in a very different manner in the regions W − 1 �

√
|β(τ)|,

1 −W �
√
|β(τ)| and |W − 1| ≈

√
|β(τ)|. Indeed, in the first two regions, away

from the region W = 1, we can approximate the equation (3.1) as:

Wτ = −2 + 3W 1/3 −W for |W − 1| �
√
|β(τ)| (3.3)

This approximation cannot be used in the region |W − 1| ≈
√
|β(τ)|. From now

on we will call critical line the line W = 1. Using Taylor’s expansion and keeping
just the leading terms we would approximate (3.1) in the region |W − 1| � 1 as:

Wτ = −1
3
(W − 1)2 + 3β(τ) (3.4)

This equation shows that W (τ ;W0) is very sensitive in this region to the precise
form of β(τ). It follows from (3.3), (3.4) that the evolution of the characteristics
away from the critical line does not depend much on β(τ), but this evolution is
extremely sensitive to the values of β(τ) in the region |W − 1| ≈

√
|β(τ)|.

To obtain a class of initial data that are transformed by means of (2.16) in
functions close to self-similar solutions the key problem is to study the evolution
of characteristics W (τ ;W0) with W0 large. Therefore, we will assume from now
on that W0 > 1, i.e. that the characteristic curves cross the critical line during
their evolution. Using (3.3) it follows that, as long as 1 −W �

√
|β(τ)|, we can

approximate W (τ ;W0) as:

log
( W0

W (τ ;W0)

)
+ Fext(W (τ ;W0))− Fext(W0) = τ, (3.5)

where

Fext(W ) ≡
∫ ∞

W

[ 1
2− 3η1/3 + η

− 1
η

]
dη =

∫ ∞

W

(3η1/3 − 2)
(2− 3η1/3 + η)η

dη . (3.6)
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The asymptotic behaviour of F (W ) as W → 1+ is

Fext(W ) =
3

(W − 1)
− 5

3
log(W − 1) + bext + o(1) (3.7)

where bext ∈ R. We can rewrite (3.5) as

W (τ ;W0) = wext(τ − log(W0) + Fext(W0)− bext) (3.8)

where
− log(wext(s)) + Fext(wext(s)) = s+ bext . (3.9)

Using (3.7) we obtain the asymptotics

wext(s) ∼ 1 +
3
s
−

5 log( 3
s )

s2
+ o(

1
s2

) as s→∞ . (3.10)

Formulae (3.8), (3.10) suggest to define the arrival time to the critical line W = 1
for W (τ ;W0) as:

Tarr = log(W0)− F (W0) + bext (3.11)
Note that the transition of the characteristic W (τ ;W0) by the region |W − 1| ≈√
|β(τ)| takes place in a long time if β(τ) is small. Therefore, due to the asymptotics

(3.10) it makes sense to approximate W (τ ;W0) near the critical line by means of
the solution of the problem

Wtrans,τ = −1
3
(Wtrans − 1)2 + 3β(τ) (3.12)

Wtrans((Tarr)+;W0) = +∞ . (3.13)

Indeed, note that the effect in Wtrans of the term β(τ) during the range of times in
which Wtrans − 1 �

√
|β(τ)| is small.

On the other hand, after the transition near the critical line has taken place,
we can use again (3.3) to approximate W (τ ;W0). Suppose that W (τ̄ ;W0) = W̄ .
Arguing as in the region W − 1 �

√
|β(τ)| we obtain the approximation:

Fint(W (τ ;W0)) = Fint(W̄ ) + (τ̄ − τ), (3.14)

where

Fint(W ) =
∫ W

0

dη

2− 3η1/3 + η
. (3.15)

We have the asymptotics

Fint(W ) ∼ 3
(1−W )

+
5
3

log(1−W ) + bint + o(1) as W → 1− . (3.16)

We then write
W (τ ;W0) = wint(τ − τ̄ − Fint(W̄ ) + bint), (3.17)

where
Fint(wint(s)) = bint − s . (3.18)

Therefore,

wint(s) ∼ 1 +
3
s
−

5 log(− 3
s )

s2
+ o

( 1
s2

)
as s→ −∞ (3.19)

Equations (3.17), (3.19) suggest to define the “exit time” from the transition region
for W (τ ;W0) as

Texit = τ̄ + Fint(W̄ )− bint . (3.20)
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Using again the smallness of β(τ) it would be natural to assume that, to the leading
order, the function Wtrans that solves (3.12), (3.13) satisfies

Wtrans((Texit)−;W0) = −∞ . (3.21)

Let us summarize. The previous argument indicates that for β(τ) small we can
approximate W (τ ;W0) using (3.8), (3.9) if W − 1 �

√
|β(τ)|, (3.17), (3.18) if

1−W �
√
|β(τ)| and the function Wtrans(τ ;W0) that solves (3.12), (3.13), (3.21)

for |W − 1| ≈
√
|β(τ)|. Note that W (τ ;W0) is, to the leading order, independent

on β(τ) for |W − 1| �
√
|β(τ)|. Therefore, the stretching of the characteristic

curves W (τ ;W0), is contained, to the leading order, in the dynamics of the function
Wtrans(τ ;W0). Note that for each Tarr and each function β(τ) there is a unique Texit.
Let us write the functional relation between these quantities as

Tarr = S(Texit), (3.22)

where S(·) is an increasing function such that S(x) < x.
We can then examine the precise manner in which we should choose Tarr, Texit

in order to transform the initial data G0(W ) into a self-similar solution. Let us
denote as W̄0 the starting value of the characteristic W (τ ; W̄0) arriving at W = 0
at the time τ = τ̄ . By assumption

G(W̄ , τ̄)
G(0+, τ̄)

≈ Gs(W̄ ) = e−Fint(W̄ ) , 0 ≤ W̄ < 1 . (3.23)

Then, since along the characteristic curves we have dG
dτ = G, it follows that

G(W̄ , τ̄)
G(0+, τ̄)

=
G0(W0)
G0(W̄0)

. (3.24)

Combining (3.11), (3.20), (3.22) we obtain

log(W0)− F (W0) + bext = S(τ̄ + Fint(W̄ )− bint), (3.25)

log(W̄0)− F (W̄0) + bext = S(τ̄ − bint) . (3.26)

Subtracting these equations we obtain the following relation between W0 and W̄0,
W0

W̄0
e−F (W0)+F (W̄0) = e[S(τ̄+Fint(W̄ )−bint)−S(τ̄−bint)] (3.27)

We are interested in finding the asymptotic behaviours of G0(W0) that might be
transformed into self-similar behaviours as τ̄ → ∞. Using (3.23)-(3.27) as well as
the fact that limW0→∞ F (W0) = 0, we deduce that such functions G0(W0) must
satisfy:

G0

(
W̄0e

[S(τ̄+Fint(W̄ )−bint)−S(τ̄−bint)]
)

G0(W̄0)
∼ e−Fint(W̄ ) as W̄0 →∞ (3.28)

We then obtain that the initial data G0(W0) that might be transformed in the self-
similar solution (2.13) must satisfy (3.28). There are many asymptotic behaviour
of the function G0(W0) for which the transformation (3.28) can be achieved by
means of functions S(·) satisfying |S′(x)| � 1 as x → ∞. In that case, (3.28) can
be written as

G0

(
W̄0e

S′(τ̄)Fint(W̄ )
)

G0(W̄0)
∼ e−Fint(W̄ ) as W̄0 →∞ .
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Therefore, there exists a function λ(W0) > 0 such that

G0(W0e
Λ(W0)ζ)

G0(W0)
∼ e−ζ as W0 →∞ (3.29)

uniformly on compact sets of ζ.
On the other hand, if (3.29) holds it is possible to find an approximation of the

function S(·) that must relate Tarr, Texit. Since S′(τ̄) ≈ Λ(W̄0) and log(W̄0) −
F (W̄0) + bext ≈ S(τ̄ − bint) we would obtain, to the leading order

S′(τ̄) ≈ Λ exp
(
− bext + S(τ̄)

)
. (3.30)

The solution of this differential equation would provide an approximation for the
function S(·) in (3.22). Note that for λ(·) satisfying (2.19), equation (3.30) would
imply a rough asymptotics of the form

S(τ̄) ≈ 1
α

log(τ̄) as τ̄ →∞ . (3.31)

The rest of this paper is devoted to a rigorous proof of the previous argument.
The key difficulty consists in proving the existence of functions β(τ) satisfying (2.20)
and solving (3.1), (3.13), (3.21) with Tarr, Texit related by means of (3.22), where
S solves (3.30). It is not hard to obtain an explicit solution of this problem if (3.1)
is replaced by the approximated equation (3.12). This solution will be given in the
next Section. Nevertheless, the analysis of the neglected error terms is technically
more involved and it will be made in the remaining Sections of the paper.

4. Analysis of the simplified transition problem for the
characteristic curves

In this Section we solve the transition problem (3.12), (3.13), (3.21), (3.22) that
we reformulate here for convenience. Since deriving this problem we have neglected
higher order terms in the Taylor’s series we will term it as “Simplified Transition
Problem”. The solution of this problem has been found in [14], but we recall it
here for convenience. Let us write Wtrans = 1 + X. Our goal is, given a strictly
monotonic increasing function S(·) satisfying S(x) < x, for x > 0, to find functions
β(τ) such that for any Tarr > T0 the unique solution of the problem

Xτ = −1
3
X2 + 3β(τ), Tarr < τ < Texit (4.1)

X((Tarr)+) = +∞ (4.2)

satisfies
X((Texit)−) = −∞ (4.3)

with
S(Texit) = Tarr . (4.4)

There are several ways of solving problem (4.1 )-(4.4). The method used in this
Section is convenient because it can be adapted in a perturbative manner to the
transition problem one obtains if (3.12) is replaced by (3.1). We compute the
solution of (4.1)–(4.4) in a basically explicit manner. In particular, we will assume
that S is a smooth as required in the forthcoming computations.

We then proceed to solve (4.1)–(4.4). Let us define a function f(ζ) ≥ T0 strictly
monotonically increasing in ζ, defined in ζ ≥ ζ0 satisfying

S(f(ζ + 1)) = f(ζ) (4.5)
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f(ζ0) = 0, (4.6)

where S(·) is as in (4.4).
Our assumptions imply the existence of the inverse function S−1(·). Therefore,

given an arbitrary function f(ζ) in [ζ0, ζ0 + 1) satisfying (4.6) we obtain f defined
in [ζ0,∞) iterating the formula

f(ζ + 1) = S−1(f(ζ)). (4.7)

In further computations we will need f to be differentiable three times. This regu-
larity would hold if the function f(ζ) defined in [ζ0, ζ0 +1) belongs to C3[ζ0, ζ0 +1]
and satisfies the following compatibility conditions

f(ζ0) = f(ζ0 + 1) (4.8)

f ′(ζ0) = S′(f(ζ0 + 1))f ′(ζ0 + 1) (4.9)

f ′′(ζ0) = S′′(f(ζ0 + 1))(f ′(ζ0 + 1))2 + S′(f(ζ0 + 1))f ′′(ζ0 + 1) (4.10)

f ′′′(ζ0) = S′′′(f(ζ0 + 1))(f ′(ζ0 + 1))3

+ 3S′′(f(ζ0 + 1))f ′(ζ0 + 1)f ′′(ζ0 + 1) + S′(f(ζ0 + 1))f ′′′(ζ0 + 1) .
(4.11)

Therefore, given f ∈ C3[ζ0, ζ0+1] strictly monotonically increasing in [ζ0, ζ0+1] sat-
isfying (4.8)-(4.11) we obtain, iterating (4.7), an increasing function f ∈ C3[ζ0,∞).
Moreover, since S(x) < x for any x, it follows that

lim
ζ→∞

f(ζ) = ∞ .

Given such a function f(·) we define a new function ϕ(Y, ζ) as

ϕ(Y, ζ) =
3Y
f ′(ζ)

+
3f ′′(ζ)

2(f ′(ζ))2
. (4.12)

Let us introduce the change of variables

τ = f(ζ) (4.13)

X = ϕ(Y, ζ) (4.14)

Suppose that the function β(τ) satisfies

β(f(ζ)) =
1

(f ′(ζ))2
(1
2
{f, ζ} − π2

)
, (4.15)

where {f, ζ} is the Schwartzian derivative (cf. [3]),

{f, ζ} =
f ′′′(ζ)
f ′(ζ)

− 3
2
(
f ′′(ζ)
f ′(ζ)

)2 . (4.16)

Under this assumption the change of variables (4.13), (4.14) transforms the original
transition problem (4.1)–(4.4) into

dY

dζ
+ Y 2 + π2 = 0 , ζ > ζarr (4.17)

Y ((ζarr)+) = +∞ (4.18)

Y ((ζarr + 1)−) = −∞ (4.19)

where τarr = f(ζarr), and we have used (4.4), (4.5) to obtain (4.19).
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Problem (4.17)-(4.19) can be easily solved, since the solution of (4.17), (4.18) is
given by

Y = Y (ζ, ζ0) = π coth(π(ζ − ζarr)) (4.20)

and it can be inmediately checked that Y (ζ, ζ0) satisfies (4.19).
The previous computations provide a method of finding functions β(τ) solving

(4.1)–(4.4). Indeed, given any strictly increasing function f ∈ C3[ζ0, ζ0 + 1] satis-
fying (4.8)-(4.11) we can obtain f ∈ C3[ζ0,∞) iterating (4.7) with the properties
stated above. We then define β(τ) by means of (4.15). Then, the function β(τ)
solves (4.1)-(4.4).

Remark 4.1. It has been proved in [14] that for functions S satisfying (3.31), (i.e.
λ as in (2.19)), the asymptotics of β(τ) is

β(τ) ∼ −1
4

[ 1
(τ)2

+
1

(τ)2(log(τ))2
+

1
(τ)2(log(τ))2(log(log(τ)))2

+ . . .
]

as τ →∞. This asymptotics has been previously derived in [4], [13] using different
methods.

The main contribution of the rest of the paper we obtain rigorous results analo-
gous to the ones of this Section replacing (4.1) by the complete equation (3.1) and
(4.2), (4.3) by a precise formulation of the matching conditions (3.8), (3.10), (3.17),
(3.19). To this end we treat this problem as a perturbation of the problem (4.1)–
(4.4). Nevertheless the rigorous implementation of this perturbative argument is
technically involved. The main reason for this is that, as indicated in [14] there ex-
ist infinitely many different ways of finding functions β(τ) that solve (4.1)-(4.4). In
particular, the effect of the corrective terms (3.1) as well as the matching condition
generate some corrections on β(τ) whose asymptotics is “beyond all the orders” if
the asymptotics of β(τ) is computed that could yield an important effect on the
behaviour of the function S(·) and for this reason must be studied carefully.

5. Rigorous formulation of the transition problem

5.1. Restricting the class of functions β(τ). In this Section we formulate in
a precise manner the transition problem that must be solved by characteristics to
understand the transformation experienced by the solution of (2.16) as the char-
acteristics cross the critical region W ≈ 1. In particular we give in this Section a
precise meaning to the formal matching conditions (3.13), (3.21).

From now on, we will suppose that the assumptions in Theorem 2.1 hold. Let
us define S(·) by means of ∫ S(τ)

S0

dη

Λ(e−bext+η)
= τ , (5.1)

where S0 is a large number that will be precised later. Note that S(τ) solves the
ODE (cf. (3.30)):

S′(τ) = Λ(e−bext+S(τ)) . (5.2)

It is convenient to impose some constraints in the class of functions β(τ) that will be
taken into account in Theorem 2.1. By assumption we restrict ourselves to the class
of functions λ(W ) in Theorem 2.1. Therefore S(·) behaves roughly like in (3.31).
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For these functions S(·) the function β(·) defined by means of (4.15) satisfies (cf.
(8.6) in the Appendix)

log(β(τ)) ∼ −2 log(τ) as τ →∞ . (5.3)

Therefore, it is natural to assume that the functions β(·) belong to the class of
functions verifying

|β(τ)| ≤ A

(τ)2−δ + 1
for τ ≥ 0 (5.4)

for some δ > 0, A > 0.

5.2. Approximating the evolution of the characteristics away from the
critical line. As a first step, we obtain a rigorous version of the approximation of
W (τ ;W0) given in (3.5).

The following two Lemmas show that the effect of β(τ)W 1/3 in (3.1) yields a
negligible contribution to the dynamics of the characteristic curves W (τ ;W0) for
W0 large if |W − 1| is not too small.

Lemma 5.1. Suppose that W (τ ;W0) is the solution of (3.1), (3.2), that wext(s) is
as in (3.9) with Fext(·) defined in (3.6). Let us assume also (5.4). There exists a
function ε(W0) satisfying limW0→∞ ε(W0) = 0 such that, for any W0 large enough
there holds

|W (τ ;W0)− wext(τ − Tarr)| ≤
ε(W0)(wext(τ − Tarr))1/3

1 + (τ − Tarr)2+
(5.5)

for 0 ≤ τ ≤ Tarr + L(Tarr) where Tarr is as in (3.11) and (x)+ = max{x, 0} and
where L(·) is a smooth, increasing function, satisfying

C1(ζ + 1)3 ≤ L(f(ζ)) ≤ C2(ζ + 1)3 (5.6)

L′(τ) � 1
τ

(5.7)

for some positive constants C1, C2, with f(ζ) defined by means of (4.5), (4.6).

Remark 5.2. Due to (4.5), the function f(ζ) can be thought as the function
exp(exp(exp(. . . exp(ζ)))) for large ζ. Then, assumption (5.6) means, roughly,
that L(τ) is like log(log(. . . log(τ))). The estimate (5.5) means that W (τ ;W0)
might be approximated by wext(τ − Tarr) in a “matching region” having the width
log(log(. . . log(τ))). Due to this slow growth of the function L it is not hard to see
that it is possible to choose it satisfying (5.7).

