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GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL
EQUATIONS WITH COEFFICIENTS OF FINITE ITERATED

ORDER

JIN TU, ZONGXUAN CHEN, XIUMIN ZHENG

Abstract. In this paper, we investigate the growth of solutions to the differ-

ential equation

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = F (z),

where the coefficients are of finite iterated order.

1. Introduction

It is well known that all solutions of the complex differential equations

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = 0, (1.1)

f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = F (z) (1.2)

are entire functions, provided that the coefficients A0(z), A1(z), . . . , Ak−1(z), F (z)
are entire functions with A0(z) 6≡ 0. A natural question arises: What conditions
on A0(z), A1(z), . . . , Ak−1(z), F (z) will guarantee that every solution f 6≡ 0 has
infinite order? Also: For solutions of infinite order, how to express the growth of
them explicitly, it is a very important problem. Partial results have been available
since a paper of Frei [4]. For high order differential equations, the following results
have been obtained.

Theorem 1.1 ([3, Theorem 2.1]). Let A0(z), A1(z), . . . , Ak−1(z) be entire functions
with A0(z) 6≡ 0, such that for some real constants α, β, µ, θ1, θ2, with 0 ≤ β < α, µ >
0, θ1 < θ2, we have

|A0(z)| ≥ eα|z|µ , (1.3)

|Aj(z)| ≤ eβ|z|µ , j = 1, . . . , k − 1, (1.4)

as z → ∞ with θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of (1.1) has infinite
order.

Theorem 1.2 ([1, Theorem 1]). Let H be a set of complex numbers satisfying
dens{|z| : z ∈ H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions and
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satisfy (1.3) and (1.4) as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of (1.1)
satisfies σ(f) = ∞ and σ2(f) ≥ µ.

Theorem 1.3 ([1, Theorem 2]). Let H be a set of complex numbers satisfying
dens{|z| : z ∈ H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions with
max{σ(Aj) : j = 1, . . . , k − 1} ≤ σ(A0) = σ < +∞ such that for some constants
0 ≤ β < α and for any ε > 0, we have

|A0(z)| ≥ eα|z|σ−ε

, (1.5)

|Aj(z)| ≤ eβ|z|σ−ε

, j = 1, . . . , k − 1, (1.6)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of (1.1) satisfies σ(f) = ∞ and
σ2(f) = σ(A0).

Theorem 1.4 ([2, Theorem 1.1]). Let H,A0(z), A1(z), . . . , Ak−1(z) satisfy the hy-
potheses of Theorem 1.3, and let F 6≡ 0 be an entire function with σ(F ) < +∞.
Then every solution f(z) of (1.2) satisfies λ2(f) = σ2(f) = σ, with at most one
exceptional solution f0 satisfying σ2(f0) < σ.

2. Notation and results

In this section, we prove some results concerning the above questions when the
coefficients of (1.1) and (1.2) are of finite iterated order. For r ∈ [0,∞), we define
exp1 r = er and expi+1 r = exp(expi r) (i ∈ N). For r sufficiently large, we define
log1 r = log r, logi+1 r = log(logi r) (i ∈ N). To express the rate of growth of entire
function of infinite order, we introduce the notion of iterated order [8].

Definition 2.1. The iterated i-order of an entire function f is defined by

σi(f) = lim sup
r→∞

logi+1 M(r, f)
log r

= lim sup
r→∞

logi T (r, f)
log r

(i ∈ N). (2.1)

Definition 2.2. The finiteness degree of the order of an entire function f is defined
by

i(f) =


0 if f is a polynomial,
min{j ∈ N : σj(f) < ∞} if f is transcendental with

σj(f) < ∞ for some j ∈ N,

∞ if σj(f) = ∞ ∀j ∈ N.

(2.2)

Definition 2.3. The iterated convergence exponent of the sequence of zeros of an
entire function f is defined by

λi(f) = lim sup
r→∞

logi n(r, 1/f)
log r

(i ∈ N). (2.3)

The linear measure of a set E ⊂ [0,+∞) is defined as m(E) =
∫ +∞
0

χE(t) dt. The
logarithmic measure of a set E ⊂ [1,+∞) is defined by lm(E) =

∫ +∞
1

χE(t)/t dt,
where χE(t) is the characteristic function of E. The upper and lower densities of
E are

densE = lim sup
r→∞

m(E ∩ [0, r])
r

, densE = lim inf
r→∞

m(E ∩ [0, r])
r

. (2.4)

In this paper, we improve the results of Beläıdi [1, 2, 3], and we obtain the following
results:
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Theorem 2.4. Let A0(z), A1(z), . . . , Ak−1(z) be entire functions with A0(z) 6≡ 0
such that for real constants α, β, µ, θ1, θ2 and positive integer p with 0 ≤ β < α, µ >
0, θ1 < θ2, 1 ≤ p < ∞, we have

|A0(z)| ≥ expp{α|z|µ}, (2.5)

|Aj(z)| ≤ expp{β|z|µ}, j = 1, . . . , k − 1, (2.6)

as z → ∞ with θ1 ≤ argz ≤ θ2. Then σp+1(f) ≥ µ holds for all non-trivial
solutions of (1.1).

