Electronic Journal of Differential Equations, Vol. 2006(2006), No. 54, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS WITH COEFFICIENTS OF FINITE ITERATED ORDER

JIN TU, ZONGXUAN CHEN, XIUMIN ZHENG

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we investigate the growth of solutions to the differ- } \\
& \text { ential equation } \\
& \qquad f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{0}(z) f=F(z)
\end{aligned}
$$

where the coefficients are of finite iterated order.

1. Introduction

It is well known that all solutions of the complex differential equations

$$
\begin{gather*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{0}(z) f=0 \tag{1.1}\\
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{0}(z) f=F(z) \tag{1.2}
\end{gather*}
$$

are entire functions, provided that the coefficients $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z), F(z)$ are entire functions with $A_{0}(z) \not \equiv 0$. A natural question arises: What conditions on $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z), F(z)$ will guarantee that every solution $f \not \equiv 0$ has infinite order? Also: For solutions of infinite order, how to express the growth of them explicitly, it is a very important problem. Partial results have been available since a paper of Frei 4]. For high order differential equations, the following results have been obtained.

Theorem 1.1 ([3, Theorem 2.1]). Let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions with $A_{0}(z) \not \equiv 0$, such that for some real constants $\alpha, \beta, \mu, \theta_{1}, \theta_{2}$, with $0 \leq \beta<\alpha, \mu>$ $0, \theta_{1}<\theta_{2}$, we have

$$
\begin{gather*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mu}} \tag{1.3}\\
\left|A_{j}(z)\right| \leq e^{\beta|z|^{\mu}}, \quad j=1, \ldots, k-1 \tag{1.4}
\end{gather*}
$$

as $z \rightarrow \infty$ with $\theta_{1} \leq \arg z \leq \theta_{2}$. Then every solution $f \not \equiv 0$ of (1.1) has infinite order.

Theorem 1.2 ([1, Theorem 1]). Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in H\}>0$, and let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions and

[^0]satisfy (1.3) and 1.4 as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of 1.1 satisfies $\sigma(f)=\infty$ and $\sigma_{2}(f) \geq \mu$.
Theorem 1.3 ([1, Theorem 2]). Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in H\}>0$, and let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right): j=1, \ldots, k-1\right\} \leq \sigma\left(A_{0}\right)=\sigma<+\infty$ such that for some constants $0 \leq \beta<\alpha$ and for any $\varepsilon>0$, we have
\[

$$
\begin{gather*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\sigma-\varepsilon}} \tag{1.5}\\
\left|A_{j}(z)\right| \leq e^{\beta|z|^{\sigma-\varepsilon}}, \quad j=1, \ldots, k-1 \tag{1.6}
\end{gather*}
$$
\]

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of 1.1 satisfies $\sigma(f)=\infty$ and $\sigma_{2}(f)=\sigma\left(A_{0}\right)$.
Theorem 1.4 ([2, Theorem 1.1]). Let $H, A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ satisfy the hypotheses of Theorem 1.3, and let $F \not \equiv 0$ be an entire function with $\sigma(F)<+\infty$. Then every solution $f(z)$ of 1.2 satisfies $\bar{\lambda}_{2}(f)=\sigma_{2}(f)=\sigma$, with at most one exceptional solution f_{0} satisfying $\sigma_{2}\left(f_{0}\right)<\sigma$.

2. Notation and Results

In this section, we prove some results concerning the above questions when the coefficients of (1.1) and (1.2) are of finite iterated order. For $r \in[0, \infty)$, we define $\exp _{1} r=e^{r}$ and $\exp _{i+1} r=\exp \left(\exp _{i} r\right)(i \in \mathbb{N})$. For r sufficiently large, we define $\log _{1} r=\log r, \log _{i+1} r=\log \left(\log _{i} r\right)(i \in \mathbb{N})$. To express the rate of growth of entire function of infinite order, we introduce the notion of iterated order [8].