Proof. The proof of Lemma 5.1 is basically to a “Gronwall-like” argument for the
difference W (τ ;W0)−wext(τ−Tarr) ≡ Z(τ ;W0). Since Wext ≡ wext(τ−Tarr) solves
(3.1) with β(·) ≡ 0, and Wext > 1, it follows that

Zτ = (Wext)−2/3Z − Z +O((Wext)−5/3Z2 + |β(τ)|W 1/3
ext ) (5.8)

Z(0;W0) = W0 − wext(−Tarr) . (5.9)

Using (3.9) and the definition of Tarr(W0), it follows that

wext(−Tarr) = W0 exp(Fext(wext(−Tarr))− Fext(W0)) ,

whence
lim

W0→∞
Z(0;W0) = 0 . (5.10)
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Solving (5.8) we arrive at

| Z(τ ;W0)
Zh(τ ;W0)

| ≤ |Z(0;W0)|+ C

∫ τ

0

(Wext(s;W0))−5/3(Z(s;W0))2

Zh(s;W0)
ds

+ C

∫ τ

0

|β(s)|(Wext(s;W0))1/3

Zh(s;W0)
ds,

(5.11)

where

Zh(τ ;W0) ≡ exp
( ∫ τ

0

[(Wext(s;W0))−2/3 − 1]ds
)

and C > 0 is a generic constant that might change from line to line. The asymp-
totics (3.10) implies

0 < C1 ≤
(1 + (τ − Tarr)2+)|Zh(τ ;W0)|

e(−(τ−Tarr)−−Tarr)
≤ C2, 0 ≤ τ ≤ Tarr + L(Tarr),

where (x)− = min{x, 0}.
Therefore, since wext ≥ 1, the first term on the right-hand side of (5.11) combined

with (5.10) might be estimated as the right-hand side of (5.5). On the other hand,
using (5.4) as well as the asymptotics of wext, we can estimate the last term in
(5.11) by means of the right-hand side of (5.5) uniformly in the region 0 ≤ τ ≤
Tarr + L(Tarr) as W0 → ∞. Note that estimating this term we are using the fact
that (L(τ))n � τ2−δ as τ → ∞ for any n ∈ R. Finally, the term (5.11) might
be estimated by means of a classical continuity argument. Indeed, (5.5) holds for
small values of τ . Therefore, we can use (5.5) to estimate the second term on the
right-hand side of (5.11) and since the resulting contribution is smaller than the
right-hand side of (5.5) as W0 →∞, the result follows. �

On the other hand, we can approximate the characteristics W (τ ;W0) after leav-
ing the critical region in an analogous manner.

Lemma 5.3. Let W (τ ;W0) be a solution of (3.1) with initial value (3.2). Suppose
that at some time τ = τ̄ we have W (τ̄ ;W0) = W̄ where 0 ≤ W̄ ≤ 1 − δ. Let us
define wint(s) as in (3.18) with Fint(W ) as in (3.15). Then, for any δ > 0 there
exists εδ(W0) satisfying limW0→∞ εδ(W0) = 0 such that, for any W0 large enough
and τ ≥ 0 there holds

|W (τ ;W0)− wint(τ − Texit)| ≤
εδ(W0)

1 + (Texit − τ)2+
,

Texit − L(Texit) ≤ τ ≤ τ̄ ,

(5.12)

where Texit is as in (3.20) and L(τ) satisfies (5.6).

Since the proof of this result is basically analogous to the one of Lemma 5.1 we
omit it.

5.3. Relating the evolution of the characteristics W (τ,W0) with the long
time asymptotics of G(W, τ). As a next step we formulate in a rigorous manner
the main heuristic result in Section 3.

Lemma 5.4. Suppose that G0(·) satisfies the assumptions of in Theorem 2.1. Let
us assume that Tarr defined in (3.11) as Texit defined in (3.20) are related by means
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of (4.4) where S(·) is as in (5.1). Suppose that G(W, τ) solves (2.16) with initial
data G0(·). Then

lim
τ→∞

G(W, τ)
G(0+, τ)

= Gs(W ) (5.13)

uniformly on compact sets of W ∈ [0, 1), where Gs(W ) is as in (2.13).

Proof. Suppose that W (τ ;W0) solves (3.1), (3.2). Integration by characteristics
yields

G(W (τ ;W0), τ) = G0(W0) .

By assumption W (τ̄ ;W0) = W̄ . Let us define W̄0 as the starting point of the
characteristic vanishing at time τ = τ̄ , i.e. W (τ̄ ; W̄0) = 0. Therefore (3.24) holds
and the definitions of Tarr, Texit in (3.11), (3.20) imply, arguing as in Section 3 the
formulae (3.25), (3.26), (3.27). Henceforth,

G(W̄ , τ̄)
G(0+, τ̄)

=
G0(W̄0e

[S(τ̄+Fint(W̄ )−bint)−S(τ̄−bint)]+[Fext(W0)−Fext(W̄0)])
G0(W̄0)

(5.14)

Since S(·) solves (5.2), the asymptotics (2.19) implies

S(τ̄ + Fint(W̄ )− bint)− S(τ̄) = o(1) as τ̄ →∞

uniformly on compacts sets of W̄ ∈ [0, 1). Therefore, using again (5.2) and (2.19)
we obtain

S(τ̄ + Fint(W̄ )− bint)− S(τ̄ − bint)

=
∫ τ̄+Fint(W̄ )−bint

τ̄−bint

λ(e−bext+S(s))ds

=
CFint(W̄ )(1 + o(1))

(e−bext+S(τ̄))α

= λ(e−bext+S(τ̄))Fint(W̄ )(1 + o(1)) as τ̄ →∞

(5.15)

Using (3.26) and (5.2) as well as the fact that limW0→∞ Fext(W0) = 0, we deduce
that

W̄0 = e−bext+F (W̄0)+S(τ̄−bint) = e−bext+S(τ̄)(1 + o(1))

as τ̄ →∞. Therefore, (2.19) and (5.15) yield

S(τ̄ + Fint(W̄ )− bint)− S(τ̄ − bint) = λ(W̄0)Fint(W̄ )(1 + o(1)) as τ̄ →∞ .

Plugging this formula in (5.14) and using the asymptotics of Fext as W0 → ∞ we
obtain

G(W̄ , τ̄)
G(0+, τ̄)

=
G0

(
W̄0e

λ(W̄0)Fint(W̄ )(1+o(1))+O(
W0−W̄0

W̄
5/3
0

))
G0(W̄0)

as τ̄ →∞

Using (2.18) it then follows that

G(W̄ , τ̄)
G(0+, τ̄)

∼ e−Fint(W̄ )(1 + o(1)) = Gs(W̄ )(1 + o(1)) as τ̄ →∞

uniformly on compact sets of W̄ ∈ [0, 1), whence (5.13) follows. �
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5.4. Dynamics of the characteristic curves near the critical line W = 1.
We have then obtained that in order to transform by means of (2.16) the initial
data G0(·) in a function G(W, τ) behaving in a self-similar manner as τ → ∞, we
need to find functions β(·) such that (4.4) holds, with Tarr, Texit as in (3.11), (3.20).
As a next step we transform this question in a problem analogous to the Simplified
Transition Problem (4.1 )-(4.4) but with a slightly perturbed equation (4.1). More
precisely, we rewrite (3.1) as

Wτ = −1
3
(W − 1)2 + h̄1(W ) + 3β(τ)(1 + h̄2(W )), (5.16)

where
|h̄1(W )|
|W − 1|3

+
|h̄2(W )|
|W − 1|

≤ C for |W − 1| ≤ 1
2
, (5.17)

|h̄′1(W )|
|W − 1|2

+ |h̄′2(W )| ≤ C for |W − 1| ≤ 1
2
. (5.18)

We define smooth functions h1(W, τ), h2(W, τ) as

h1(W, τ) ≡ h1(W )ξ((W − 1)L(τ))

h2(W, τ) ≡ h2(W )ξ((W − 1)L(τ))

where ξ(·) is a smooth function satisfying

ξ(s) =

{
1 for |s| ≤ 1,
0 for |s| ≥ 2 .

Note that (5.17), (5.18) imply

h1(W, τ) = h̄1(W ), if |W − 1| ≤ 6
L(τ)

,

|h1(W, τ)| ≤
K

(L(τ))3
, if |W − 1| ≥ 6

L(τ)
,

(5.19)

h2(W, τ) = h̄2(W ), if |W − 1| ≤ 6
L(τ)

,

|h2(W, τ)| ≤
K

L(τ)
, if |W − 1| ≥ 6

L(τ)
,

(5.20)

where K > 0 is a fixed numerical constant. Suppose that

|W (τ ;W0)− 1| ≤ 1
2

1
L(τ)

for τ ∈ [Tarr + L(Tarr), Texit − L(Texit)]. (5.21)

Then Lemmas 5.1, 5.3 as well as the asymptotics (3.10), (3.19) imply that this
inequality holds for τ = Tarr +L(Tarr), τ = Texit −L(Texit). Under the assumption
(5.21) would be possible to replace (5.16) by

W̃τ = −1
3
(W̃ − 1)2 + h1(W̃ , τ) + 3β(τ)(1 + h2(W̃ , τ)) . (5.22)

for τ ∈ [Tarr + L(Tarr), Texit − L(Texit)]. Moreover, if (5.21) holds for the solutions
of (5.22), a similar inequality would also be satisfied for the solutions of (5.16).

The advantage of (5.22) with respect to (5.16) is that the functions h1(W, τ),
h2(W, τ) are globally bounded in R. Therefore, it is possible to define for it a
transition problem with singular boundary conditions analogous to (4.2), (4.3). It
turns out that such a singular boundary conditions will be shown to be convenient in
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order to deal with the corresponding transition problem by means of perturbations
of (4.1 )-(4.4).

Note that since β(τ) → 0 as τ → ∞ (cf. (5.4)) and due to (5.19), (5.20) the
solution of (5.22) satisfying W̃ (Tarr + L(Tarr)) = W (Tarr + L(Tarr);W0) becomes
singular for some τ < Tarr +L(Tarr) for Tarr large enough. In a similar manner, the
solution of (5.22) satisfying W̃ (Texit − L(Texit)) = W (Texit − L(Texit);W0) blows
up for some τ > Texit − L(Texit). It would be then possible to define a transition
problem analogous to (4.4) between those blow-up times. Moreover, due to the
fact that the function L(τ) varies very slowly we can approximate h1(W̃ , τ) as
h1(W̃ , Tarr), h1(W̃ , Texit)in the regions τ ≈ Tarr, τ ≈ Texit respectively. On the
other hand, for long times, and since β(τ) → 0 as τ → ∞ it would be natural to
approximate (5.22), in the computations of the singularity times, by means of the
simpler equations

W̃τ = −1
3
(W̃ − 1)2 + h1(W̃ , Tarr), (5.23)

W̃τ = −1
3
(W̃ − 1)2 + h1(W̃ , Texit) . (5.24)

We then define new singular times as follows. We define Tarr,mod, Texit,mod by
means of∫ ∞

wext(L(Tarr))

dη
(η−1)2

3 − h1(η, Tarr)
= (Tarr + L(Tarr)− Tarr,mod), (5.25)

∫ wint(−L(Texit))

−∞

dη
(η−1)2

3 − h1(η, Texit)
= (Texit,mod − Texit + L(Texit)) . (5.26)

Using the asymptotics of wext, wint in (3.10), (3.19) as well as the bounds for h1 in
(5.19)) it follows that the differences |Tarr− Tarr,mod|, |Texit,mod− Texit| are smaller
than L(Tarr), L(Texit) respectively.

Given a function S(·) defined by means of (5.1) we define a new function S̃(·)
by means of:

S̃(Texit,mod) = Tarr,mod, (5.27)

where Tarr,mod, Texit,mod are as in (5.25), (5.26) and Texit, Tarr are related by means
of (4.4).

We now show in a rigorous manner that the effect of replacing (5.22) by (5.23)
is small as W0 →∞.

Lemma 5.5. Let us denote as W̃ (τ ;W0) the unique solution of (5.22) that verifies
W̃ ((Tarr,mod)+;W0) = +∞, with Tarr,mod as in (5.25) and Tarr as in (3.11). There
exists ε(W0), satisfying limW0→∞ ε(W0) = 0 such that

|W̃ (Tarr + L(Tarr);W0)− wext(L(Tarr))| ≤
ε(W0)

(L(Tarr))2
. (5.28)

Moreover, if W̃ (τ ;W0) satisfies W̃ ((Texit,mod)−;W0) = −∞ with Texit,mod as in
(5.26) and Texit as in (3.20) there exists ε(W0) such that

|W̃ (Texit − L(Texit);W0)− wint(−L(Texit))| ≤
ε(W0)

(L(Texit))2
. (5.29)
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Proof. Let W̃app(τ ;W0) be the solution of (5.23) satisfying W̃app((Tarr,mod)+;W0) =
+∞. Since W̃app(τ ;W0) might be computed explicitly it follows from (5.25) that
W̃app(τ ;W0) = wext(L(Tarr)). Subtracting (5.22) and (5.23) we obtain

(W̃ − W̃app)τ = −2
3
(W̃app − 1)(W̃ − W̃app)− 1

3
(W̃ − W̃app)2

+
(
h1(W̃ , τ)− h1(W̃app, Tarr)

)
+ 3β(τ)(1 + h2(W̃ , τ)) ,

(5.30)

where, unless it is explicitly needed we will drop the dependence of the functions
on W0 for simplicity.

A local analysis of the asymptotics of W̃ (τ), W̃app(τ) as τ → (Tarr,mod)+ imply

that |W̃ (τ) − W̃app(τ)| = O
(
(τ − (Tarr,mod)+)

)
as τ → (Tarr,mod)+. Therefore,

integrating the equation for W̃ − W̃app we obtain

W̃ (τ)− W̃app(τ)

= −1
3

∫ τ

Tarr,mod

ds exp
(
− 2

3

∫ τ

s

(W̃app(ξ)− 1)dξ
)

×
[
(W̃ (s)− W̃app(s))2 +

(
h1(W̃ (s), s)− h1(W̃app(s), Tarr)

)
+ 3β(s)

(
1 + h2(W̃ (s), s)

)]
.

Using (5.7), (5.17), (5.18) we obtain

|W̃ (τ)− W̃app(τ)|

≤ C

∫ τ

Tarr,mod

Φ(τ − Tarr,mod)
Φ(s− Tarr,mod)

×
[
(W̃ (s)− W̃app(s))2 +

|W̃ (s)− W̃app(s)|
L2

+
1
s

+ |β(s)|
]
ds,

where

Φ(τ − Tarr,mod) ≡ exp
(
− 2

3

∫ τ

Tarr,mod−1

(W̃app(ξ)− 1)dξ
)

satisfies
0 < C1 ≤ τ2Φ(τ) ≤ C2 < +∞, τ > 0;

whence,

|W̃ (τ)− W̃app(τ)|

≤ C

∫ τ

Tarr,mod

( s− Tarr,mod

τ − Tarr,mod

)2

×
[
(W̃ (s)− W̃app(s))2 +

|W̃ (s)− W̃app(s)|
(L(τ))2

+
1
s

+ |β(s)|
]
ds .

(5.31)

Due to (5.4), (5.6) the last two terms in (5.31) can be estimated as ε(W0) min{(τ −
Tarr,mod), 1

(τ−Tarr,mod)2 } with limW0→∞ ε(W0) = 0 for Tarr,mod ≤ τ ≤ Tarr +L(Tarr).
Then, a Gronwall-like estimate yields the bound

|W̃ (τ)− W̃app(τ)| ≤ Cε(W0) min
{
(τ − Tarr,mod),

1
(τ − Tarr,mod)2

}
that implies (5.28). Estimate (5.29) can be proved in a similar manner. �
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Combining Lemmas 5.1, 5.3, 5.5, we obtain the following result.

Proposition 5.6. Suppose that W (τ ;W0) is the unique solution of (3.1), (3.2). Let
us assume also that W (τ̄ ;W0) = W̄ where 0 ≤ W̄ ≤ 1− δ for some τ̄ > 0. Suppose
that W̃ (τ ;W0) is as in Lemma 5.5 and that Tarr, and Texit are as in (3.11), (3.20)
respectively and are related by means of (4.4). Then there exists ε(W0) satisfying
limW0→∞ ε(W0) = 0, such that

|W̃ (Tarr + L(Tarr);W0)−W (Tarr + L(Tarr);W0)| ≤
ε(W0)

(L(Tarr))2
, (5.32)

|W̃ (Texit − L(Texit);W0)−W (Texit − L(Texit);W0)| ≤
ε(W0)

(L(Texit))2
. (5.33)

As indicated above, if (5.21) holds we would have that W (τ ;W0) solves (5.22)
for τ ∈ [Tarr + L(Tarr), Texit − L(Texit)]. However, due to the error terms in (5.32),
(5.33) we cannot ensure that W (τ ;W0) = W̃ (τ ;W0). Nevertheless, the following
result holds.

Lemma 5.7. Suppose that W (τ ;W0), W̃ (τ ;W0) are as in Proposition 5.6. Let us
suppose also that (5.21) holds in the interval [Tarr +L(Tarr), Texit−L(Texit)]. Then
there exists a function µ(W0) such that for W0 large enough,

W (τ ;W0 + µ(W0)) = W̃ (τ ;W0) (5.34)

for τ ∈ [Tarr + L(Tarr), Texit − L(Texit)], where

µ(W0)
W0

→ 0 as W0 →∞ . (5.35)

Moreover, suppose that Texit is defined as in (3.20). Let us denote as W̄ =
W (τ̄ ;W0) Then

|W (τ̄ ;W0 + µ(W0))− W̄ | → 0 as W0 →∞ (5.36)

uniformly on compact sets of 0 ≤ W̄ < 1.