Theorem 2.5. Let H be a set of complex numbers satisfying dens{|z| : z ∈ H} > 0,
and let A0(z), A1(z), . . . , Ak−1(z) be entire functions and satisfy (2.5) and (2.6) as
z →∞ for z ∈ H, where 0 ≤ β < α, µ > 0, 1 ≤ p < ∞. Then every solution f 6≡ 0
of (1.1) satisfies σp+1(f) ≥ µ.

Theorem 2.6. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions of iterated order
with max{σp(Aj) : j = 1, . . . , k − 1} ≤ σp(A0) = σ < +∞, 1 ≤ p < ∞ such that
for some constants 0 ≤ β < α and for any given ε > 0, we have

|A0(z)| ≥ expp{α|z|σ−ε} (2.7)

|Aj(z)| ≤ expp{β|z|σ−ε}, j = 1, . . . , k − 1, (2.8)

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of (1.1) satisfies σp+1(f) =
σp(A0) = σ.

Theorem 2.7. Let H,A0(z), A1(z), . . . , Ak−1(z) satisfy the hypotheses of Theorem
2.6, and let F 6≡ 0 be an entire function of iterated order with i(F ) = q.

(i) If q < p + 1 or q = p + 1, σp+1(F ) < σp(A0), then every solution f(z)
of (1.2) satisfies λp+1(f) = λp+1(f) = σp+1(f) = σ, with at most one
exceptional solution f0 satisfying i(f) < p + 1 or σp+1(f0) < σ.

(ii) If q > p + 1 or q = p + 1, σp(A0) < σp+1(F ) < +∞, then every solution
f(z) of (1.2) satisfies i(f) = q and σq(f) = σq(F ).

3. Preliminaries for proving the main results

To prove the above theorems, we need the following lemmas:

Lemma 3.1 ([5]). Let f(z) be a nontrivial entire function, and let α > 1 and ε > 0
be given constants. Then there exist a constant c > 0 and a set E1 ⊂ [0,∞) having
finite linear measure such that for all z satisfying |z| = r 6∈ E1, we have∣∣f (k)(z)

f(z)

∣∣ ≤ c[T (αr, f)rε log T (αr, f)]k (k ∈ N). (3.1)

Lemma 3.2 (Wiman-Valiron [6, 9]). Let f(z) be a transcendental entire function,
and let z be a point with |z| = r at which |f(z)| = M(r, f). Then for all |z| outside
a set E2 of r of finite logarithmic measure, we have

f (k)(z)
f(z)

=
(νf (r)

z

)k

(1 + o(1)) (k ∈ N, r 6∈ E2). (3.2)

where νf (r) is the central index of f .
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Lemma 3.3 ([7]). Let f(z) =
∑∞

n=0 anzn be an entire function, µ(r) be the maxi-
mum term, i.e. µ(r) = max{|an|rn;n = 0, 1, . . . }, and let νf (r) be the central index
of f . Then

(i) For |a0| 6= 0,

log µ(r) = log |a0|+
∫ r

0

νf (t)
t

dt, (3.3)

(ii) For r < R,

M(r, f) < µ(r){νf (R) +
R

R− r
}. (3.4)

Lemma 3.4. Let f(z) be an entire function with σp+1(f) = σ, and let νf (r) be the
central index of f , then

lim sup
r→∞

logp+1 νf (r)
log r

= σ. (3.5)

Proof. Let f(z) =
∑∞

n=0 anzn, without loss of generality, we can assume that |a0| 6=
0. From (3.3), we have

log µ(2r) = log |a0|+
∫ 2r

0

νf (t)
t

dt ≥ log |a0|+ νf (r) log 2. (3.6)

Using the Cauchy inequality, it is easy to see that µ(2r) ≤ M(2r, f). Hence

νf (r) log 2 ≤ log M(2r, f) + c1,

where c1 > 0 is a constant. By (2.1) and (3),

lim sup
r→∞

logp+1 νf (r)
log r

≤ lim sup
r→∞

logp+2 M(r, f)
log r

= σ. (3.7)

On the other hand, from (3.4), we have

M(r, f) < µ(r){νf (2r) + 2} = |aνf (r)|rνf (r){νf (2r) + 2}, (3.8)

Since {|an|} is a bounded sequence, we have

logp+2 M(r, f) ≤ logp+1 νf (2r)
[
1 +

logp+2 νf (2r)
logp+1 νf (2r)

]
+ logp+2 r + c2, (3.9)

where c2 > 0 is a constant. Hence

σ = lim sup
r→∞

logp+2 M(r, f)
log r

≤ lim sup
r→∞

logp+1 νf (2r)
log 2r

= lim sup
r→∞

logp+1 νf (r)
log r

.