Definition 2.1. The iterated i-order of an entire function f is defined by

$$
\begin{equation*}
\sigma_{i}(f)=\limsup _{r \rightarrow \infty} \frac{\log _{i+1} M(r, f)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log _{i} T(r, f)}{\log r} \quad(i \in \mathbb{N}) \tag{2.1}
\end{equation*}
$$

Definition 2.2. The finiteness degree of the order of an entire function f is defined by

$$
i(f)= \begin{cases}0 & \text { if } f \text { is a polynomial, } \tag{2.2}\\ \min \left\{j \in \mathbb{N}: \sigma_{j}(f)<\infty\right\} & \text { if } f \text { is transcendental with } \\ & \sigma_{j}(f)<\infty \text { for some } j \in \mathbb{N} \\ \infty & \text { if } \sigma_{j}(f)=\infty \forall j \in \mathbb{N}\end{cases}
$$

Definition 2.3. The iterated convergence exponent of the sequence of zeros of an entire function f is defined by

$$
\begin{equation*}
\lambda_{i}(f)=\limsup _{r \rightarrow \infty} \frac{\log _{i} n(r, 1 / f)}{\log r} \quad(i \in \mathbb{N}) \tag{2.3}
\end{equation*}
$$

The linear measure of a set $E \subset[0,+\infty)$ is defined as $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$. The logarithmic measure of a set $E \subset[1,+\infty)$ is defined by $\operatorname{lm}(E)=\int_{1}^{+\infty} \chi_{E}(t) / t d t$, where $\chi_{E}(t)$ is the characteristic function of E. The upper and lower densities of E are

$$
\begin{equation*}
\overline{\operatorname{dens}} E=\limsup _{r \rightarrow \infty} \frac{m(E \cap[0, r])}{r}, \quad \underline{\operatorname{dens}} E=\liminf _{r \rightarrow \infty} \frac{m(E \cap[0, r])}{r} . \tag{2.4}
\end{equation*}
$$

In this paper, we improve the results of Belaïdi [1, 2, 3, and we obtain the following results:

Theorem 2.4. Let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions with $A_{0}(z) \not \equiv 0$ such that for real constants $\alpha, \beta, \mu, \theta_{1}, \theta_{2}$ and positive integer p with $0 \leq \beta<\alpha, \mu>$ $0, \theta_{1}<\theta_{2}, 1 \leq p<\infty$, we have

$$
\begin{gather*}
\left|A_{0}(z)\right| \geq \exp _{p}\left\{\alpha|z|^{\mu}\right\} \tag{2.5}\\
\left|A_{j}(z)\right| \leq \exp _{p}\left\{\beta|z|^{\mu}\right\}, \quad j=1, \ldots, k-1 \tag{2.6}
\end{gather*}
$$

as $z \rightarrow \infty$ with $\theta_{1} \leq \operatorname{argz} \leq \theta_{2}$. Then $\sigma_{p+1}(f) \geq \mu$ holds for all non-trivial solutions of 1.1 .

Theorem 2.5. Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in H\}>0$, and let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions and satisfy 2.5 and 2.6 as $z \rightarrow \infty$ for $z \in H$, where $0 \leq \beta<\alpha, \mu>0,1 \leq p<\infty$. Then every solution $f \not \equiv 0$ of (1.1) satisfies $\sigma_{p+1}(f) \geq \mu$.

Theorem 2.6. Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in$ $H\}>0$, and let $A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ be entire functions of iterated order with $\max \left\{\sigma_{p}\left(A_{j}\right): j=1, \ldots, k-1\right\} \leq \sigma_{p}\left(A_{0}\right)=\sigma<+\infty, 1 \leq p<\infty$ such that for some constants $0 \leq \beta<\alpha$ and for any given $\varepsilon>0$, we have

$$
\begin{gather*}
\left|A_{0}(z)\right| \geq \exp _{p}\left\{\alpha|z|^{\sigma-\varepsilon}\right\} \tag{2.7}\\
\left|A_{j}(z)\right| \leq \exp _{p}\left\{\beta|z|^{\sigma-\varepsilon}\right\}, \quad j=1, \ldots, k-1 \tag{2.8}
\end{gather*}
$$

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of 1.1 satisfies $\sigma_{p+1}(f)=$ $\sigma_{p}\left(A_{0}\right)=\sigma$.

Theorem 2.7. Let $H, A_{0}(z), A_{1}(z), \ldots, A_{k-1}(z)$ satisfy the hypotheses of Theorem 2.6. and let $F \not \equiv 0$ be an entire function of iterated order with $i(F)=q$.
(i) If $q<p+1$ or $q=p+1, \sigma_{p+1}(F)<\sigma_{p}\left(A_{0}\right)$, then every solution $f(z)$ of (1.2) satisfies $\bar{\lambda}_{p+1}(f)=\lambda_{p+1}(f)=\sigma_{p+1}(f)=\sigma$, with at most one exceptional solution f_{0} satisfying $i(f)<p+1$ or $\sigma_{p+1}\left(f_{0}\right)<\sigma$.
(ii) If $q>p+1$ or $q=p+1, \sigma_{p}\left(A_{0}\right)<\sigma_{p+1}(F)<+\infty$, then every solution $f(z)$ of 1.2 satisfies $i(f)=q$ and $\sigma_{q}(f)=\sigma_{q}(F)$.