Proof. The basic idea consists in estimating the derivative ∂W (τ ;W0)
∂W0

for τ = Tarr +
L(Tarr). To this end, notice that, differentiating (3.1), (3.2) we obtain

(
∂W

∂W0
)τ = (W−2/3 − 1 + β(τ)W−2/3)

∂W

∂W0
, (5.37)

∂W

∂W0
(0;W0) = 1 . (5.38)

Let us recall that Wext(τ,W0) ≡ wext(τ − Tarr(W0)). Using (3.8), (3.9) and (3.11)
we obtain

(
∂Wext

∂W0
)τ = (W−2/3

ext − 1)
∂Wext

∂W0
, (5.39)

∂Wext

∂W0
(0;W0) = 1 . (5.40)

Subtracting (5.37), (5.39) we obtain, after some computations

(
∂W

∂W0
− ∂Wext

∂W0
)τ = (W−2/3

ext − 1)(
∂W

∂W0
− ∂Wext

∂W0
)

+ (W−2/3 −W
−2/3
ext )

∂W

∂W0
+ β(τ)W−2/3 ∂W

∂W0
.

(5.41)
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We now claim that

| ∂W
∂W0

− ∂Wext

∂W0
| ≤ ε(W0)

∂Wext

∂W0
(5.42)

for 0 ≤ τ ≤ Tarr + L(Tarr), where limW0→∞ ε(W0) = 0. Estimate (5.42) follows
by means of a continuation argument. Indeed, suppose that the following estimate
holds

∂W

∂W0
≤ 2

∂Wext

∂W0
. (5.43)

This estimate is certainly valid for τ = 0, and it might be shown to be extended to
arbitrary values of τ ≤ Tarr + L(Tarr), assuming that it is valid for previous times.
On the other hand it is possible to obtain an improvement of (5.5) as follows. The
term |β(τ)|W 1/3

ext in (5.8) plays the role of ”source” in that differential equation.
Due to the exponential decay of Wext it follows that this term is smaller than

CW
1/3
0 e−

Tarr
2 for 0 ≤ τ ≤ Tarr

2 , and due to (5.4) it can be estimated as CW
1/3
ext

(Tarr)2−δ

for Tarr
2 ≤ τ ≤ Tarr + L(Tarr). Arguing as in the Proof of Lemma 5.1 it follows

that similar estimates might be obtained for the difference |W −Wext|. Therefore,
the term (W−2/3 −W

−2/3
ext ) in (5.41) can be estimated as C

Wext
for 0 ≤ τ ≤ Tarr

2

and as C
(Tarr)2−δ for Tarr

2 ≤ τ ≤ Tarr + L(Tarr). A Gronwall’s like argument as the
one in the proof of Lemma 5.1 combined with the fact that L(Tarr) � Tarr �
Wext(Tarr

2 ,W0) ∼ C
√
W0 yields the estimate (5.42), that for the particular value

τ = Tarr + L(Tarr) becomes

∂W

∂W0
(Tarr + L(Tarr);W0) = −∂Tarr

∂W0
w′ext(L(Tarr))(1 + o(1)) as W0 →∞ .

Since w′ext(L(Tarr)) = − 3
(L(Tarr))2

, and T ′arr(W0) ∼ 1
W0

as W0 →∞ (cf. (3.11)), we
have

∂W

∂W0
(Tarr + L(Tarr);W0) =

3
W0

1
(L(Tarr))2

(1 + o(1)) as W0 →∞ . (5.44)

Then (5.32) implies the existence of δW0 as indicated in Lemma 5.7 satisfying
| 3δW0
W0

| ≤ 2ε(W0), whence (5.35) follows.
To obtain (5.36) we write

W (τ ;W0) = V (τ ; W̄ ) .

Note that by assumption V (τ̄ ; W̄ ) = W̄ . Differentiating (3.1) we obtain

(
∂V

∂W̄
)τ =

(
V −2/3 − 1 + β(τ)V −2/3

) ∂V
∂W̄

, (5.45)

∂V

∂W̄
(τ̄ ; W̄ ) = 1 . (5.46)

Using (5.37) and (5.12) we obtain arguing as in the derivation of (5.44),

∂V

∂W̄
(Texit − L(Texit); W̄ ) = −∂Texit

∂W̄
w′int(−L(Texit))(1 + o(1)) as W0 →∞ .

Taking into account that ∂Texit
∂W̄

= F ′int(W̄ ), and w′int(−L(Texit)) = − 3
(L(Texit))2

is

bounded in compact sets of W̄ ∈ [0, 1) we obtain from (5.33) that W̃ (τ ;W0) =
V (τ ; W̄ + δW̄ ) with δW̄ → 0 as W0 →∞ whence Lemma 5.7. �

It is possible to obtain some regularity for µ(W0) defined in Lemma 5.7.



20 J. J. L. VELÁZQUEZ EJDE-2006/52

Lemma 5.8. Suppose that µ(W0) is as in Lemma 5.7. Then

lim
W0→∞

|∂µ(W0)
∂W0

| = 0 .

Proof. Given W0 large enough, let us write τ̂ ≡ Tarr +L(Tarr). It then follows from
(5.34) that

W (τ̂ ;W0 + µ(W0)) = W̃ (τ̂ ;W0) .
Differentiating this formula with respect to W0, we obtain

∂µ(W0)
∂W0

=
(∂W (τ̂ ;W0 + µ(W0))

∂W0

)−1

×
[ ∂τ̂

∂W0

(∂W̃ (τ̂ ;W0)
∂τ

− ∂W (τ̂ ;W0 + µ(W0))
∂τ

)
+
∂W̃ (τ̂ ;W0)

∂W0
− ∂W (τ̂ ;W0 + µ(W0))

∂W0

]
.

Using (5.44) we obtain

|∂µ(W0)
∂W0

| ≤ C(L(Tarr))2W0[K + J1 + J2] (5.47)

for some C > 0 independent on L, W0, where

K ≡ ∂τ̂

∂W0

(∂W̃ (τ̂ ;W0)
∂τ

− ∂W (τ̂ ;W0 + µ(W0))
∂τ

)
,

J1 ≡
∣∣∂(W̃ (τ̂ ;W0)− wext(τ̂ − Tarr))

∂W0

∣∣,
J2 ≡

∣∣∂(W (τ̂ ;W0 + µ(W0))− wext(τ̂ − Tarr))
∂W0

∣∣ .
To estimate J1, we use the auxiliary function W̃app(τ̂ ;W0) defined in the proof of
Lemma 5.5. Then J1 ≤ J1,1 + J1,2, where

J1,1 ≡
∣∣∂(W̃ (τ̂ ;W0)− W̃app(τ̂ ;W0))

∂W0

∣∣,
J1,2 ≡

∣∣∂(W̃app(τ̂ ;W0)− wext(τ̂ − Tarr))
∂W0

∣∣ .
To estimate J1,1 we recall that W̃ (τ ;W0, L) − W̃app(τ ;W0, L) satisfies (5.30) with
W̃ − W̃app = O((τ − (Tarr,mod)+)) as τ → (Tarr,mod)+. Differentiating (5.30) with
respect to Tarr,mod we obtain(∂(W̃ − W̃app)

∂Tarr,mod

)
τ

= −2
3
(W̃app − 1)

∂(W̃ − W̃app)
∂Tarr,mod

− 2
3
(
∂W̃app

∂Tarr,mod
)(W̃ − W̃app)

− 2
3
(W̃ − W̃app)

∂(W̃ − W̃app)
∂Tarr,mod

+
∂(h1(W̃ ,W0)− h1(W̃app,W0))

∂Tarr,mod

+ 3β(τ)
∂(h2(W̃ ,W0))
∂Tarr,mod

,



EJDE-2006/52 DYNAMICS OF THE CHARACTERISTIC CURVES 21

∂(W̃ − W̃app)
∂Tarr,mod

= O(1) as τ → (Tarr,mod)+ .

Note that the term 2
3 (∂W̃app

∂W0
)(W̃ − W̃app) might be bounded as C

(τ−(Tarr,mod)+) . The

asymptotics of the linear term − 2
3 (W̃app − 1)∂(W̃−W̃app)

∂Tarr,mod
is exactly the same as in

(5.30). Using then Lemma 5.5 to estimate (W̃ − W̃app) as well as Gronwall-like
arguments analogous to the ones used in the proof of Lemma 5.5, as well as the
fact that dTarr,mod

dW0
≈ C

W0
we obtain

lim
W0→∞

W0J1,1 = 0 . (5.48)

We now proceed to estimate the term J1,2. Note that W̃app(τ ;W0) = wapp(τ −
Tarr,mod,W0), with

wapp,s = −1
3
(wapp − 1)2 + h1(wapp,W0) , s > 0 ,

wapp(0+) = +∞ .

It then follows from (5.25) that wapp(L(Tarr),W0) = wext(L(Tarr)), whence since
the ODE satisfied for wapp, wext is the same for s > L it follows that

J1,2 = 0 . (5.49)

Finally we estimate J2. To this end, we argue as in the proof of Lemma 5.1.
Note that ∂(W (τ̂ ;W0+µ(W0)))

∂W0
− ∂(wext(τ̂−Tarr))

∂W0
solves (5.41) with zero initial data at

τ = 0,W since ∂W
∂W0

(0,W0) = ∂(wext(−Tarr))
∂W0

= 1. We can then argue as in the proof
of (5.42) to obtain

J2 ≤
ε(W0)

W0(L(τ))2
;

whence
W0L

2J2 → 0 as W0 →∞ . (5.50)

Finally we estimate K in (5.47). Using (5.16), (5.19), (5.22), (5.34) as well as the
fact that for τ = τ̂ , |W − 1| ≤ 6

L(Tarr)
(cf. (5.21)) it follows that K = 0. Combining

this with (5.48), (5.49) and (5.50) the result follows. �

We can now prove the main result of this Section.

Theorem 5.9. Suppose that G0(·) satisfies the assumptions in Theorem 2.1. Let
us define S as in (5.1). Suppose that β(τ) in (5.22) is chosen in such a way that
the function W̃ (τ ;W0) defined by means of (5.22) and

W̃
(
(Tarr,mod)+;W0

)
= +∞. (5.51)

Suppose that
W̃

(
(Texit,mod)−;W0

)
= −∞ , (5.52)

where Tarr,mod, Texit,mod are related by means of (5.27). Then, G(W, τ) solution of
(2.16) with initial data G0(·) satisfies

lim
τ→∞

G(W, τ)
G(0+, τ)

= Gs(W ) (5.53)

uniformly on compact sets of W ∈ [0, 1).
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Remark 5.10. Theorem 5.9 reduces the Proof of Theorem 2.1 to the problem of
finding β(τ) solving the Transition Problem (5.22), (5.51), (5.52).

Proof. Due to Proposition 5.6 and Lemma 5.7 we have that the solutions of (3.1)
starting at W0 + µ(W0) at time τ = 0 arrives to a point W̄ + ν(W̄ ) at time τ = τ̄ ,
with µ(W0)

W0
� 1, ν(W̄ ) � 1. Let us denote as W̄0 + µ(W̄0) the starting point

for the characteristic vanishing at time τ = τ̄ , i.e. the characteristic for which
W̄ + ν(W̄ ) = 0 at time τ = τ̄ . Arguing as in Lemma 5.4 we have

G(W̄ + ν(W̄ ), τ̄)
G(0+, τ̄)

=
G0(W0 + µ(W0))
G0(W̄0 + µ(W̄0))

.

Since W0, W̄0 are related as in Lemma 5.4 we can argue as in the Proof of that
result to obtain

G(W̄ , τ̄)
G(0+, τ̄)

=
G0

(
W̄0e

λ(W̄0)Fint(W̄ )(1+o(1))+O(
W0−W̄0

W̄
5/3
0

)

+ µ(W0)
)

G0

(
W̄0 + µ(W̄0)

) (5.54)

as τ̄ → ∞. Using Lemma 5.8 it follows that |µ(W0) − µ(W̄0)| = o(|W0 − W̄0|) as
τ̄ → ∞. On the other hand, to the leading order W0−W̄0

W̄0
∼ λ(W̄0)Fint(W̄ ) (cf.

(5.15)). Therefore,

W̄0e
λ(W̄0)Fint(W̄ )(1+o(1))+O(

W0−W̄0

W̄
5/3
0

)

+ µ(W0)

= (W̄0 + µ(W̄0))eλ(W̄0)Fint(W̄ )(1+o(1))

+ (µ(W̄0)− µ(W0)) +O(λ(W̄0)Fint(W̄ ))µ(W̄0)

= (W̄0 + µ(W̄0))eλ(W̄0)Fint(W̄ )(1+o(1));

whence (5.54) becomes

G(W̄ , τ̄)
G(0+, τ̄)

=
G0((W̄0 + µ(W̄0))eλ(W̄0)Fint(W̄ )(1+o(1)))

G0(W̄0 + µ(W̄0))
as τ̄ →∞ .

Arguing then as in the Proof of Lemma 5.4 we obtain (5.53). �

6. Analysis of the transition problem: Local well posedness

6.1. The Transition Problem. The main result that we have obtained in the
previous Section is that the problem of transforming an initial data G0(W ) in a
self-similar solution of the form (2.13) by means of the evolution (2.16) for a suitable
choice of β(·) might be reduced to the Transition Problem (5.22), (5.51), (5.52).
We rewrite this problem here for convenience:

Let us fix a function S(·) by means of (5.1). To find β(τ) such that W̃ (τ ;W0),
solution of

W̃τ = −1
3
(W̃ − 1)2 + h1(W̃ , τ) + 3β(τ)(1 + h2(W̃ , τ)), (6.1)

W̃ ((Tarr,mod)+;W0) = +∞ (6.2)

satisfies
W̃ ((Texit,mod)−;W0) = −∞ (6.3)

for any W0 large enough, where

S̃(Texit,mod) = Tarr,mod (6.4)
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and where the function S̃ is defined by means of the relation S(Texit) = Tarr as well
as (5.25), (5.26).

The key idea to solve the Transition Problem (6.1)-(6.4) might be considered, is
to treat it as a perturbation of the Simplified Transition Problem (4.1)–(4.4) that
was solved in an explicit manner in Section 4. We then proceed to reformulate
(6.1)-(6.4) in a more convenient way.

6.2. Reformulating the Transition Problem as a perturbation of the Sim-
plified Transition Problem. Arguing as in Section 4 we define a function f(ζ) ≥
T0 strictly monotonically increasing in ζ, defined in ζ ≥ ζ0 satisfying

S̃(f(ζ + 1)) = f(ζ), (6.5)

f(ζ0) = T0 . (6.6)

Such a function f is uniquely defined by its values in the interval ζ ∈ [ζ0, ζ0 +
1]. Moreover, arguing as in Section 4 we would have that f ∈ C3[ζ0,∞) if f ∈
C3[ζ0, ζ0 + 1] and satisfies the compatibility conditions (4.8)-(4.11).

We define a new set of variables (ζ, Y ) by means of (cf. (4.13), (4.14))

τ = f(ζ), (6.7)

W̃ − 1 = ψ(Y, ζ), (6.8)

where ψ(Y, ζ) is as in (4.12). We define β̄(·) as (cf. (4.15))

β̄(f(ζ)) =
1

(f ′(ζ))2
(
1
2
{f, ζ} − π2) . (6.9)

We will look for solutions of (6.1)-(6.4) in the form

β(f(ζ)) = β̄(f(ζ)) + µ(ζ) . (6.10)

We have
1

f ′(ζ)
(
− (Y 2 + π2)

∂ψ

∂Y
+
∂ψ

∂ζ

)
+
ψ2

3
− 3β̄(f(ζ)) = 0 . (6.11)

On the other hand, the change of variables (6.7), (6.8) transforms (6.1) into

1
f ′(ζ)

(Yζ
∂ψ

∂Y
+
∂ψ

∂ζ
) +

ψ2

3
− h1(ψ, f(ζ))− 3β(f(ζ))(1 + h2(ψ, f(ζ))) = 0 . (6.12)

Subtracting (6.11) from (6.12) and using ∂ψ
∂Y = 1

f ′(ζ) we obtain

1
(f ′(ζ))2

(Yζ + Y 2 + π2)− h1(ψ, f(ζ))− 3µ(ζ)− 3β(f(ζ))h2(ψ, f(ζ)) = 0 . (6.13)

Let us define

λ(ζ) = 3µ(ζ)(f ′(ζ))2, (6.14)

R̄(Y, ζ) = (f ′(ζ))2[h1(ψ(Y, ζ), f(ζ)) + 3β(f(ζ))h2(ψ(Y, ζ), f(ζ))] . (6.15)

Then (6.13) might be rewritten as

Yζ + Y 2 + π2 = λ(ζ) + R̄(Y, ζ) . (6.16)

Using (6.4), (6.5) the boundary conditions (6.2), (6.3) become

Y (ζ̄) = +∞, (6.17)

Y (ζ̄ + 1) = −∞ (6.18)



24 J. J. L. VELÁZQUEZ EJDE-2006/52

for any ζ̄ ≥ ζ0. Note that the new formulation of the Transition Problem (6.16)-
(6.18) is a perturbation of (4.17)-(4.19). By technical reasons it is convenient to
transform (6.16)-(6.18) into a new problem without singular boundary conditions.
Let us denote as Y (ζ, ζ̄) the solution of (6.16)-(6.18). We define a new function
Z(ζ, ζ̄) as

Y (ζ, ζ̄) = π cot(π(ζ − ζ̄ − Z(ζ, ζ̄))) . (6.19)

Using this new function, (6.16)-(6.18) becomes

Zζ =
sin2(π(ζ − ζ̄ − Z(ζ, ζ̄)))

π2
[λ(ζ) +R(Z, ζ, ζ̄)], (6.20)

Z(ζ̄+, ζ̄) = 0, (6.21)

Z((ζ̄ + 1)−, ζ̄) = 0, (6.22)

where
R(Z, ζ, ζ̄) ≡ R̄(ψ(π cot(π(ζ − ζ̄ − Z(ζ, ζ̄)))), ζ) . (6.23)

Note that the function R(Z, ζ, ζ̄) is a smooth function, bounded in compact sets of
ζ, ζ̄.