(3.10)
From (3.7) and (3.10), we obtain the conclusion (3.5). �

Lemma 3.5 ([8]). Let f(z) be an entire function with i(f) = p + 1, then

σp+1(f) = σp+1(f ′). (3.11)

Lemma 3.6. Let A0(z), . . . , Ak−1(z) be entire functions, with , F 6≡ 0 and let f(z)
be a solution of (1.2) satisfying one of the following conditions:

(i) max{i(F ) = q, i(Aj)(j = 0, . . . , k − 1)} < i(f) = p + 1 (1 ≤ p < ∞),
(ii) max{σp(F ), σp(Aj)(j = 0, . . . , k − 1)} < σp+1(f) = σ.

Then λp+1(f) = λp+1(f) = σp+1(f) = σ.
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Proof. From (1.2), we have

1
f

=
1
F

(f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A0

)
, (3.12)

it is easy to see that if f has a zero at z0 of order α(> k), then F must have a zero
at z0 of order α− k, hence

n(r,
1
f

) ≤ kn(r,
1
f

) + n(r,
1
F

), (3.13)

N(r,
1
f

) ≤ kN(r,
1
f

) + N(r,
1
F

). (3.14)

By (3.12), we have

m(r,
1
f

) ≤ m(r,
1
F

) +
k−1∑
j=0

m(r, Aj) + O (log T (r, f) + log r) (r 6∈ E3), (3.15)

where E3 is a subset of r of finite linear measure. By (3.14) and (3.15), for r 6∈ E3,
we get

T (r, f) = T (r,
1
f

) + O(1) ≤ kN(r,
1
f

) + T (r, F ) +
k−1∑
j=0

T (r, Aj) + O{log(rT (r, f))}.

(3.16)
For sufficiently large r, we have

O{log r + log T (r, f)} ≤ 1
2
T (r, f), (3.17)

T (r, A0) + · · ·+ T (r, Ak−1) ≤ k expp−1{rσ+ε}, (3.18)

T (r, F ) ≤ expp−1{rσ(F )+ε}. (3.19)

Thus, by (3.16)-(3.19), for r 6∈ E3, we have

T (r, f) ≤ 2kN(r,
1
f

) + 2k expp−1{rσ+ε}+ 2 expp−1{rσ(F )+ε}. (3.20)

Hence for any f with σp+1(f) = σ, by (3.20), we have σp+1(f) ≤ λp+1(f). There-
fore, λp+1(f) = λp+1(f) = σp+1(f) = σ. �

4. Proofs of theorems

Proof of Theorem 2.4. Let f be a solution of (1.1), and rewritten (1.1) as

A0 = −
(f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A1

f ′

f

)
. (4.1)

By Lemma 3.1, there exist a constant c > 0 and a set E1 ⊂ [0,∞) having finite
linear measure such that |z| = r 6∈ E1 for all z = reiθ. Then we have∣∣∣f (j)(z)

f(z)

∣∣∣ ≤ c[rT (2r, f)]2k, j = 1, . . . , k − 1. (4.2)

By (4.1), (4.2) and the hypothesis of Theorem 2.4, we get

expp{α|z|µ} ≤ |A0(z)| ≤ k expp{β|z|µ}c[rT (2r, f)]2k (4.3)

as z → ∞ with |z| = r 6∈ E1, θ1 ≤ arg z = θ ≤ θ2. By (4.3) and (2.1), we have
σp+1(f) ≥ µ. �
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Proof of Theorem 2.5. From (1.1), it follows that

|A0(z)| ≤
∣∣f (k)(z)

f(z)

∣∣ + |Ak−1(z)|
∣∣f (k−1)(z)

f(z)

∣∣ + · · ·+ |A1(z)|
∣∣f ′(z)
f(z)

∣∣. (4.4)

By the hypotheses of Theorem 2.5, there exists a set H with dens{|z| : z ∈ H} > 0
such that for all z satisfying z ∈ H, we have

|A0(z)| ≥ expp{α|z|µ}, (4.5)

|Aj(z)| ≤ expp{β|z|µ}, j = 1, . . . , k − 1, (4.6)

as z → ∞. Hence from (4.2), (4.4)-(4.6), it follows that for all z satisfying z ∈ H
and z 6∈ E1, we have

expp{α|z|µ} ≤ k expp{β|z|µ}c[rT (2r, f)]2k (4.7)

as z →∞. Thus, there exists a set H1 = H \ E1 with dens{|z| : z ∈ H1} > 0 such
that

expp{(α− β)|z|µ} ≤ kc[rT (2r, f)]2k (4.8)

as z →∞. Therefore, by (4.8) and Definition 2.1, we obtain σp+1(f) ≥ µ. �

Proof of Theorem 2.6. By Theorem 2.5, we have σp+1(f) ≥ σ − ε, since ε is ar-
bitrary, we get σp+1(f) ≥ σp(A0) = σ. On the other hand, by Lemma 3.2, there
exists a set E2 ⊂ [1,∞) having finite logarithmic measure such that (3.2) holds for
all z satisfying |z| = r 6∈ [0, 1]