3. Preliminaries for proving the main results

To prove the above theorems, we need the following lemmas:
Lemma 3.1 (5). Let $f(z)$ be a nontrivial entire function, and let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a constant $c>0$ and a set $E_{1} \subset[0, \infty)$ having finite linear measure such that for all z satisfying $|z|=r \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq c\left[T(\alpha r, f) r^{\varepsilon} \log T(\alpha r, f)\right]^{k} \quad(k \in \mathbb{N}) \tag{3.1}
\end{equation*}
$$

Lemma 3.2 (Wiman-Valiron [6, 9]). Let $f(z)$ be a transcendental entire function, and let z be a point with $|z|=r$ at which $|f(z)|=M(r, f)$. Then for all $|z|$ outside a set E_{2} of r of finite logarithmic measure, we have

$$
\begin{equation*}
\frac{f^{(k)}(z)}{f(z)}=\left(\frac{\nu_{f}(r)}{z}\right)^{k}(1+o(1)) \quad\left(k \in \mathbb{N}, r \notin E_{2}\right) . \tag{3.2}
\end{equation*}
$$

where $\nu_{f}(r)$ is the central index of f.

Lemma 3.3 ([7]). Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function, $\mu(r)$ be the maximum term, i.e. $\mu(r)=\max \left\{\left|a_{n}\right| r^{n} ; n=0,1, \ldots\right\}$, and let $\nu_{f}(r)$ be the central index of f. Then
(i) For $\left|a_{0}\right| \neq 0$,

$$
\begin{equation*}
\log \mu(r)=\log \left|a_{0}\right|+\int_{0}^{r} \frac{\nu_{f}(t)}{t} d t \tag{3.3}
\end{equation*}
$$

(ii) For $r<R$,

$$
\begin{equation*}
M(r, f)<\mu(r)\left\{\nu_{f}(R)+\frac{R}{R-r}\right\} \tag{3.4}
\end{equation*}
$$

Lemma 3.4. Let $f(z)$ be an entire function with $\sigma_{p+1}(f)=\sigma$, and let $\nu_{f}(r)$ be the central index of f, then

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log _{p+1} \nu_{f}(r)}{\log r}=\sigma \tag{3.5}
\end{equation*}
$$

Proof. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, without loss of generality, we can assume that $\left|a_{0}\right| \neq$ 0 . From (3.3), we have

$$
\begin{equation*}
\log \mu(2 r)=\log \left|a_{0}\right|+\int_{0}^{2 r} \frac{\nu_{f}(t)}{t} d t \geq \log \left|a_{0}\right|+\nu_{f}(r) \log 2 \tag{3.6}
\end{equation*}
$$

Using the Cauchy inequality, it is easy to see that $\mu(2 r) \leq M(2 r, f)$. Hence

$$
\nu_{f}(r) \log 2 \leq \log M(2 r, f)+c_{1}
$$

where $c_{1}>0$ is a constant. By (2.1) and (3),

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log _{p+1} \nu_{f}(r)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log _{p+2} M(r, f)}{\log r}=\sigma \tag{3.7}
\end{equation*}
$$

On the other hand, from (3.4), we have

$$
\begin{equation*}
M(r, f)<\mu(r)\left\{\nu_{f}(2 r)+2\right\}=\left|a_{\nu_{f}(r)}\right| r^{\nu_{f}(r)}\left\{\nu_{f}(2 r)+2\right\} \tag{3.8}
\end{equation*}
$$