Let us summarize. We have transformed the Transition Problem (6.1 )-(6.4) into
the problem (6.20)-(6.22). Therefore, our goal is to find functions λ(ζ) , ζ ≥ ζ0 such
that the unique solution of (6.20), (6.21) satisfies (6.22). We will solve this problem
transforming it in an integral equation coupled with a differential equation.

It turns out that it is possible obtain functions λ(ζ) solving (6.20)-(6.22) for any
function λ(ζ) defined in [ζ0, ζ0 + 1] satisfying suitable compatibility conditions. To
explain in an intuitive manner the meaning of these compatibility conditions we
proceed to solve (6.20)-(6.22) in the particular case R ≡ 0 with λ(·) small.

6.3. Solving (6.20)-(6.22) with R ≡ 0 and λ(·) small. It is illuminating to
solve (6.20)-(6.22) under the assumptions stated in the heading of this Subsection,
because this can be made in an explicit manner and it provides some intuition
about the main arguments used later.

In the case R ≡ 0 the equation (6.20) becomes

Zζ =
sin2(π(ζ − ζ̄ − Z(ζ, ζ̄)))

π2
λ(ζ) .

On the other hand, if λ(·) is small Z(ζ, ζ̄) would be small too. Then the problem
(6.20)-(6.22) might be approximated as follows:

Find functions λ(·) ∈ L∞[ζ0,∞) such that for any ζ̄ ≥ ζ0 the function Z(ζ, ζ̄)
solution of

Zζ =
sin2(π(ζ − ζ̄))

π2
λ(ζ) (6.24)

with initial condition (6.21) satisfies (6.22). Since, in the case R ≡ 0 (6.20)-(6.22)
is just a reformulation of the Simplified Transition Problem solved in Section 4, the
problem (6.21)-(6.24) is a linearized version of the problem studied there, and it
could be studied using similar methods. However, the solution obtained here can
be easily adapted to solve the whole Transition Problem (6.20)-(6.22).

The solution of (6.21), (6.24) is given by

Z(ζ, ζ̄) =
1
π2

∫ ζ

ζ̄

sin2(π(ξ − ζ̄))λ(ξ)dξ .
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Using (6.22), we obtain the following integral equation, for λ(·),

Φ(ζ̄) ≡
∫ ζ̄+1

ζ̄

sin2(π(ξ − ζ̄))λ(ξ)dξ = 0 . (6.25)

To solve (6.25) we differentiate Φ three times with respect to ζ̄. We have

Φ′(ζ̄) = π

∫ ζ̄+1

ζ̄

sin(2π(ξ − ζ̄))λ(ξ)dξ,

Φ′′(ζ̄) = 2π2

∫ ζ̄+1

ζ̄

cos(2π(ξ − ζ̄))λ(ξ)dξ,

Φ′′′(ζ̄) = 2π2[λ(ζ̄ + 1)− λ(ζ̄)]− 4π3

∫ ζ̄+1

ζ̄

sin(2π(ξ − ζ̄))λ(ξ)dξ .

Therefore,

Φ′′′(ζ̄) + 4π2Φ′(ζ̄) = 2π2[λ(ζ̄ + 1)− λ(ζ̄)] . (6.26)

Suppose that λ(·) solves (6.25). Since Φ(ζ̄) = 0 for ζ̄ ≥ ζ0, it follows from (6.26)
that

λ(ζ̄ + 1) = λ(ζ̄) , ζ̄ ≥ ζ0 . (6.27)

Moreover, if λ(·) solves (6.25) we have Φ(ζ0) = Φ′(ζ0) = Φ′′(ζ0) = 0, i.e. λ(·)
satisfies∫ ζ0+1

ζ0

sin2(π(ξ − ζ0))λ(ξ)dξ =
∫ ζ0+1

ζ0

sin(2π(ξ − ζ0))λ(ξ)dξ

=
∫ ζ0+1

ζ0

cos(2π(ξ − ζ0))λ(ξ)dξ = 0

(6.28)

If, on the contrary λ(ζ) is any function that satisfies (6.28) for ζ ∈ (ζ0, ζ0 + 1) and
we extend λ(·) to ζ̄ ≥ ζ0 using (6.27) it would follow that the resulting λ(·) would
solve (6.25), because under these assumptions (6.26) implies

Φ′′′(ζ̄) + 4π2Φ′(ζ̄) = 0 , ζ̄ > ζ0 . (6.29)

Also (6.28) implies

Φ(ζ0) = Φ′(ζ0) = Φ′′(ζ0) = 0,

whence the fact that Φ(ζ̄) = 0 for ζ̄ ≥ ζ0 just follows using standard uniqueness
result for ODEs. We summarize this result as follows.

Proposition 6.1. A function λ(·) solves the integral equation (6.25) if and only if
λ(·) satisfies (6.27), (6.28).

The idea explained in this Subsection is the same that will be used to solve
the Transition Problem (6.20)-(6.22). Note that for the simplified version just
considered we have obtained a set of compatibility conditions (6.28). A similar set
of compatibility conditions arises in the study of (6.20)-(6.22). We find them in
next Subsection.
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6.4. Transition problem: Compatibility conditions. To study (6.20)-(6.22)
we begin by finding a set of compatibility conditions analogous to (6.28). Note that
(6.20)-(6.22) imply

Φ(ζ̄) ≡
∫ ζ̄+1

ζ̄

sin2(π(ζ − ζ̄ − Z(ζ, ζ̄)))
π2

[λ(ζ) +R(Z(ζ, ζ̄), ζ, ζ̄)]dζ = 0 , (6.30)

where ζ̄ ≥ ζ0. We then argue as in Subsection 6.3. Note that a first compatibility
condition for λ(ζ) in ζ ∈ (ζ0, ζ0 + 1) is∫ ζ0+1

ζ0

sin2(π(ζ − ζ0 − Z(ζ, ζ0)))[λ(ζ) +R(Z, ζ, ζ0)]dζ = 0 (6.31)

with Z(ζ, ζ0) defined by means of (6.20), (6.21) with ζ̄ = ζ0. Differentiating Φ(ζ̄)
in (6.30), and choosing ζ̄ = ζ0 we obtain

− π

∫ ζ0+1

ζ0

sin(2π(ζ − ζ0 − Z(ζ, ζ0)))
(
1 +

∂Z(ζ, ζ0)
∂ζ0

)
[λ(ζ) +R(Z, ζ, ζ0)]dζ

+
∫ ζ0+1

ζ0

sin2(π(ζ − ζ0 − Z(ζ, ζ0)))[
∂R

∂ζ0
(Z, ζ, ζ0) +

∂R

∂Z

∂Z

∂ζ0
(ζ, ζ0)]dζ = 0

(6.32)

We can simplify (6.32) after computing an equation for ∂Z(ζ,ζ0)
∂ζ0

. Differentiating
(6.20), with respect to ζ̄, we obtain

(
∂Z

∂ζ̄
)ζ = − sin(2π(ζ − ζ̄ − Z(ζ, ζ̄)))

π
[λ(ζ) +R(Z, ζ, ζ̄)](1 +

∂Z

∂ζ̄
)

+
sin2(π(ζ − ζ̄ − Z(ζ, ζ̄)))

π2
g(ζ, ζ̄),

(6.33)

where

g(ζ, ζ̄) ≡ ∂R

∂ζ̄
+
∂R

∂Z

∂Z

∂ζ̄
. (6.34)

On the other hand, differentiating (6.21) we arrive at

∂Z

∂ζ
(ζ̄+, ζ̄) +

∂Z

∂ζ̄
(ζ̄+, ζ̄) = 0 .

Note that (6.20) implies ∂Z
∂ζ (ζ̄+, ζ̄) = 0. Then

∂Z

∂ζ̄
(ζ̄+, ζ̄) = 0 . (6.35)

Integrating (6.33), (6.35), we obtain

∂Z

∂ζ̄
(ζ, ζ̄)

=
∫ ζ

ζ̄

e−ψ(ζ,ζ̄)+ψ(η,ζ̄)
[
− sin(2π(η − ζ̄ − Z(η, ζ̄)))

π
[λ(η) +R(Z(η, ζ̄), η, ζ̄)]

+
sin2(π(η − ζ̄ − Z(η, ζ̄)))

π2
g(η, ζ̄)

]
dη,

(6.36)

where

ψ(ζ, ζ̄) ≡ 1
π

∫ ζ

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))[λ(η) +R(Z(η, ζ̄), η, ζ̄)]dη . (6.37)
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We can rewrite (6.36) as

∂Z

∂ζ̄
(ζ, ζ̄)+1 = e−ψ(ζ,ζ̄)

(
1+

∫ ζ

ζ̄

eψ(η,ζ̄)
[ sin2(π(η − ζ̄ − Z(η, ζ̄)))

π2
g(η, ζ̄)

]
dη

)
(6.38)

substituting (6.38) with ζ̄ = ζ0 in (6.32) and using (6.37), we obtain

−
∫ ζ0+1

ζ0

∂ψ(ζ, ζ0)
∂ζ

e−ψ(ζ,ζ0)dζ − 1
π2

∫ ζ0+1

ζ0

∂ψ(ζ, ζ0)
∂ζ

e−ψ(ζ,ζ0)

×
∫ ζ

ζ0

eψ(η,ζ0) sin2(π(η − ζ0 − Z(η, ζ0)))g(η, ζ0) dη dζ

+
1
π2

∫ ζ0+1

ζ0

sin2(π(ζ − ζ0 − Z(ζ, ζ0)))g(ζ, ζ0)dζ = 0 .

After some integrations by parts we arrive to the following compatibility condition

(1−eψ(ζ0+1,ζ0))+
1
π2

∫ ζ0+1

ζ0

eψ(ζ,ζ0) sin2(π(ζ−ζ0−Z(ζ, ζ0)))g(ζ, ζ0)dζ = 0 . (6.39)

Actually (6.39) holds for any ζ̄ ≥ ζ0 if ζ0 is replaced by ζ̄. We obtain an additional
compatibility condition that must be satisfied by λ(·) differentiating the resulting
equation with respect to ζ̄ and particularizing the value ζ̄ = ζ0. Equivalently we
can just differentiate with respect to ζ0 in (6.39) to obtain

− eψ(ζ0+1,ζ0)
d(ψ(ζ0 + 1, ζ0))

dζ0

+
1
π2

∫ ζ0+1

ζ0

eψ(ζ,ζ0)
∂ψ(ζ, ζ0)
∂ζ0

sin2(π(ζ − ζ0 − Z(ζ, ζ0)))g(ζ, ζ0)dζ

− 1
π

∫ ζ0+1

ζ0

eψ(ζ,ζ0) sin(2π(ζ − ζ0 − Z(ζ, ζ0)))(1 +
∂Z(ζ, ζ0)
∂ζ0

)g(ζ, ζ0)dζ

+
1
π2

∫ ζ0+1

ζ0

eψ(ζ,ζ0) sin2(π(ζ − ζ0 − Z(ζ, ζ0)))
∂g(ζ, ζ0)
∂ζ0

dζ = 0 .

(6.40)

Using (6.37), we obtain

d(ψ(ζ0 + 1, ζ0))
dζ0

= −2
∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))(1 +
∂Z(η, ζ0)
∂ζ0

)

×
[
λ(η) +R(Z(η, ζ0), η, ζ0)

]
dη

+
1
π

∫ ζ0+1

ζ0

sin(2π(η − ζ0 − Z(η, ζ0)))g(η, ζ0)dη .

Therefore, we can use (6.38) to transform (6.40) into

− 2eψ(ζ0+1,ζ0)

∫ ζ0+1

ζ0

e−ψ(η,ζ0) cos(2π(η − ζ0 − Z(η, ζ0)))

×
[
λ(η) +R(Z(η, ζ0), η, ζ0)

]
dη +K1(ζ0) +K2(ζ0) = 0,

(6.41)
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where
K1(ζ0)

≡ −2eψ(ζ0+1,ζ0)

∫ ζ0+1

ζ0

∫ η

ζ̄

eψ(θ,ζ̄)−ψ(η,ζ0) cos(2π(η − ζ0 − Z(η, ζ0)))

×
[ sin2(π(θ − ζ̄ − Z(θ, ζ̄)))

π2
g(θ, ζ̄)

]
[λ(η) +R(Z(η, ζ0), η, ζ0)]dθdη

+
eψ(ζ0+1,ζ0)

π

∫ ζ0+1

ζ0

sin(2π(η − ζ0 − Z(η, ζ0)))g(η, ζ0)dη

+
1
π2

∫ ζ0+1

ζ0

eψ(ζ,ζ0)
∂ψ(ζ, ζ0)
∂ζ0

sin2(π(ζ − ζ0 − Z(ζ, ζ0)))g(ζ, ζ0)dζ

− 1
π

∫ ζ0+1

ζ0

eψ(ζ,ζ0) sin(2π(ζ − ζ0 − Z(ζ, ζ0)))(1 +
∂Z(ζ, ζ0)
∂ζ0

)g(ζ, ζ0)dζ ,

(6.42)

K2(ζ0) ≡
1
π2

∫ ζ0+1

ζ0

eψ(ζ,ζ0) sin2(π(ζ − ζ0 − Z(ζ, ζ0)))
∂g(ζ, ζ0)
∂ζ0

dζ . (6.43)

In the definitions of K1(ζ0), K2(ζ0) we have included in K1(ζ0), K2(ζ0) all the
terms depending on g(ζ, ζ0) and in ∂g(ζ,ζ0)

∂ζ0
respectively.

Equations (6.31), (6.39) and (6.41) are the compatibility conditions that we
will need to assume on λ(·) in order to solve (6.20)-(6.22). We remark that these
conditions reduce to (6.28) if R ≡ 0 and only linear terms on λ(·) are kept, as could
be expected.

The rest of this Section is devoted to obtaining local existence and uniqueness
results for (6.20)-(6.22) given a function λ(·) defined in [ζ0, ζ0 + 1] satisfying the
compatibility conditions (6.31), (6.39) and (6.41). The key idea is to adapt the
argument that was used in Subsection 6.3 to transform (6.21 )-(6.24) into (6.27),
(6.29).

6.5. Local existence and uniqueness Theorem. The main result in this Sub-
section is as follows.

Theorem 6.2. Given λ(·) in C[ζ0, ζ0 + 1] we define a function Z(ζ; ζ0), for ζ ∈
[ζ0, ζ0 + 1] as the unique solution of (6.20), (6.21) with ζ̄ = ζ0. Suppose that λ(ζ),
Z(ζ; ζ0) satisfy the compatibility conditions (6.31), (6.39), (6.41) with g(ζ; ζ0) as in
(6.34), ψ(ζ; ζ0) is defined by means of (6.37) and K1(ζ0), K2(ζ0) are as in (6.42),
(6.43). Then, for any ζ0 > 0 large enough, there exists δ > 0 depending only
on ‖λ(·)‖L∞[ζ0,ζ0+1] such that the problem (6.20)-(6.22) has a unique solution λ(·)
∈ C[ζ0, ζ0 + 1 + δ].

Proof. We wish to transform the problem in a perturbed version of (6.27) where it
is possible to apply classical fixed point arguments. We remark that for an arbitrary
function λ(·) ∈ C[ζ0, ζ0 + 1 + δ] a function Z(ζ; ζ̄) solving (6.20), (6.21) does not
satisfy in general (6.22). It is then convenient to define, by technical reasons, two
functions Z−(ζ; ζ̄), Z+(ζ; ζ̄) as follows. For any ζ̄ ∈ [ζ0, ζ0+δ] we denote as Z−(ζ; ζ̄),
Z+(ζ; ζ̄) the unique solutions of (6.20), (6.21) and (6.20), (6.22) respectively. We
also define

Z(ζ; ζ̄) ≡

{
Z−(ζ; ζ̄) , ζ ∈ [ζ0, ζ0 + 1

2 )
Z+(ζ; ζ̄) , ζ ∈ [ζ0 + 1

2 , ζ0 + 1]
(6.44)
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Note that for an arbitrary function λ(·) ∈ C[ζ0, ζ0 + 1 + δ] the function Z(ζ; ζ̄) is
discontinuous at the point ζ = ζ0 + 1

2 . Actually the functions λ(·) solving (6.20)-
(6.22) are precisely those functions for which:

Z−(ζ0 +
1
2
; ζ̄) = Z+(ζ0 +

1
2
; ζ̄) .