⋃
E2 and |f(z)| = M(r, f). By Definition 2.1, for

any given ε > 0 and for sufficiently large r, we have

|Aj(z)| ≤ expp{rσ+ε}, j = 0, 1, . . . , k − 1. (4.9)

Substituting (3.2) and (4.9) in (1.1), for all z satisfying |z| = r 6∈ [0, 1]
⋃

E2 and
|f(z)| = M(r, f), we have(νf (r)

|z|
)k|1 + o(1)| ≤ k

(νf (r)
|z|

)k−1|1 + o(1)| expp{rσ+ε}. (4.10)

By (4.10), we get

lim sup
r→∞

logp+1 νf (r)
log r

≤ σ + ε. (4.11)

Since ε is arbitrary, by (4.11) and Lemma 3.4, we obtain σp+1(f) ≤ σ. This and
the fact that σp+1(f) ≥ σ yield σp+1(f) = σ. �

Proof of Theorem 2.7. (i) First, we show that (1.2) can possess at most one ex-
ceptional solution f0 satisfying σp+1(f0) ≤ σ or i(f0) < p + 1. In fact, if f∗ is a
second solution with σp+1(f∗) ≤ σ or i(f∗) < p + 1, then σp+1(f0 − f∗) ≤ σ or
i(f0 − f∗) < p + 1. But f0 − f∗ is a solution of the corresponding homogeneous
equation (1.1) of (1.2), this contradicts Theorem 2.6. We assume that f is a so-
lution with σp+1(f) ≥ σ, and f1, f2, . . . , fk is a solution base of the corresponding
homogeneous equation (1.1). Then f can be expressed in the form

f(z) = B1(z)f1(z) + B2(z)f2(z) + · · ·+ Bk(z)fk(z), (4.12)
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where B1(z), . . . , Bk(z) are determined by

B′
1(z)f1(z) + B′

2(z)f2(z) + · · ·+ B′
k(z)fk(z) = 0,

B′
1(z)f ′1(z) + B′

2(z)f ′2(z) + · · ·+ B′
k(z)f ′k(z) = 0,

...

B′
1(z)f (k−1)

1 (z) + B′
2(z)f (k−1)

2 (z) + · · ·+ B′
k(z)f (k−1)

k (z) = F (z).

(4.13)

Since the Wronskian W (f1, f2, . . . , fk) is a differential polynomial in f1, f2, . . . , fk

with constant coefficients, it is easy to deduce that σp+1(W ) ≤ σp+1(fj) = σp(A0) =
σ. From (4.13),

B′
j = F ·Gj(f1, . . . , fk) ·W (f1, . . . , fk)−1, j = 1, . . . , k, (4.14)

where Gj(f1, . . . , fk) are differential polynomials in f1, f2, . . . , fk with constant co-
efficients, thus

σp+1(Gj) ≤ σp+1(fj) = σp(A0) = σ. (4.15)
Since i(F ) < p + 1 or i(F ) = p + 1, σp+1(F ) < σp(A0), by Lemma 3.5 and (4.15),
for j = 1, . . . , k, we have

σp+1(Bj) = σp+1(B′
j) ≤ max{σp+1(F ), σp(A0)} = σp(A0) = σ . (4.16)

Then from (4.12) and (4.16), we get

σp+1(f) ≤ max{σp+1(fj), σp+1(Bj)} = σp(A0) = σ. (4.17)

This and the assumption σp+1(f) ≥ σ yield σp+1(f) = σ. If f is a solution of
equation (1.2) satisfying σp+1(f) = σ, by Lemma 3.6, we have

λp+1(f) = λp+1(f) = σp+1(f) = σ.

(ii) From the hypotheses of Theorem 2.7 and (4.12)-(4.17), we obtain

σq(f) ≤ σq(F ). (4.18)

From (1.2), a simple consideration of order implies

σq(f) ≥ σq(F ).

By this inequality and (4.18), σq(f) = σq(F ) which completes the proof. �

References

[1] Beläıdi, B., Estimation of the hyper-order of entire solutions of complex linear ordinary dif-

ferential equations whose coefficients are entire functions, E. J. Qualitative Theory of Diff.

Equ. No. 5, (2002), 1-8.
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