Since $\left\{\left|a_{n}\right|\right\}$ is a bounded sequence, we have

$$
\begin{equation*}
\log _{p+2} M(r, f) \leq \log _{p+1} \nu_{f}(2 r)\left[1+\frac{\log _{p+2} \nu_{f}(2 r)}{\log _{p+1} \nu_{f}(2 r)}\right]+\log _{p+2} r+c_{2} \tag{3.9}
\end{equation*}
$$

where $c_{2}>0$ is a constant. Hence

$$
\begin{equation*}
\sigma=\limsup _{r \rightarrow \infty} \frac{\log _{p+2} M(r, f)}{\log r} \leq \limsup _{r \rightarrow \infty} \frac{\log _{p+1} \nu_{f}(2 r)}{\log 2 r}=\limsup _{r \rightarrow \infty} \frac{\log _{p+1} \nu_{f}(r)}{\log r} \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.10), we obtain the conclusion (3.5).
Lemma 3.5 ([8]). Let $f(z)$ be an entire function with $i(f)=p+1$, then

$$
\begin{equation*}
\sigma_{p+1}(f)=\sigma_{p+1}\left(f^{\prime}\right) \tag{3.11}
\end{equation*}
$$

Lemma 3.6. Let $A_{0}(z), \ldots, A_{k-1}(z)$ be entire functions, with, $F \not \equiv 0$ and let $f(z)$ be a solution of 1.2 satisfying one of the following conditions:
(i) $\max \left\{i(F)=q, i\left(A_{j}\right)(j=0, \ldots, k-1)\right\}<i(f)=p+1(1 \leq p<\infty)$,
(ii) $\max \left\{\sigma_{p}(F), \sigma_{p}\left(A_{j}\right)(j=0, \ldots, k-1)\right\}<\sigma_{p+1}(f)=\sigma$.

Then $\bar{\lambda}_{p+1}(f)=\lambda_{p+1}(f)=\sigma_{p+1}(f)=\sigma$.

Proof. From $\sqrt{1.2}$, we have

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{F}\left(\frac{f^{(k)}}{f}+A_{k-1} \frac{f^{(k-1)}}{f}+\cdots+A_{0}\right) \tag{3.12}
\end{equation*}
$$

it is easy to see that if f has a zero at z_{0} of order $\alpha(>k)$, then F must have a zero at z_{0} of order $\alpha-k$, hence

$$
\begin{gather*}
n\left(r, \frac{1}{f}\right) \leq k \bar{n}\left(r, \frac{1}{f}\right)+n\left(r, \frac{1}{F}\right), \tag{3.13}\\
N\left(r, \frac{1}{f}\right) \leq k \bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{F}\right) \tag{3.14}
\end{gather*}
$$

By (3.12), we have

$$
\begin{equation*}
m\left(r, \frac{1}{f}\right) \leq m\left(r, \frac{1}{F}\right)+\sum_{j=0}^{k-1} m\left(r, A_{j}\right)+O(\log T(r, f)+\log r)\left(r \notin E_{3}\right) \tag{3.15}
\end{equation*}
$$

where E_{3} is a subset of r of finite linear measure. By (3.14) and (3.15), for $r \notin E_{3}$, we get

$$
\begin{equation*}
T(r, f)=T\left(r, \frac{1}{f}\right)+O(1) \leq k \bar{N}\left(r, \frac{1}{f}\right)+T(r, F)+\sum_{j=0}^{k-1} T\left(r, A_{j}\right)+O\{\log (r T(r, f))\} \tag{3.16}
\end{equation*}
$$

For sufficiently large r, we have

$$
\begin{gather*}
O\{\log r+\log T(r, f)\} \leq \frac{1}{2} T(r, f) \tag{3.17}\\
T\left(r, A_{0}\right)+\cdots+T\left(r, A_{k-1}\right) \leq k \exp _{p-1}\left\{r^{\sigma+\varepsilon}\right\} \tag{3.18}\\
T(r, F) \leq \exp _{p-1}\left\{r^{\sigma(F)+\varepsilon}\right\} \tag{3.19}
\end{gather*}
$$

Thus, by 3.16-(3.19), for $r \notin E_{3}$, we have

$$
\begin{equation*}
T(r, f) \leq 2 k \bar{N}\left(r, \frac{1}{f}\right)+2 k \exp _{p-1}\left\{r^{\sigma+\varepsilon}\right\}+2 \exp _{p-1}\left\{r^{\sigma(F)+\varepsilon}\right\} \tag{3.20}
\end{equation*}
$$

Hence for any f with $\sigma_{p+1}(f)=\sigma$, by (3.20), we have $\sigma_{p+1}(f) \leq \bar{\lambda}_{p+1}(f)$. Therefore, $\bar{\lambda}_{p+1}(f)=\lambda_{p+1}(f)=\sigma_{p+1}(f)=\sigma$.