We define a function Φ(ζ̄), ζ̄ ∈ [ζ0, ζ0 + δ] by means of (6.30). Due to (6.44) we
have

Φ(ζ̄) ≡
∫ ζ0+

1
2

ζ̄

sin2(π(ζ − ζ̄ − Z−(ζ, ζ̄)))
π2

[λ(ζ) +R(Z−(ζ, ζ̄), ζ, ζ̄)]dζ

+
∫ ζ̄+1

ζ0+
1
2

sin2(π(ζ − ζ̄ − Z+(ζ, ζ̄)))
π2

[λ(ζ) +R(Z+(ζ, ζ̄), ζ, ζ̄)]dζ

= 0 , ζ̄ ≥ ζ0

(6.45)

Arguing as in the proof of (6.38) we obtain

∂Z−
∂ζ̄

(ζ, ζ̄) + 1

= e−ψ−(ζ,ζ̄)
(
1 +

∫ ζ

ζ̄

eψ−(η,ζ̄)[
sin2(π(η − ζ̄ − Z−(η, ζ̄)))

π2
g(η, ζ̄)]dη

)
,

(6.46)

∂Z+

∂ζ̄
(ζ, ζ̄) + 1

= e−ψ+(ζ,ζ̄)
(
1−

∫ ζ̄+1

ζ

eψ+(η,ζ̄)[
sin2(π(η − ζ̄ − Z+(η, ζ̄)))

π2
g(η, ζ̄)]dη

)
,

(6.47)

ψ−(ζ, ζ̄) ≡ 1
π

∫ ζ

ζ̄

sin(2π(η − ζ̄ − Z−(η, ζ̄)))[λ(η) +R(Z−(η, ζ̄), η, ζ̄)]dη, (6.48)

ψ+(ζ, ζ̄)

≡ − 1
π

∫ ζ̄+1

ζ

sin(2π(η − ζ̄ − Z+(η, ζ̄)))[λ(η) +R(Z+(η, ζ̄), η, ζ̄)]dη,
(6.49)

where g(η, ζ̄) is defined by means of (6.34) with the values of Z(ζ; ζ̄) required in
each region of integration. We rewrite (6.46), (6.47) as

∂Z

∂ζ̄
(ζ, ζ̄) + 1 = H0(ζ, ζ̄) +H1(ζ, ζ̄), (6.50)

where

H0(ζ, ζ̄) ≡

{
e−ψ−(ζ,ζ̄) , ζ ∈ [ζ0, ζ0 + 1

2 )
e−ψ+(ζ,ζ̄) , ζ ∈ [ζ0 + 1

2 , ζ0 + 1] .
(6.51)

Note that
H0(ζ̄, ζ̄) = H0(ζ̄ + 1, ζ̄) = 1 ,

H1(ζ̄, ζ̄) = H1(ζ̄ + 1, ζ̄) = 0 .
(6.52)

Differentiating (6.45) and using (6.46), (6.47), we obtain

dΦ(ζ̄)
dζ̄

= −e−ψ−(ζ0+
1
2 ,ζ̄) + e−ψ+(ζ0+

1
2 ,ζ̄) −G1(ζ̄, ζ0), (6.53)
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G1(ζ̄, ζ0)

≡ e−ψ−(ζ0+
1
2 ,ζ̄)

π2

∫ ζ0+
1
2

ζ̄

eψ−(η,ζ̄) sin2(π(η − ζ̄ − Z−(η, ζ̄)))g(η, ζ̄)dη

+
e−ψ+(ζ0+

1
2 ,ζ̄)

π2

∫ ζ̄+1

ζ0+
1
2

eψ+(η,ζ̄) sin2(π(η − ζ̄ − Z+(η, ζ̄)))g(η, ζ̄)dη,

d2Φ(ζ̄)
dζ̄2

= e−ψ−(ζ0+
1
2 ,ζ̄)

∂ψ−(ζ0 + 1
2 , ζ̄)

∂ζ̄

− e−ψ+(ζ0+
1
2 ,ζ̄)

∂ψ+(ζ0 + 1
2 , ζ̄)

∂ζ̄
− ∂G1(ζ̄, ζ0)

∂ζ̄
.

(6.54)

Using (6.53) to eliminate exp
(
− ψ+(ζ0 + 1

2 , ζ̄)
)

in (6.54), we obtain

d2Φ(ζ̄)
dζ̄2

+
∂ψ+(ζ0 + 1

2 , ζ̄)
∂ζ̄

dΦ(ζ̄)
dζ̄

= e−ψ−(ζ0+
1
2 ,ζ̄)

∂(ψ−(ζ0 + 1
2 , ζ̄)− ψ+(ζ0 + 1

2 , ζ̄))
∂ζ̄

−
∂ψ+(ζ0 + 1

2 , ζ̄)
∂ζ̄

G1(ζ̄, ζ0)−
∂G1(ζ̄, ζ0)

∂ζ̄
.

(6.55)

Differentiating (6.55) with respect to ζ̄, we obtain

d

dζ̄

(d2Φ(ζ̄)
dζ̄2

+
∂ψ+(ζ0 + 1

2 , ζ̄)
∂ζ̄

dΦ(ζ̄)
dζ̄

)
= e−ψ−(ζ0+

1
2 ,ζ̄)

∂2(ψ−(ζ0 + 1
2 , ζ̄)− ψ+(ζ0 + 1

2 , ζ̄))
∂ζ̄2

+ U(ζ̄, ζ0) ,

(6.56)

where

U(ζ̄, ζ0) ≡ −
∂ψ−(ζ0 + 1

2 , ζ̄)
∂ζ̄

∂(ψ−(ζ0 + 1
2 , ζ̄)− ψ+(ζ0 + 1

2 , ζ̄))
∂ζ̄

e−ψ−(ζ0+
1
2 ,ζ̄)

− ∂

∂ζ̄

(∂ψ+(ζ0 + 1
2 , ζ̄)

∂ζ̄
G1(ζ̄, ζ0) +

∂G1(ζ̄, ζ0)
∂ζ̄

)
.

(6.57)

Equation (6.56) will play a role analogous to (6.26) in the analysis of the linearized
problem considered in Subsection 6.3. To formulate the analogous of the problem
(6.27) we need to compute the term ∂2(ψ−(ζ0+

1
2 ,ζ̄)−ψ+(ζ0+

1
2 ,ζ̄))

∂ζ̄2
. Using (6.44), (6.48),

(6.49) we have

ψ−(ζ0 +
1
2
, ζ̄)− ψ+(ζ0 +

1
2
, ζ̄)

=
1
π

∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))[λ(η) + g(η, ζ̄)]dη;
(6.58)

whence, using (6.50),

∂(ψ−(ζ0 + 1
2 , ζ̄)− ψ+(ζ0 + 1

2 , ζ̄))
∂ζ̄

= −2
∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))(H0(ζ, ζ̄) +H1(ζ, ζ̄))[λ(η) + g(η, ζ̄)]dη
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+
1
π

∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))
∂g(η, ζ̄)
∂ζ̄

dη .

Differentiating this formula and using (6.52), we obtain

∂2(ψ−(ζ0 + 1
2 , ζ̄)− ψ+(ζ0 + 1

2 , ζ̄))
∂ζ̄2

= −2[λ(ζ̄ + 1)− λ(ζ̄)] + V (ζ̄, ζ0) , (6.59)

V (ζ̄, ζ0) ≡ −4π
∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))(H0(ζ, ζ̄)

+H1(ζ, ζ̄))2[λ(η) + g(η, ζ̄)]dη − 2
∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))

× ∂((H0(ζ, ζ̄) +H1(ζ, ζ̄))[λ(η) + g(η, ζ̄)])
∂ζ̄

dη

+
1
π

∫ ζ̄+1

ζ̄

∂

∂ζ̄

(
sin(2π(η − ζ̄ − Z(η, ζ̄)))

∂g(η, ζ̄)
∂ζ̄

)
dη .

(6.60)
Suppose that λ(ζ̄) satisfies

[λ(ζ̄ + 1)− λ(ζ̄)] =
V (ζ̄, ζ0)

2
+
eψ−(ζ0+

1
2 ,ζ̄)U(ζ̄, ζ0)
2

. (6.61)

Then (6.56) implies

d

dζ̄
(
d2Φ(ζ̄)
dζ̄2

+
∂ψ+(ζ0 + 1

2 , ζ̄)
∂ζ̄

dΦ(ζ̄)
dζ̄

) = 0. (6.62)

Note that the compatibility conditions (6.31), (6.39), (6.41) yield

Φ(ζ0) = Φ′(ζ0) = Φ′′(ζ0) = 0 .

Therefore, (6.62) and, under suitable regularity assumptions for ∂ψ+(ζ0+
1
2 ,ζ̄)

∂ζ̄
, classi-

cal uniqueness theory for ODEs would imply Φ(ζ̄) = 0 for the values of ζ̄ for which
(6.61) holds. Reciprocally, if λ(·) solves (6.20)-(6.22) in an interval (ζ0, ζ0 + δ),
Φ(ζ̄) = 0 in such interval, whence (6.61) would follow.

We have then reduced the problem of proving Theorem 6.2 to the solution of the
equation (6.61), under suitable regularity conditions for λ(·). Let us then precise
the suitable framework in which it is possible to solve (6.61) as well as (6.62). Let
us choose an arbitrary function λ(ζ) for ζ ∈ [ζ0, ζ0+1], λ(·) ∈ C[ζ0, ζ0+1]. Suppose
that |λ(ζ)| ≤ ε0 for ζ ∈ [ζ0, ζ0+1]. We define a Banach spaceXδ = C[ζ0+1, ζ0+1+δ]
endowed with the L∞ norm

‖λ‖Xδ
≡ sup
ζ∈[ζ0+1,ζ0+1+δ]

|λ(ζ)| .

We rewrite (6.61) as the fixed point problem:

λ(ζ̄ + 1) = T [λ](ζ̄) , ζ̄ ∈ [ζ0, ζ0 + δ], (6.63)

where

T [λ](ζ̄) ≡ λ(ζ̄) +
V (ζ̄, ζ0) + eψ−(ζ0+

1
2 ,ζ̄)U(ζ̄, ζ0)

2
(6.64)
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with U(ζ̄, ζ0), V (ζ̄, ζ0) as in (6.57), (6.60) and ψ−(ζ, ζ̄) is as in (6.48). Note that
‖V (·, ζ0)‖L∞[ζ0,ζ0+δ] ≤ C(ε0 + ηL) where ηL → 0 as L → ∞. A similar esti-
mate might be obtained for ‖U(·, ζ0)‖L∞[ζ0,ζ0+δ]. To derive such estimate some

care is needed with the term ∂
∂ζ̄

(∂ψ+(ζ0+
1
2 ,ζ̄)

∂ζ̄
G1(ζ̄, ζ0) + ∂G1(ζ̄,ζ0)

∂ζ̄
) in (6.57), and in

particular the term ∂2ψ+(ζ0+
1
2 ,ζ̄)

∂ζ̄2
G1(ζ̄, ζ0). The term ∂2ψ+(ζ0+

1
2 ,ζ̄)

∂ζ̄2
contains a term

proportional to λ(ζ̄). However, G1(ζ̄, ζ0) might be estimated by a small constant
if δ > 0 is chosen small enough. Therefore the operator T transforms the ball
‖λ(·)‖Xδ

≤ 1 in a ball ‖T [λ](·)‖Xδ
≤ ν where ν is small if L and ζ0 are large and

δ > 0 is small. Moreover, similar bounds show that

‖T [λ1](·)− T [λ2](·)‖Xδ
≤ θ‖λ1(·)− λ2(·)‖Xδ

where θ is small if L and ζ0 are large enough and δ > 0 is small. A standard
contractive fixed point argument then shows that (6.63) (or equivalently (6.61))
has a unique solution for this range of values of L, ζ0, δ. Moreover, for these
functions λ ∈ Xδ,

∂2ψ+(ζ0+
1
2 ,ζ̄)

∂ζ̄2
is a continuous function, whence (6.62) implies that

Φ(ζ̄) = 0 for ζ̄ ∈ [ζ0, ζ0 + δ] and the Theorem follows. �

6.6. On the existence of functions λ(·) satisfying the compatibility condi-
tions for ζ0 large. Note that a key assumption in Theorem 6.2 is the existence of
a function λ(·) for which the compatibility conditions (6.31), (6.39), (6.41) hold for
ζ0 large. The existence of such functions λ(·) is not obvious at all. The purpose of
this Section, is to show that there is indeed a large class of functions λ(·) satisfying
|λ(ζ̄)| ≤ ε0 as well as (6.31), (6.39), (6.41).Several of the formulae derived in this
Subsection will be useful later proving that the function λ(ζ̄) is globally defined for
ζ̄ ∈ [ζ0,∞).

As a first step we rewrite the compatibility conditions obtained in Subsection 6.4
in a more convenient manner. Note that we can rewrite the compatibility condition
(6.31) for λ(ζ) in ζ ∈ (ζ0, ζ0 + 1) as∫ ζ0+1

ζ0

[ sin2(π(ζ − ζ0 − Z(ζ, ζ0)))λ(ζ)
π2

+H(ζ, ζ0)
]
dζ = 0 (6.65)

with Z(ζ, ζ0) defined by means of (6.20), (6.21) with ζ̄ = ζ0, and where from now
on:

H(ζ, ζ0) ≡
sin2(π(ζ − ζ0 − Z(ζ, ζ0)))R(Z(ζ, ζ0), ζ, ζ0)

π2
. (6.66)

Differentiating Φ(ζ̄) in (6.30), and choosing ζ̄ = ζ0 we obtain:

− 1
π

∫ ζ0+1

ζ0

sin(2π(ζ − ζ0 − Z(ζ, ζ0)))(1 +
∂Z(ζ, ζ0)
∂ζ0

)λ(ζ)dζ

+
d

dζ0
(
∫ ζ0+1

ζ0

H(ζ, ζ0)dζ) = 0

(6.67)

We can simplify the above expression after computing ∂Z(ζ,ζ0)
∂ζ0

. Differentiating
(6.20), with respect to ζ̄, we obtain

(
∂Z

∂ζ̄
)ζ = − sin(2π(ζ − ζ̄ − Z(ζ, ζ̄)))λ(ζ)

π
(1 +

∂Z

∂ζ̄
) +

∂H(ζ, ζ̄)
∂ζ̄

. (6.68)
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Integrating (6.68), (6.35), we obtain

∂Z

∂ζ̄
(ζ, ζ̄) = −

∫ ζ

ζ̄

e−ψ̄(ζ,ζ̄)+ψ̄(η,ζ̄) ∂ψ̄(η, ζ̄)
∂ζ

dη

+
∫ ζ

ζ̄

e−ψ̄(ζ,ζ̄)+ψ̄(η,ζ̄) ∂H(η, ζ̄)
∂ζ̄

dη

= (e−ψ̄(ζ,ζ̄) − 1) +
∫ ζ

ζ̄

e−ψ̄(ζ,ζ̄)+ψ̄(η,ζ̄) ∂H(η, ζ̄)
∂ζ̄

dη,

(6.69)

where

ψ̄(ζ, ζ̄) ≡ 1
π

∫ ζ

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))λ(η)dη . (6.70)

We can rewrite (6.36) as

∂Z

∂ζ̄
(ζ, ζ̄) + 1 = e−ψ̄(ζ,ζ̄)

(
1 +

∫ ζ

ζ̄

eψ̄(η,ζ̄) ∂H(η, ζ̄)
∂ζ̄

dη
)
. (6.71)

Substituting (6.71) with ζ̄ = ζ0 into (6.67) and using also (6.70), we obtain

−
∫ ζ0+1

ζ0

∂ψ̄(ζ, ζ0)
∂ζ

e−ψ̄(ζ,ζ0)dζ

−
∫ ζ0+1

ζ0

∂ψ̄(ζ, ζ0)
∂ζ

e−ψ̄(ζ,ζ0)

∫ ζ

ζ0

eψ̄(η,ζ̄) ∂H(η, ζ0)
∂ζ̄

dηdζ +
d

dζ0

( ∫ ζ0+1

ζ0

H(ζ, ζ0)dζ
)

= 0 .

After some integrations by parts we arrive to the following compatibility condition

(eψ̄(ζ0+1,ζ0) − 1) +
∫ ζ0+1

ζ0

eψ̄(ζ,ζ0)
∂H(ζ, ζ0)

∂ζ0
dζ = 0 . (6.72)

Actually (6.72) holds for any ζ̄ ≥ ζ0 if ζ0 is replaced by ζ̄. We obtain an additional
compatibility condition that must be satisfied by λ(·) differentiating the resulting
equation with respect to ζ̄ and particularizing the value ζ̄ = ζ0. Equivalently we
can just differentiate with respect to ζ0 in (6.72) to obtain

eψ̄(ζ0+1,ζ0)
dψ̄(ζ0 + 1, ζ0)

dζ0
+

d

dζ0

( ∫ ζ0+1

ζ0

eψ̄(ζ,ζ0)
∂H(ζ, ζ0)

∂ζ0
dζ

)
= 0 . (6.73)

On the other hand, using (6.70), as well as (6.71) we arrive at

dψ̄(ζ0 + 1, ζ0)
dζ0

= −2
∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))e−ψ̄(η,ζ0)λ(η)dη−

− 2
∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))λ(η)e−ψ̄(η,ζ0)

∫ η

ζ̄

eψ̄(ξ,ζ0)
∂H(ξ, ζ0)

∂ζ0
dξdη .
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Substituting this formula into (6.39), we obtain the compatibility condition

eψ̄(ζ0+1,ζ0)

∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))e−ψ̄(η,ζ0)λ(η)dη

+ eψ̄(ζ0+1,ζ0)

∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))λ(η)e−ψ̄(η,ζ0)

×
[ ∫ η

ζ0

eψ̄(ξ,ζ0)
∂H(ξ, ζ0)

∂ζ0
dξ

]
dη

=
1
2
d

dζ0

( ∫ ζ0+1

ζ0

eψ̄(ζ,ζ0)
∂H(ζ, ζ0)

∂ζ0
dζ

)
(6.74)

Equations (6.65), (6.72) and (6.74) are just the reformulation of the compatibility
conditions for λ(·) that we wanted to obtain.

As indicated above, the main goal of this Subsection is to show that the compat-
ibility conditions (6.65), (6.72) and (6.74) are satisfied by a large class of functions
λ(·) for any ζ0 large enough. A first technical problem is the following. Note
that for ζ0 large enough, the function R(Z, ζ, ζ0) is not necessarily small. Indeed,
R(Z, ζ, ζ0) is defined in (6.15), (6.23) and since h1, h2 are just bounded functions
but (f ′(ζ))2 →∞ as ζ →∞ it follows that R(Z, ζ, ζ0) becomes large for some large
values of Z. In particular, due to this growth it is not obvious at all if Z(ζ, ζ0) is a
bounded function for ζ0 →∞ even if |λ| is assumed to be small. Moreover, for the
same reason it is not ”a priori” obvious if the function H(ζ, ζ0) defined in (6.66) is
small for ζ0 →∞. The following Lemma shows that this is actually the case:

Lemma 6.3. Suppose that Z(ζ; ζ̄) solves (6.20)-(6.22). Let us assume also that
|λ(ζ)| ≤ ε0 for ζ ∈ [ζ̄, ζ̄ +1]. There exist C > 0 and ζ̂ large such that for any ζ̄ ≥ ζ̂
such that

|Z(ζ; ζ̄)| ≤ Cε0 min{|ζ − ζ̄|, |ζ − ζ̄ − 1|} , for ζ ∈ [ζ̄, ζ̄ + 1] . (6.75)

Moreover, for ζ̄ ≥ ζ̂, with ζ̂ large, the following inequality holds:

|H(ζ, ζ̄)| ≤ C

(L(τ))3
, for ζ ∈ [ζ̄, ζ̄ + 1] . (6.76)

Proof. We use a classical continuity argument. By assumption (6.75) holds for
ζ = ζ̄. As long as

|Z(ζ; ζ̄)| ≤ 1
4

min
{
|ζ − ζ̄|, |ζ − ζ̄ − 1|

}
(6.77)

we have that (6.76) holds true, due to (6.23) as well as the fact that f ′(ζ) is ap-
proximately constant in intervals of the form [ζ̄, ζ̄+ C

f ′(ζ̄)
]. Integrating the equation

(6.20) we recover (6.77) whence Lemma 6.3 follows. �

We need to rewrite the compatibility conditions (6.72), (6.74) in a more conve-
nient form. We have

(eψ̄(ζ0+1,ζ0) − 1) + J(ζ0 + 1, ζ0) = 0 , (6.78)
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∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))e−ψ̄(η,ζ0)λ(η)dη+∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))λ(η)e−ψ̄(η,ζ0)J(η, ζ0)dη

=
e−ψ̄(ζ0+1,ζ0)

2
d

dζ0
(J(ζ0 + 1, ζ0)),

(6.79)

where

J(ζ, ζ0) ≡
d

dζ0
(
∫ ζ

ζ0

eψ̄(η,ζ0)H(η, ζ0)dη)−
∫ ζ

ζ0

eψ̄(η,ζ0)
∂ψ̄(η, ζ0)
∂ζ0

H(η, ζ0)dη

≡ d

dζ0
(F1(ζ, ζ0))− F2(ζ, ζ0)

(6.80)

A crucial step in all the forthcoming arguments is to derive better estimates for
Z(ζ, ζ0) and its derivatives as those in Lemma 6.3.

Lemma 6.4. Under the assumptions of Lemma 6.3 the following estimates hold

|∂
kZ(ζ, ζ̄)
∂ζ̄k

| ≤ C
[
ε0|ζ − ζ̄|3−k +

1
(f ′(ζ̄))β

]
, for ζ̄ ≤ ζ ≤ ζ̄ +

1
2

(6.81)

|∂
kZ(ζ, ζ̄)
∂ζ̄k

| ≤ C
[
ε0|ζ − ζ̄ − 1|3−k +

1
(f ′(ζ̄ + 1))β

]
, for ζ̄ +

1
2
≤ ζ ≤ ζ̄ + 1 (6.82)

where k = 0, 1, 2, 3 and ζ̄ is large enough, and where β ∈ (0, 1) might be chosen
arbitrarily close to one.

Proof. Let us sketch the main argument in the proof of this result. The equation
(6.20) might be rewritten in the form:

∂Z

∂ζ
= H(ζ − ζ̄ − Z)λ(ζ) +W (ζ, ζ̄, Z) (6.83)

where H(x) = sin2(πx)
π2 . Due to the (6.20), (6.23) we have that W (ζ, ζ̄, Z) is a

smooth function that has approximately the form

W (ζ, ζ̄, Z) = Φ(f ′(ζ)(ζ − ζ̄ − Z)),

with Φ(x) = 0 for 0 ≤ x ≤ L and |Φ(x)| ≤ C
x globally on x. Due to Lemma 6.3

it follows that Z is small and to the leading order can be neglected. With this
assumption it would be possible to approximate Z solution of (6.21), (6.83) as

Z(ζ, ζ̄) ≈ Z1(ζ, ζ̄)+Z2(ζ, ζ̄) ≡
∫ ζ

ζ̄

H(η− ζ̄)λ(η)dη+
∫ ζ

ζ̄

Φ(f ′(η)(η− ζ̄))dη . (6.84)

Note that the function Z2(ζ, ζ̄) is small away from a boundary layer close to ζ ≈ ζ̄.
Therefore, the results in Appendix A imply that in that region Z2(ζ, ζ̄) might be
approximated as

Z2(ζ, ζ̄) ≈
∫ ζ

ζ̄

Φ(f ′(ζ̄)(η − ζ̄))dη =
1

f ′(ζ̄)

∫ f ′(ζ̄)(ζ−ζ̄)

0

Φ(x)dx ;

i.e. Z2(ζ, ζ̄) is roughly of order 1
f ′(ζ̄)

in that boundary layer. On the other hand

Z1(ζ, ζ̄) is roughly of order λ(ζ̄)
3 (ζ − ζ̄)3 for ζ ≈ ζ̄. Then, Z2(ζ, ζ̄) is the leading
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term for ζ ≈ ζ̄ and Z1(ζ, ζ̄) becomes the leading one for |ζ − ζ̄| of order one. Note
that Z2(ζ, ζ̄) is smooth due to the smoothness of f . In particular its derivatives
with respect to ζ̄ might be estimated as 1/(f ′(ζ̄))β for ζ ≈ ζ̄. On the contrary
only three derivatives of Z1(ζ, ζ̄) are bounded if the only assumption made on λ is
boundedness. Therefore the decomposition (6.84) would imply the estimate (6.81).
A similar argument in the region ζ ≈ ζ̄ + 1 would imply (6.82).

To illustrate how to make the argument above rigorous we derive (6.81) for k = 1.
Note that (6.81), (6.82) for k = 0 are just a consequence of (6.75) and the formula

Z(ζ, ζ̄) =
∫ ζ

ζ̄

H(η − ζ̄ − Z(η, ζ̄))λ(η)dη +
∫ ζ

ζ̄

W (η, ζ̄, Z(η, ζ̄))dη .

The integral terms can then be estimated basically as the terms Z1(ζ, ζ̄), Z2(ζ, ζ̄)
above. To prove (6.81) we differentiate (6.83) with respect to ζ̄, whence

∂

∂ζ
(
∂Z

∂ζ̄
) =

[
−HZ(ζ − ζ̄ − Z)λ(ζ) +

∂W (ζ, ζ̄, Z)
∂Z

]∂Z
∂ζ̄

+
[
−Hζ̄(ζ − ζ̄ − Z)λ(ζ) +Wζ̄(ζ, ζ̄, Z)

]
.

Differentiating (6.21) we obtain ∂Z
∂ζ̄

(ζ̄, ζ̄) = 0. Then

∂Z

∂ζ̄
(ζ, ζ̄) =

∫ ζ

ζ̄

e
R η

ζ̄

[
−HZ(ξ−ζ̄−Z)λ(ξ)+

∂W (ξ,ζ̄,Z)
∂Z

]
dξ

×
[
−Hζ̄(η − ζ̄ − Z)λ(η) +Wζ̄(η, ζ̄, Z)

]
dη .

(6.85)

The exponential factor containing HZ might be estimated by means of a constant
using (6.75). We then need to estimate the term exp

( ∫ η
ζ̄
∂W (ξ,ζ̄,Z)

∂Z dξ
)
. To this

end we remark that this term can be estimated as e
R η

ζ̄
f ′(ζ)|Φ′(f ′(ζ)(ζ−ζ̄−Z))|dξ and

this can be estimated also by means of a constant (actually close to one if L, ζ̄ are
large). After estimating the exponential factors in this manner the terms left in
(6.85) can be estimated as the derivatives of the functions Z1(ζ, ζ̄), Z2(ζ, ζ̄) above.
This yields (6.81) with k = 1.

Higher order derivatives can be estimated in an analogous manner. The main
difference arises for k = 3, because in that case ∂3Z

∂ζ̄3
(ζ̄, ζ̄) = −2λ(ζ̄). In particular

this yields a global term Cε0. Moreover, due to this higher derivatives cannot be
estimated in this manner unless additional regularity for λ(·) is assumed. �

To show that there exist functions λ(·) satisfying (6.65), (6.78), (6.80) for ζ0 large
we need to obtain estimates for J(ζ, ζ0)and some of its derivatives, or equivalently
F1(ζ, ζ0), F2(ζ, ζ0) and their derivatives. To this end, we write

F1(ζ, ζ0) = F1,1(ζ, ζ0) + F1,2(ζ, ζ0) + F1,3(ζ, ζ0) ,

F2(ζ, ζ0) = F2,1(ζ, ζ0) + F2,2(ζ, ζ0) + F2,3(ζ, ζ0),

where

F1,1(ζ, ζ0) ≡
∫ min{ζ,ζ0+ 1

(f(ζ0))α }

ζ0

eψ̄(η,ζ0)H(η, ζ0)dη ,

F1,2(ζ, ζ0) ≡
∫ min{ζ,ζ0+1− 1

(f(ζ0+1))α }

min{ζ,ζ0+ 1
(f(ζ0))α }

eψ̄(η,ζ0)H(η, ζ0)dη ,
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F1,3(ζ, ζ0) ≡
∫ min{ζ,ζ0+1}

min{ζ,ζ0+1− 1
(f(ζ0+1))α }

eψ̄(η,ζ0)H(η, ζ0)dη ,

F2,1(ζ, ζ0) ≡
∫ min{ζ,ζ0+ 1

(f(ζ0))α }

ζ0

eψ̄(η,ζ0)
∂ψ̄(η, ζ0)
∂ζ0

H(η, ζ0)dη ,

F2,2(ζ, ζ0) ≡
∫ min{ζ,ζ0+1− 1

(f(ζ0+1))α }

min{ζ,ζ0+ 1
(f(ζ0))α }

eψ̄(η,ζ0)
∂ψ̄(η, ζ0)
∂ζ0

H(η, ζ0)dη ,

F2,3(ζ, ζ0) ≡
∫ min{ζ,ζ0+1− 1

(f(ζ0+1))α }

min{ζ,ζ0+ 1
(f(ζ0))α }

eψ̄(η,ζ0)
∂ψ̄(η, ζ0)
∂ζ0

H(η, ζ0)dη .

and where α ∈ (0, 1) might be chosen arbitrarily close to one.
The terms F1,2(ζ, ζ0) and F2,2(ζ, ζ0) might be easily estimated if ζ0 is large

enough.

Lemma 6.5. Suppose that the assumptions of Lemma 6.3 are satisfied. Then∣∣ dk
dζk0

(F1,2(ζ, ζ0))
∣∣ +

∣∣ dj
dζj0

(F2,2(ζ, ζ0))
∣∣ ≤ C

(f(ζ0))β
(6.86)

for ζ0 large enough, ζ0 ≤ ζ ≤ ζ0 + 1, where k = 0, 1, 2, 3, j = 0, 1, 2, and β > 0
might be chosen arbitrarily close to one.

Proof. This result is just a consequence of Lemma 6.4, the definitions of F1,2(ζ, ζ0),
F2,2(ζ, ζ0) and the definitions of H(ζ, ζ0), ψ̄(ζ, ζ0) (cf. (6.66), (6.70)). �

In other words, the integration in regions away from the boundaries ζ = ζ0,
ζ = ζ0 + 1 yields a negligible contribution into F1(ζ, ζ0), F2(ζ, ζ0). On the other
hand in order to estimate the contributions to these functions due to the regions
close to the boundaries ζ = ζ0, ζ = ζ0 + 1 we need some additional bounds for
Z(ζ, ζ̄) and its derivatives.

Lemma 6.6. Under the assumptions of Lemma 6.3 the following estimates hold

| d
k

dζk0
(F1,1(ζ, ζ0))|+ | d

j

dζj0
(F2,1(ζ, ζ0))| ≤

C

(f(ζ0))β
(6.87)

| d
k

dζk0
(F1,3(ζ, ζ0))|+ | d

j

dζj0
(F2,3(ζ, ζ0))| ≤

C

(f(ζ0 + 1))β
(6.88)

for ζ0 large enough, ζ0 ≤ ζ ≤ ζ0 + 1, where k = 0, 1, 2, j = 0, 1 and β > 0, might
be chosen arbitrarily close to one.

Proof. We rewrite

F1,1(ζ, ζ0) ≡
∫ min{ζ,ζ0+ 1

(f(ζ0))α }−ζ0

0

H(ξ + ζ0, ζ0)dξ

+
∫ min{ζ,ζ0+ 1

(f(ζ0))α }

ζ0

[eψ̄(η,ζ0) − 1]H(η, ζ0)dη

≡ F1,1,1(ζ, ζ0) + F1,1,2(ζ, ζ0) .

Since

H(ξ + ζ0, ζ0) ≡
sin2(π(ξ − Z(ζ0 + ξ, ζ0)))R(Z(ζ0 + ξ, ζ0), ζ0 + ξ, ζ0)

π2
,
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using Lemma 6.4 and (6.20), we obtain∣∣∂k(H(ξ + ζ0, ζ0))
∂ζk0

∣∣ ≤ C
( 1
|ξ|(f(ζ0))β

)k
for k = 0, 1, 2, 0 ≤ ξ ≤ 1

2 . Then, using (6.23) we arrive at

|∂
k(F1,1,1(ζ, ζ0))

∂ζk0
| ≤ C

(f(ζ0))(1−β)k

(f(ζ0))α

for k = 0, 1, 2, 0 ≤ ξ ≤ 1
2 . On the other hand since |eψ̄(η,ζ0) − 1| ≤ Cε0|ζ − ζ0|2

and using the fact that each derivative of H yields a contribution of order f ′(ζ0)
we obtain

|∂
k(F1,1,2(ζ, ζ0))

∂ζk0
| ≤ C

(f(ζ0))α

for k = 0, 1, 2, 0 ≤ ξ ≤ 1
2 . This yields

| d
k

dζk0
(F1,1(ζ, ζ0))| ≤

C

(f(ζ0))β
(6.89)

for a new value of β close to one.
On the other hand, in order to estimate F2,1(ζ, ζ0) we use the fact that |ψ̄(ζ, ζ̄)| ≤

Cε0|ζ − ζ0|, whence, since each derivative of H yields a new multiplicative factor
f ′(ζ0) we obtain (6.87), using also (6.89). The proof of (6.88) is similar. �

We can now prove the main result of this Subsection that shows that it is possible
to choose functions λ(·) satisfying the compatibility conditions (6.65), (6.78), (6.79)
for ζ0 large enough in infinite different manners.

Proposition 6.7. Suppose that λ(·) has the form

λ(ζ) = α0 + α1 cos(2π(ζ − ζ0)) + β1 sin(2π(ζ − ζ0)) + λ̃(ζ − ζ0) (6.90)

where: ∫ ζ0+1

ζ0

e2π`(ζ−ζ0)λ̃(ζ − ζ0)dζ = 0 , ` = 0,±1,

|λ̃(ζ − ζ0)| ≤ ε0 , ζ ∈ [ζ0, ζ0 + 1] .

Suppose that L > 0 is large enough. Then, for any ζ0 large enough there exist
constants α0, α1, β1 such that the function λ(·) in (6.90) satisfies the compatibility
conditions (6.65), (6.78), (6.79), as well as an estimate of the form

|λ(ζ)| ≤ Cε0 , ζ ∈ [ζ0, ζ0 + 1] .

Proof. Formally linearizing the compatibility conditions (6.65), (6.78), (6.79), we
obtain ∫ ζ0+1

ζ0

sin2(π(ζ − ζ0))λ(ζ)dζ = −
∫ ζ0+1

ζ0

H(ζ, ζ0)dζ ≡ f1(ζ0) ,∫ ζ0+1

ζ0

sin(2π(η − ζ0))λ(η)dη = −J(ζ0 + 1, ζ0) ≡ f2(ζ0) ,
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ζ0

cos(2π(η − ζ0))λ(η)dη

= −
∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))λ(η)e−ψ̄(η,ζ0)J(η, ζ0)dη

− e−ψ̄(ζ0+1,ζ0)

2
d

dζ0
(J(ζ0 + 1, ζ0)) ≡ f3(ζ0) .

Using (6.90) it follows that these equations can be rewritten as

α0

2
= f1(ζ0) ,

α1

2
= f2(ζ0) ,

β1

2
= f3(ζ0) . (6.91)

Note that, due to the definition of J(ζ, ζ0) as well as Lemmas 6.5, 6.6 the func-
tions f`(ζ0), ` = 1, 2, 3 can be made arbitrarily small if Lis large and ζ0 is large
enough, assuming that |λ(ζ)| ≤ 2ε0 for ζ ∈ [ζ0, ζ0 + 1]. In particular the left-hand
sides of (6.91) is larger than the right-hand sides if

√
(α0)2 + (α1)2 + (β1)2 = 4ε0.