4. Proofs of theorems

Proof of Theorem 2.4. Let f be a solution of 1.1, and rewritten 1.1) as

$$
\begin{equation*}
A_{0}=-\left(\frac{f^{(k)}}{f}+A_{k-1} \frac{f^{(k-1)}}{f}+\cdots+A_{1} \frac{f^{\prime}}{f}\right) \tag{4.1}
\end{equation*}
$$

By Lemma 3.1. there exist a constant $c>0$ and a set $E_{1} \subset[0, \infty)$ having finite linear measure such that $|z|=r \notin E_{1}$ for all $z=r e^{i \theta}$. Then we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq c[r T(2 r, f)]^{2 k}, \quad j=1, \ldots, k-1 \tag{4.2}
\end{equation*}
$$

By (4.1), 4.2 and the hypothesis of Theorem 2.4. we get

$$
\begin{equation*}
\exp _{p}\left\{\alpha|z|^{\mu}\right\} \leq\left|A_{0}(z)\right| \leq k \exp _{p}\left\{\beta|z|^{\mu}\right\} c[r T(2 r, f)]^{2 k} \tag{4.3}
\end{equation*}
$$

as $z \rightarrow \infty$ with $|z|=r \notin E_{1}, \theta_{1} \leq \arg z=\theta \leq \theta_{2}$. By (4.3) and (2.1), we have $\sigma_{p+1}(f) \geq \mu$.

Proof of Theorem 2.5. From 1.1, it follows that

$$
\begin{equation*}
\left|A_{0}(z)\right| \leq\left|\frac{f^{(k)}(z)}{f(z)}\right|+\left|A_{k-1}(z)\right|\left|\frac{f^{(k-1)}(z)}{f(z)}\right|+\cdots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}(z)}{f(z)}\right| \tag{4.4}
\end{equation*}
$$

By the hypotheses of Theorem 2.5, there exists a set H with $\overline{\operatorname{dens}}\{|z|: z \in H\}>0$ such that for all z satisfying $z \in H$, we have

$$
\begin{gather*}
\left|A_{0}(z)\right| \geq \exp _{p}\left\{\alpha|z|^{\mu}\right\} \tag{4.5}\\
\left|A_{j}(z)\right| \leq \exp _{p}\left\{\beta|z|^{\mu}\right\}, \quad j=1, \ldots, k-1 \tag{4.6}
\end{gather*}
$$

as $z \rightarrow \infty$. Hence from (4.2), (4.4)-(4.6), it follows that for all z satisfying $z \in H$ and $z \notin E_{1}$, we have

$$
\begin{equation*}
\exp _{p}\left\{\alpha|z|^{\mu}\right\} \leq k \exp _{p}\left\{\beta|z|^{\mu}\right\} c[r T(2 r, f)]^{2 k} \tag{4.7}
\end{equation*}
$$

as $z \rightarrow \infty$. Thus, there exists a set $H_{1}=H \backslash E_{1}$ with $\overline{\operatorname{dens}}\left\{|z|: z \in H_{1}\right\}>0$ such that

$$
\begin{equation*}
\exp _{p}\left\{(\alpha-\beta)|z|^{\mu}\right\} \leq k c[r T(2 r, f)]^{2 k} \tag{4.8}
\end{equation*}
$$

as $z \rightarrow \infty$. Therefore, by 4.8 and Definition 2.1. we obtain $\sigma_{p+1}(f) \geq \mu$.
Proof of Theorem 2.6. By Theorem 2.5. we have $\sigma_{p+1}(f) \geq \sigma-\varepsilon$, since ε is arbitrary, we get $\sigma_{p+1}(f) \geq \sigma_{p}\left(A_{0}\right)=\sigma$. On the other hand, by Lemma 3.2 , there exists a set $E_{2} \subset[1, \infty)$ having finite logarithmic measure such that 3.2 holds for all z satisfying $|z|=r \notin[0,1] \bigcup E_{2}$ and $|f(z)|=M(r, f)$. By Definition 2.1, for any given $\varepsilon>0$ and for sufficiently large r, we have

$$
\begin{equation*}
\left|A_{j}(z)\right| \leq \exp _{p}\left\{r^{\sigma+\varepsilon}\right\}, \quad j=0,1, \ldots, k-1 \tag{4.9}
\end{equation*}
$$