Therefore, Proposition 6.7 follows just using standard Degree Theory (cf. [16]) �

7. Analysis of the transition problem: Global well posedness

7.1. Reducing the Transition Problem to a delay equation. In the previous
Sections we have proved that the Transition Problem (6.20)-(6.22) might be solved,
in infinite different ways, in intervals [ζ0, ζ0 + 1 + δ] with δ > 0 small. To conclude
the proof of Theorem 2.1 it only remains to show that the solution of (6.20)-(6.22)
can be extended for arbitrarily large values of ζ.

Note that as long as λ(·) solves (6.20 )-(6.22) the compatibility conditions (6.65),
(6.78), (6.79) are satisfied with ζ̄ replacing ζ0. We need to rewrite (6.61) in a more
convenient manner. To this end we first rewrite (6.79) as∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄)λ(η)dη = Q(ζ̄), (7.1)

where

Q(ζ0) ≡
e−ψ̄(ζ0+1,ζ0)

2
d

dζ0
(J(ζ0 + 1, ζ0))

−
∫ ζ0+1

ζ0

cos(2π(η − ζ0 − Z(η, ζ0)))λ(η)e−ψ̄(η,ζ0)J(η, ζ0)dη .

Differentiating (7.1), we obtain

e−ψ̄(ζ̄+1,ζ̄)λ(ζ̄ + 1)− λ(ζ̄)

+ 2π
∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))(1 +
∂Z(η, ζ̄)
∂ζ̄

)e−ψ̄(η,ζ̄)λ(η)dη

−
∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄) ∂ψ̄(η, ζ̄)
∂ζ̄

λ(η)dη

=
dQ(ζ̄)
dζ̄

.
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Using (6.71), this formula becomes

e−ψ̄(ζ̄+1,ζ̄)λ(ζ̄ + 1)− λ(ζ̄) +
∫ ζ̄+1

ζ̄

K(η, ζ̄)λ(η)dη = W1(ζ̄) ,

where

W1(ζ̄) ≡ −2π
∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))(
∫ η

ζ̄

eψ̄(ξ,ζ̄) ∂H(ξ, ζ̄)
∂ζ̄

dξ)e−2ψ̄(η,ζ̄)λ(η)dη

+
dQ(ζ̄)
dζ̄

,

K(η, ζ̄) ≡
[
2π sin(2π(η − ζ̄ − Z(η, ζ̄)))e−2ψ̄(η,ζ̄)

+ cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄) ∂ψ̄(η, ζ̄)
∂ζ̄

]
On the other hand, using (6.78), we obtain

λ(ζ̄ + 1)− λ(ζ̄) +
∫ ζ̄+1

ζ̄

K(η, ζ̄)λ(η)dη = W1(ζ̄) +W2(ζ̄), (7.2)

with
W2(ζ̄) ≡ −e−ψ̄(ζ̄+1,ζ̄)J(ζ̄ + 1, ζ̄)

Equation (7.2) is well suited to prove global existence for the solutions of the prob-
lem (6.20)-(6.22). It turns out that the right hand side of (7.2) converges to zero
as ζ̄ → ∞. On the other hand, the solution obtained for the linearized transition
problem in Subsection 6.3 shows that for R = 0 the function λ would be periodic
with period one. Since the right-hand side of (7.2) vanishes for R = 0, the integral
term on the left-hand side should vanish too. To see this more clearly we rewrite
the integral term as∫ ζ̄+1

ζ̄

K(η, ζ̄)λ(η)dη

=
∫ ζ̄+1

ζ̄

[
2π sin(2π(η − ζ̄ − Z(η, ζ̄)))e−2ψ̄(η,ζ̄)

+ cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄) ∂ψ̄(η, ζ̄)
∂ζ̄

]
λ(η)dη

= 2π2

∫ ζ̄+1

ζ̄

∂ψ̄(η, ζ̄)
∂ζ

e−2ψ̄(η,ζ̄)dη − 1
π

∫ ζ̄+1

ζ̄

dηλ(η) cos(2π(η − ζ̄ − Z(η, ζ̄)))

× e−ψ̄(η,ζ̄)

∫ η

ζ̄

cos(2π(ξ − ζ̄ − Z(ξ, ζ̄)))
(
1 +

∂Z

∂ζ̄
(ξ, ζ̄)

)
λ(ξ)dξ .

Using (6.71), we can write∫ ζ̄+1

ζ̄

K(η, ζ̄)λ(η)dη = π2(1− e−2ψ̄(ζ̄+1,ζ̄))

− 1
2π

( ∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄)λ(η)dη
)2

−W3(ζ̄),
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where

W3(ζ̄)

= − 1
π

∫ ζ̄+1

ζ̄

dηλ(η) cos(2π(η − ζ̄ − Z(η, ζ̄)))e−ψ̄(η,ζ̄)

×
∫ η

ζ̄

cos(2π(ξ − ζ̄ − Z(ξ, ζ̄)))e−ψ̄(ξ,ζ̄)
( ∫ ξ

ζ̄

eψ̄(υ,ζ̄) ∂H(υ, ζ̄)
∂ζ̄

dυ
)
λ(ξ)dξ .

Using (6.78) and (6.79), we obtain∫ ζ̄+1

ζ̄

K(η, ζ̄)λ(η)dη = −W3(ζ̄)−W4(ζ̄)−W5(ζ̄),

where

W4(ζ̄) = π2(e−ψ̄(ζ̄+1,ζ̄) + 1)e−ψ̄(ζ̄+1,ζ̄)J(ζ̄ + 1, ζ̄),

W5(ζ̄) =
1
2π

(Q(ζ̄))2 .

Therefore, we can finally write (7.2) as

λ(ζ̄ + 1)− λ(ζ̄) = W (ζ̄) ≡
5∑
i=1

Wi(ζ̄) . (7.3)

It turns out that the function W (ζ̄) approaches zero as ζ̄ →∞ fast enough. Using
this fact it is possible to show that λ(ζ̄) is globally bounded as ζ̄ →∞. In the rest
of this Section we will make precise this argument, and we will determine in which
sense the different terms in W (ζ̄) are small.

7.2. Reformulating the delay equation as an integral equation. The esti-
mates so far derived yield bounds for the terms Wi(ζ̄) with i = 2, . . . , 5.

Proposition 7.1. Suppose that |λ(ζ̄)| ≤ ε0 for any ζ0 ≤ ζ̄ ≤ ζ0 +M , for some M
large. Then: ∣∣ 5∑

i=2

Wi(ζ̄)
∣∣ ≤ C

(f(ζ̄))β
, for ζ0 ≤ ζ̄ ≤ ζ0 +M

for some β ∈ (0, 1).

Proof. Lemmas 6.5, 6.6 imply that |J(ζ̄ + 1, ζ̄)| ≤ C
(f(ζ̄))β for ζ0 ≤ ζ̄ ≤ ζ0 + M .

Therefore |W2(ζ̄)|+ |W4(ζ̄)| ≤ C
(f(ζ̄))β . On the other hand, Lemmas 6.5, 6.6 imply

also that supζ̄≤ζ≤ζ̄+1 |J(ζ, ζ̄)| ≤ C
(f(ζ̄))β , and also supζ̄≤ζ≤ζ̄+1 |

∂J(ζ,ζ̄)

∂ζ̄
| ≤ C

(f(ζ̄))β .
Moreover, (6.80) implies

∂J(ζ, ζ̄)
∂ζ

=
∂

∂ζ̄
(eψ̄(ζ,ζ̄)H(ζ, ζ̄))− eψ̄(ζ,ζ̄) ∂ψ̄(ζ, ζ̄)

∂ζ̄
H(ζ, ζ̄);

whence due to (6.66) and the definition of h1(W, τ), h2(W, τ) we have ∂J(ζ̄+1,ζ̄)
∂ζ = 0.

Then |dJ(ζ̄+1,ζ̄)

dζ̄
| ≤ C

(f(ζ̄))β , whence |Q(ζ̄)| ≤ C
(f(ζ̄))β . Therefore, |W5(ζ̄)| ≤ C

(f(ζ̄))β .
To estimate W3(ζ̄) we need to estimate the term∫ ξ

ζ̄

eψ̄(υ,ζ̄) ∂H(υ, ζ̄)
∂ζ̄

dυ =
∂

∂ζ̄
(
∫ ξ

ζ̄

eψ̄(υ,ζ̄)H(υ, ζ̄)dυ)−
∫ ξ

ζ̄

eψ̄(υ,ζ̄) ∂ψ̄(υ, ζ̄)
∂ζ̄

H(υ, ζ̄)dυ
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we can argue as in the estimate of F1,1 in Lemma 6.5. Then |
∫ ξ
ζ̄
eψ̄(υ,ζ̄) ∂H(υ,ζ̄)

∂ζ̄
dυ| ≤

C
(f(ζ̄))β , whence |W3(ζ̄)| ≤ C

(f(ζ̄))β and Proposition 7.1 follows. �

The term W1(ζ̄) on the right-hand side of (7.3) contains some terms that cannot
be neglected as ζ̄ → ∞ in the study of the long time asymptotics of (7.3). Using
the definitions of W1(ζ̄), Q(ζ̄) we obtain

W1(ζ̄)

= −2π
∫ ζ̄+1

ζ̄

sin(2π(η − ζ̄ − Z(η, ζ̄)))
( ∫ η

ζ̄

eψ̄(ξ,ζ̄) ∂H(ξ, ζ̄)
∂ζ̄

dξ
)
e−2ψ̄(η,ζ̄)λ(η)dη

− d

dζ̄

( ∫ ζ̄+1

ζ̄

cos(2π(η − ζ̄ − Z(η, ζ̄)))λ(η)e−ψ̄(η,ζ̄)J(η, ζ̄)dη
)

− 1
2
d

dζ̄
(ψ̄(ζ̄ + 1, ζ̄))e−ψ̄(ζ̄+1,ζ̄) d

dζ̄
(J(ζ̄ + 1, ζ̄)) + e−ψ̄(ζ̄+1,ζ̄) d

2

dζ̄2
(J(ζ̄ + 1, ζ̄))

The three first terms on the right-hand side can be bounded as C/(f(ζ̄))β arguing
as in the proof of Proposition 7.1.

Lemma 7.2. Under the assumptions of Proposition 7.1,

W1(ζ̄) = W6(ζ̄) + e−ψ̄(ζ̄+1,ζ̄) d
2

dζ̄2
(J(ζ̄ + 1, ζ̄)), (7.4)

where

|W6(ζ̄)| ≤
C

(f(ζ̄))β
, for ζ0 ≤ ζ̄ ≤ ζ0 +M (7.5)

for some β ∈ (0, 1).

To estimate W1(ζ̄) then reduces to deriving approximations for d2

dζ̄2
(J(ζ̄ + 1, ζ̄)).

This requires basically to obtain rather precise approximations for Z(ζ, ζ̄) in the
regions ζ ≈ ζ̄, ζ ≈ ζ̄ + 1. We can further simplify the terms in W1(ζ̄) to be

J(ζ̄ + 1, ζ̄) =
∂

∂ζ̄

( ∫ ζ̄+1

ζ̄

eψ̄(η,ζ̄)H(η, ζ̄)dη
)
−

∫ ζ̄+1

ζ̄

eψ̄(η,ζ̄) ∂ψ̄(η, ζ̄)
∂ζ̄

H(η, ζ̄)dη

=
∫ ζ̄+1

ζ̄

eψ̄(η,ζ̄) ∂H(η, ζ̄)
∂ζ̄

dη

=
∂

∂ζ̄

( ∫ ζ̄+1

ζ̄

H(η, ζ̄)dη
)

+
∫ ζ̄+1

ζ̄

ψ̄(η, ζ̄)
∂H(η, ζ̄)

∂ζ̄
dη

+
∫ ζ̄+1

ζ̄

(eψ̄(η,ζ̄) − 1− ψ̄(η, ζ̄))
∂H(η, ζ̄)

∂ζ̄
dη

≡ J1(ζ̄ + 1, ζ̄) + J2(ζ̄ + 1, ζ̄) + J3(ζ̄ + 1, ζ̄) .

Our main goal now is to obtain suitable approximations for the functions d2

dζ̄2
(J1(ζ̄+

1, ζ̄)), d2

dζ̄2
(J2(ζ̄ + 1, ζ̄)). We also wish to show that d2

dζ̄2
(J3(ζ̄ + 1, ζ̄)) is small as

ζ̄ →∞. As indicated above, this requires to derive good approximations for Z(ζ, ζ̄)
in the regions ζ ≈ ζ̄, ζ ≈ ζ̄ + 1.

The key result of this section is the following.
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Proposition 7.3. Suppose that the assumptions of Proposition 7.1 hold. There
exist functions K1(·), K2(·) satisfying

|K1(x)|+ |K2(x)| ≤ min
{ C

1 + x2
,

1
(L(τ))3

}
,∫ ∞

0

K1(x)dx =
∫ 0

−∞
K2(x)dx = 0

(7.6)

such that

d2

dζ̄2
(J1(ζ̄ + 1, ζ̄) + J2(ζ̄ + 1, ζ̄))

= f ′(ζ̄)
∫ ζ̄+δ

ζ̄

K1(f ′(ζ̄)(η − ζ̄))λ(η)dη

+ f ′(ζ̄ + 1)
∫ ζ̄+1

ζ̄+1−δ
K2(f ′(ζ̄ + 1)(η − (ζ̄ + 1)))λ(η)dη +W7(ζ̄),

(7.7)

where δ > 0 is a small fixed number and

|W7(ζ̄)|+ | d
2

dζ̄2
(J3(ζ̄ + 1, ζ̄))| ≤ C

(f ′(ζ̄))β
, ζ0 ≤ ζ̄ ≤ ζ0 +M (7.8)

with β ∈ (0, 1).

Remark 7.4. Note that Proposition 7.3 states that d2

dζ̄2
(J(ζ̄ + 1, ζ̄)) might be

approximated as two “Dirac-mass approximating” kernels in the regions ζ ≈ ζ̄,
ζ ≈ ζ̄ + 1.

Proof. Let us sketch the main ideas in the proof of Proposition 7.3. We write

d2

dζ̄2
(J1(ζ̄ + 1, ζ̄) + J2(ζ̄ + 1, ζ̄)) = Y1(ζ̄) + Y2(ζ̄) + Y3(ζ̄),

Y1(ζ̄) ≡
d3

dζ̄3
(
∫ ζ̄+δ

ζ̄

H(η, ζ̄)dη) +
d2

dζ̄2
(
∫ ζ̄+δ

ζ̄

ψ̄(η, ζ̄)
∂H(η, ζ̄)

∂ζ̄
dη),

Y2(ζ̄) ≡
d3

dζ̄3
(
∫ ζ̄+1−δ

ζ̄+δ

H(η, ζ̄)dη) +
d2

dζ̄2
(
∫ ζ̄+1−δ

ζ̄+δ

ψ̄(η, ζ̄)
∂H(η, ζ̄)

∂ζ̄
dη),

Y3(ζ̄) ≡
d3

dζ̄3
(
∫ ζ̄+1

ζ̄+1−δ
H(η, ζ̄)dη) +

d2

dζ̄2
(
∫ ζ̄+1

ζ̄+1−δ
ψ̄(η, ζ̄)

∂H(η, ζ̄)
∂ζ̄

dη) .

Using Lemma 6.5 we obtain the estimate |Y2(ζ̄)| ≤ C/(f ′(ζ̄))β .
We now describe how to approximate Y1(ζ̄). The computation of Y3(ζ̄) is com-

pletely similar. Using the form of the function R in (6.23) it would be natural to
approximate Z(ζ, ζ̄) in the region ζ ≈ ζ̄ using the function Z̄(ζ, ζ̄) solution of

Z̄ζ = (ζ − ζ̄ − Z̄(ζ, ζ̄))2λ(ζ) + Φ1(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄)))

+ β(f(ζ̄))Φ2(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄))),

Z̄(ζ̄+, ζ̄) = 0,

(7.9)
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where |xΦ1(x)|+ |Φ2(x)
x | ≤ C, and Φ1(x), Φ2(x) vanish if |x| ≤ 1/L. We have used

the approximation

H(ζ, ζ̄)

≈ Φ1(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄))) + β(f(ζ̄))Φ2(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄))) .
(7.10)

Let us assume for the moment that Z(ζ, ζ̄) might be approximated by means of
Z̄(ζ, ζ̄). We can then approximate Z̄(ζ, ζ̄) as

Z̄(ζ, ζ̄) ≈ Z̄1(ζ, ζ̄) + Z̄2(ζ, ζ̄) + U(ζ, ζ̄), (7.11)

where

Z̄1,ζ = Φ1(f ′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄))),

Z̄2,ζ = −f ′(ζ̄)Φ′1(f ′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)))Z̄2(ζ, ζ̄)

+ β(f(ζ̄))Φ2(f ′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄))),

Uζ = (ζ − ζ̄ − Z̄1(ζ, ζ̄)− Z̄2(ζ, ζ̄))2λ(ζ)− P (ζ, ζ̄)U,

where

Z̄1(ζ̄+, ζ̄) = Z̄2(ζ̄+, ζ̄) = U(ζ̄+, ζ̄) = 0,

P (ζ, ζ̄) ≡ f ′(ζ̄)Φ′1(f
′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)))

+ β(f(ζ̄))f ′(ζ̄)Φ′2(f
′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄))) .

(7.12)

Note that

Z̄1(ζ, ζ̄) =
W1(f ′(ζ̄)(ζ − ζ̄))

f ′(ζ̄)
, (7.13)

Z̄2(ζ, ζ̄) =
β(f(ζ̄))
f ′(ζ̄)

W2(f ′(ζ̄)(ζ − ζ̄)), (7.14)

where

W ′
1(x) = Φ1(x−W1(x)),

W ′
2(x) = −Φ′1(x−W1(x))W2 + Φ2(x−W1(x)),

W1(0) = W2(0) = 0 .

On the other hand

U(ζ, ζ̄) =
∫ ζ

ζ̄

e−
R s

ζ̄
P (ξ,ζ̄)dξ(s− ζ̄ − Z̄1(s, ζ̄)− Z̄2(s, ζ̄))2λ(s)ds (7.15)

Using (7.10) we can approximate
∫ ζ̄+δ
ζ̄

H(η, ζ̄)dη as

∫ ζ̄+δ

ζ̄

H(ζ, ζ̄)dζ ≈
∫ ζ̄+δ

ζ̄

[Φ1(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄)))

+ β(f(ζ̄))Φ2(f ′(ζ̄)(ζ − ζ̄ − Z̄(ζ, ζ̄)))]dζ .
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Using (7.11), we obtain the approximation∫ ζ̄+δ

ζ̄

H(ζ, ζ̄)dζ

≈
∫ ζ̄+δ

ζ̄

Φ1(f ′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)− Z̄2(ζ, ζ̄)))dζ

+
∫ ζ̄+δ

ζ̄

β(f(ζ̄))Φ2(f ′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)− Z̄2(ζ, ζ̄)))dζ

−
∫ ζ̄+δ

ζ̄

f ′(ζ̄)Φ′1(f
′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)− Z̄2(ζ, ζ̄)))U(ζ, ζ̄)dζ

−
∫ ζ̄+δ

ζ̄

β(f(ζ̄))Φ′2(f
′(ζ̄)(ζ − ζ̄ − Z̄1(ζ, ζ̄)− Z̄2(ζ, ζ̄)))U(ζ, ζ̄)dζ .

(7.16)

The first two terms on the right of (7.16), as well as their derivatives are bounded
by O( 1

(f ′(ζ̄))β ), β > 0, as can be seen using (7.13), (7.14) and the change of variables
ζ − ζ̄ = s. On the other hand, using (7.15) the definition of P (ζ, ζ̄) we can rewrite
the last two terms as

−
∫ ζ̄+δ

ζ̄

dζP (ζ, ζ̄)
∫ ζ

ζ̄

e
−

R η

ζ̄
P (ξ,ζ̄)dξ(η − ζ̄ − Z̄1(η, ζ̄)− Z̄2(η, ζ̄))2λ(η)dη

≡ h1(ζ̄)

We need to compute three derivatives of h1(ζ̄). The contributions due to the
extremes of integration vanish, since P (ζ̄, ζ̄) = P (ζ̄ + 1, ζ̄) = 0. Then

d3h1(ζ̄)
dζ̄3

= −
∫ ζ̄+δ

ζ̄

dηλ(η)

× d3

dζ̄3

( ∫ ζ̄+δ

η

P (ζ, ζ̄)e−
R η

ζ̄
P (ξ,ζ̄)dξ(η − ζ̄ − Z̄1(η, ζ̄)− Z̄2(η, ζ̄))2dζ

)
.

The contributions of P (ζ, ζ̄) and its derivatives at ζ = ζ̄ + δ are bounded as
O(1/(f ′(ζ̄))β). Then

d3h1(ζ̄)
dζ̄3

= −
∫ ζ̄+δ

ζ̄

dηλ(η)
∫ ζ̄+δ

η

d3

dζ̄3

([ ∫ ζ̄+δ

η

P (ζ, ζ̄)dζ
]

× e
−

R η

ζ̄
P (ξ,ζ̄)dξ(η − ζ̄ − Z̄1(η, ζ̄)− Z̄2(η, ζ̄))2

)
+O(1/(f ′(ζ̄))β)

Using (7.12) and (7.13), it follows that∫ η

ζ̄

P (ξ, ζ̄)dξ

=
∫ f ′(ζ̄)(η−ζ̄)

0

Φ′1(x−W1(x))dx+ β(f(ζ̄))
∫ f ′(ζ̄)(η−ζ̄)

0

Φ′2(x−W1(x))dx .

Using (7.12), (7.13), (7.14), we obtain∫ ζ̄+δ

η

P (ζ, ζ̄)dζ = f ′(ζ̄)
∫ ζ̄+δ

η

Φ′1(f
′(ζ̄)(ζ − ζ̄)−W1(f ′(ζ̄)(ζ − ζ̄)))dζ



46 J. J. L. VELÁZQUEZ EJDE-2006/52

+ β(f(ζ̄))
∫ ζ̄+δ

η

f ′(ζ̄)Φ′2
(
f ′(ζ̄)(ζ − ζ̄)

−W1(f ′(ζ̄)(ζ − ζ̄))
)
dζ +O(1/(f ′(ζ̄))β),

(η − ζ̄ − Z̄1(η, ζ̄)− Z̄2(η, ζ̄))2

=
1

(f ′(ζ̄))2
(f ′(ζ̄)(η − ζ̄)−W1(f ′(ζ̄)(η − ζ̄))− β(f(ζ̄))W2(f ′(ζ̄)(η − ζ̄)))2

Therefore, we arrive to an approximation of the form∫ ζ̄+δ

η

P (ζ, ζ̄)dζe−
R η

ζ̄
P (ξ,ζ̄)dξ(η − ζ̄ − Z̄1(η, ζ̄)− Z̄2(η, ζ̄))2

=
1

(f ′(ζ̄))
S(f ′(ζ̄)(η − ζ̄), β(f(ζ̄)))

and

d3h1(ζ̄)
dζ̄3

= −
∫ ζ̄+δ

ζ̄

dηλ(η)
∫ ζ̄+δ

η

d3

dζ̄3

( 1
(f ′(ζ̄))

× S̃(f ′(ζ̄)(η − ζ̄), β(f(ζ̄)))
)
dζ +O

(
1/(f ′(ζ̄))β

)
.

We now remark that if δ = 1/(f ′(ζ̄))α with α < 1 all the contributions due to
terms like Φ2, W2 and analogous ones yield relative corrections of order 1/(f ′(ζ̄))β ,
with β > 0, perhaps small if α is close to zero, but in any case strictly positive. In
particular this implies that if the size of the final terms obtained is of order one the
correction due to the presence of β(f(ζ̄)) would be negligible. We then write

d3h1(ζ̄)
dζ̄3

= −
∫ ζ̄+δ

ζ̄

dηλ(η)
( ∫ ζ̄+δ

η

d3

dζ̄3

( 1
(f ′(ζ̄))

S1(f ′(ζ̄)(ζ − ζ̄))
)
dζ

)
×

(
1 +O(1/(f ′(ζ̄))β)

)
+O(1/f ′(ζ̄))β),

(7.17)

where

S1(x) =
[ ∫ ∞

x

Φ′1(ξ −W1(ξ))dξ
]
e−

R x
0 Φ′1(ξ−W1(ξ))dξ(x−W1(x))2

Since log(fk)(ζ)) ∼ log(f(ζ)) as ζ → ∞ (cf. Appendix A), it turns out that the
derivatives of f(ζ̄) in (7.17) would yield smaller contributions that the derivatives
of the term ζ̄ that, roughly, multiplies the different terms by f ′(ζ̄). Then

d3h1(ζ̄)
dζ̄3

= (f ′(ζ̄))2
∫ ζ̄+δ

ζ̄

dηλ(η)
( ∫ ζ̄+δ

η

S′′′1 (f ′(ζ̄)(ζ − ζ̄))dζ
)

×
(
1 +O(1/(f ′(ζ̄))β)

)
+O(1/(f ′(ζ̄))β),

whence

d3h1(ζ̄)
dζ̄3

= −f ′(ζ̄)
[ ∫ ζ̄+δ

ζ̄

dηλ(η)S′′1 (f ′(ζ̄)(η − ζ̄))dζ
]

×
(
1 +O(1/(f ′(ζ̄))β)

)
+O(1/(f ′(ζ̄))β)
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and this formula yields the sough-for structure (7.7). It remains to estimate in a
similar manner the term

d2

dζ̄2
(
∫ ζ̄+δ

ζ̄

ψ̄(η, ζ̄)
∂H(η, ζ̄)

∂ζ̄
dη)

Arguing as in the previous case it would follow that this term might be approxi-
mated as

d2

dζ̄2
(
∫ ζ̄+δ

ζ̄

ψ̄(η, ζ̄)
∂H(η, ζ̄)

∂ζ̄
dη) =

d2h2(ζ̄)
dζ̄2

+O(1/(f ′(ζ̄))β),

where

h2(ζ̄) = 2f ′(ζ̄)
∫ ζ̄+δ

ζ̄

λ(η)(η − ζ̄ − Z1(η, ζ̄))[
∫ ζ̄+δ

η

Ψ(f ′(ζ̄)(ζ − ζ̄))dζ]dη,

Ψ(x) ≡ d(Φ1(x−W1(x)))
dx

;

whence

h2(ζ̄) =
1

f ′(ζ̄)

∫ ζ̄+δ

ζ̄

λ(η)S2(f ′(ζ̄)(η − ζ̄))dη,

where

S2(x) = 2(x−W1(x))
∫ ∞

x

Ψ(ξ)dξ .

Then

d2h2(ζ̄)
dζ̄2

= f ′(ζ̄)
[ ∫ ζ̄+δ

ζ̄

λ(η)S′′2 (f ′(ζ̄)(η − ζ̄))dη
](

1 +O(1/(f ′(ζ̄))β)
)

and this yields also the structure in (7.7). The bounds for d2

dζ̄2
(J3(ζ̄ + 1, ζ̄)) might

be obtained in a similar manner, using the fact that the presence of an additional
term (η − ζ̄)2 yields smallness. The approximations near the value ζ = ζ̄ + 1 can
be derived in a similar manner, whence Proposition 7.3 follows. �

7.3. Bounds for the solutions of the integral equation.

Proof of Theorem 2.1. In summary, using Propositions 7.1 and 7.3 and Lemma 7.2,
we can rewrite (7.3) as

λ(ζ̄ + 1)− λ(ζ̄) = e−ψ̄(ζ̄+1,ζ̄)
[
f ′(ζ̄)

∫ ζ̄+δ

ζ̄

K1(f ′(ζ̄)(η − ζ̄))λ(η)dη

+ f ′(ζ̄ + 1)
∫ ζ̄+1

ζ̄+1−δ
K2(f ′(ζ̄ + 1)(η − (ζ̄ + 1)))λ(η)dη

]
+O(1/(f ′(ζ̄))β)
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On the other hand, using the compatibility condition (6.72) we can replace the
exponential factor e−ψ̄(ζ̄+1,ζ̄) by one, introducing in turn a corrective term

λ(ζ̄ + 1)− λ(ζ̄) =
[
f ′(ζ̄)

∫ ζ̄+δ

ζ̄

K1(f ′(ζ̄)(η − ζ̄))λ(η)dη

+ f ′(ζ̄ + 1)
∫ ζ̄+1

ζ̄+1−δ
K2(f ′(ζ̄ + 1)(η − (ζ̄ + 1)))λ(η)dη

]
+O(1/(f ′(ζ̄))β)

(7.18)

Equation (7.18) is satisfied as long as |λ(ζ̄ + 1)| ≤ ε0. The local existence Theorem
(cf. Theorem 6.2) implies that it is then possible extend the solution in a larger
interval. It remains to show that the function λ solution of (7.18) is globally defined
in time and that the estimate |λ(ζ̄ + 1)| ≤ ε0 remains being valid for arbitrarily
large values of ζ̄. To this end, we define

ψ(τ̄) = λ(ζ̄ + 1), τ̄ = f(ζ̄ + 1) .

Using the fact that S(f(ζ̄ + 1)) = f(ζ̄) (cf. (4.5)), as well as the asymptotics of f
(cf. Appendix A), (7.18) becomes

ψ(τ̄)− ψ(S(τ̄)) =
∫ τ̄

f(f−1(τ̄)−δ)
K2(τ̄ − s)ψ(s)ds

+
∫ f(f−1(S(τ̄))+δ)

S(τ̄)

K1(s− S(τ̄))ψ(s)ds+O(
1

(S(τ̄))β
)

where the value of β might change from one formula to the other, but it is always
a positive number.

Using (7.8) we can then obtain the inequality

sup
τn≤τ≤τn+1

|ψ(τ)| ≤
(
1 +

C

(L(τn−1))3
)

sup
τn−1≤τ≤τn

|ψ(τ)|+ C

(τn−1)β

where τn = S−1(τn−1), and τ0 is the initial time for τ̄ . Using (5.6) it then follows
that

sup
τn≤τ≤τn+1

|ψ(τ)| ≤
(
1 +

C

n− 1
)

sup
τn−1≤τ≤τn

|ψ(τ)|+ C

(τn−1)β

whence, due to the very fast growth of τn we obtain, upon iteration

sup
τn−1≤τ≤τn

|ψ(τ)| ≤ Cε0, (7.19)

where ε0 might be arbitrarily small if τ0 is large enough and supτ0≤τ≤τ1 |ψ(τ)| is
small.

Formula (7.19) implies that ψ(τ) remains small for arbitrarily long times. In
particular the assumptions required in Lemma 6.3 and in the subsequent arguments
are satisfied. Moreover, (7.19) implies that the solution of the problem (6.20 )-
(6.22), or equivalently (5.22), (5.51), (5.52) can be extended to arbitrarily long
times. Theorem 2.1 is then a consequence of Theorem 5.9. �



EJDE-2006/52 DYNAMICS OF THE CHARACTERISTIC CURVES 49

8. Appendix: Some properties of the function f(ζ)

In this Appendix we collect several properties of the function f(ζ) that have
been used repeatedly in Section 7. The function f(ζ) is defined by means of (4.5),
(4.6) as well as the compatibility conditions (4.8 )-(4.11). Although the properties
described in this Appendix could be generalized to more general functions S, we
will assume by definiteness that (3.31) holds, as well as similar asymptotic formulae
for the derivatives of S. Under these assumptions the function f has the following
properties

f(ζ) � exp(exp(exp(. . . exp(ζ)))) as ζ →∞ (8.1)
for any finite number of iterated exponentials.

f (k−1)(ζ) � f (k)(ζ) � (f(ζ))1+ε as ζ →∞ (8.2)
for any ε > 0, and any k = 1, 2, 3.

f(ζ + δ) � f(ζ) as ζ →∞ (8.3)

for any δ > 0.

f(ζ +
C

f(ζ)
) ∼ f(ζ) as ζ →∞ (8.4)

for any C > 0. Also there holds

log(f ′(ζ)) ∼ log(f(ζ)) as ζ →∞ (8.5)

log(β(τ)) ∼ −2 log(τ) as τ →∞ (8.6)

Property (8.1) follows from iterating (4.5) more than k times. Property (8.3) can
be proved in a similar manner. Indeed, iterating (4.5) by means of an exponential
function it follows that,since f(ζ) →∞, that f(ζ + δ)− f(ζ) →∞, Then

f(ζ + δ) = S−1(f(ζ + δ − 1))

= S−1([f(ζ + δ − 1)− f(ζ − 1)] + f(ζ − 1))

� S−1(f(ζ − 1))

= f(ζ)

as ζ →∞. Property (8.2) follows from differentiating (4.5), which yields

f ′(ζ) = S′(f(ζ + 1))f ′(ζ + 1) ∼ a

f(ζ + 1)
f ′(ζ + 1) . (8.7)

Iterating (8.7) to estimate f ′(ζ+1) it follows from (8.1) that f ′(ζ) →∞. Combining
this with (8.7) we obtain the first inequality in (8.2) with k = 1. On the other hand,
combining (4.5) and (8.7) we obtain

f ′(ζ + 1)
f(ζ + 1)

=
[ 1
S′(f(ζ + 1))

f(ζ)
S−1(f(ζ))

]f ′(ζ)
f(ζ)

. (8.8)

The term between brackets is bounded by Cf(ζ). Iterating (8.8) we obtain

f ′(ζ0 + n)
f(ζ0 + n)

=
n−1∏
`=0

[ 1
S′(f(ζ0 + 1 + `))

f(ζ0 + `)
S−1(f(ζ0 + `))

]f ′(ζ0)
f(ζ0)

. (8.9)

The product in (8.9) can be bounded by
n−1∏
`=0

[Cf(ζ0 + `)] . (8.10)
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Taking the logarithm and using that f(ζ+1)/f(ζ) ≥ 2 for ζ large enough we obtain,
after adding a geometric series, an upper estimate for the product in (8.10), of the
form

exp(B log(f(ζ0 + n− 1))) = (f(ζ0 + n− 1))B

for some B > 0; whence (8.9) yields

f ′(ζ) ≤ Cf(ζ)(f(ζ − 1))B (8.11)

and since (4.5) implies that f(ζ − 1) ≤ C log(f(ζ)) we obtain (8.2) for k = 1.
The proof of (8.2) for k = 2, 3 is similar. To show (8.4) we iterate (4.5) to obtain

f
(
ζ +

C

f(ζ)
)

= S−1
(
S−1

(
. . . S−1

(
f
(
ζ +

C

f(ζ)
− n

))))
where the number of iterations n is such that ζ + C

f(ζ) − n ∈ [ζ0, ζ0 + 1]. Since
f(ζ) is huge we can approximate the terms S−1(f(ζ+ C

f(ζ) −n)) as S−1(f(ζ−)n)+
C(S−1)′(f(ζ−n))

f(ζ) . Using this approximation in n − 1 iterations, as well as (8.7) we
obtain the approximation

f
(
ζ +

C

f(ζ)
)

= S−1
(
f(ζ − 1) +

Cf ′(ζ − 1)
f(ζ)

)
and using (8.11), (8.4) follows. A more rigorous proof would just replace the ap-
proximation using derivatives by upper bounds. Similar approximations might be
derived for the derivatives.

Finally, (8.5) follows from (8.3), (8.7) and (8.6) is a consequence of (4.15), (8.1)-
(8.4). The detailed derivation of (8.6) as well as more detailed asymptotics for β(τ)
have been given in ([14]).
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