Substituting (3.2) and 4.9 in (1.1), for all z satisfying $|z|=r \notin[0,1] \cup E_{2}$ and $|f(z)|=M(r, f)$, we have

$$
\begin{equation*}
\left(\frac{\nu_{f}(r)}{|z|}\right)^{k}|1+o(1)| \leq k\left(\frac{\nu_{f}(r)}{|z|}\right)^{k-1}|1+o(1)| \exp _{p}\left\{r^{\sigma+\varepsilon}\right\} \tag{4.10}
\end{equation*}
$$

By 4.10, we get

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log _{p+1} \nu_{f}(r)}{\log r} \leq \sigma+\varepsilon \tag{4.11}
\end{equation*}
$$

Since ε is arbitrary, by 4.11 and Lemma 3.4, we obtain $\sigma_{p+1}(f) \leq \sigma$. This and the fact that $\sigma_{p+1}(f) \geq \sigma$ yield $\sigma_{p+1}(f)=\sigma$.

Proof of Theorem 2.7. (i) First, we show that (1.2) can possess at most one exceptional solution f_{0} satisfying $\sigma_{p+1}\left(f_{0}\right) \leq \sigma$ or $i\left(f_{0}\right)<p+1$. In fact, if f^{*} is a second solution with $\sigma_{p+1}\left(f^{*}\right) \leq \sigma$ or $i\left(f^{*}\right)<p+1$, then $\sigma_{p+1}\left(f_{0}-f^{*}\right) \leq \sigma$ or $i\left(f_{0}-f^{*}\right)<p+1$. But $f_{0}-f^{*}$ is a solution of the corresponding homogeneous equation $\sqrt{1.1}$ of $\sqrt{1.2}$, this contradicts Theorem 2.6 . We assume that f is a solution with $\sigma_{p+1}(f) \geq \sigma$, and $f_{1}, f_{2}, \ldots, f_{k}$ is a solution base of the corresponding homogeneous equation 1.1. Then f can be expressed in the form

$$
\begin{equation*}
f(z)=B_{1}(z) f_{1}(z)+B_{2}(z) f_{2}(z)+\cdots+B_{k}(z) f_{k}(z) \tag{4.12}
\end{equation*}
$$

where $B_{1}(z), \ldots, B_{k}(z)$ are determined by

$$
\begin{gather*}
B_{1}^{\prime}(z) f_{1}(z)+B_{2}^{\prime}(z) f_{2}(z)+\cdots+B_{k}^{\prime}(z) f_{k}(z)=0 \\
B_{1}^{\prime}(z) f_{1}^{\prime}(z)+B_{2}^{\prime}(z) f_{2}^{\prime}(z)+\cdots+B_{k}^{\prime}(z) f_{k}^{\prime}(z)=0 \\
\vdots \tag{4.13}\\
B_{1}^{\prime}(z) f_{1}^{(k-1)}(z)+B_{2}^{\prime}(z) f_{2}^{(k-1)}(z)+\cdots+B_{k}^{\prime}(z) f_{k}^{(k-1)}(z)=F(z) .
\end{gather*}
$$

Since the Wronskian $W\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ is a differential polynomial in $f_{1}, f_{2}, \ldots, f_{k}$ with constant coefficients, it is easy to deduce that $\sigma_{p+1}(W) \leq \sigma_{p+1}\left(f_{j}\right)=\sigma_{p}\left(A_{0}\right)=$ σ. From 4.13),

$$
\begin{equation*}
B_{j}^{\prime}=F \cdot G_{j}\left(f_{1}, \ldots, f_{k}\right) \cdot W\left(f_{1}, \ldots, f_{k}\right)^{-1}, \quad j=1, \ldots, k \tag{4.14}
\end{equation*}
$$

where $G_{j}\left(f_{1}, \ldots, f_{k}\right)$ are differential polynomials in $f_{1}, f_{2}, \ldots, f_{k}$ with constant coefficients, thus

$$
\begin{equation*}
\sigma_{p+1}\left(G_{j}\right) \leq \sigma_{p+1}\left(f_{j}\right)=\sigma_{p}\left(A_{0}\right)=\sigma \tag{4.15}
\end{equation*}
$$

Since $i(F)<p+1$ or $i(F)=p+1, \sigma_{p+1}(F)<\sigma_{p}\left(A_{0}\right)$, by Lemma 3.5 and 4.15), for $j=1, \ldots, k$, we have

$$
\begin{equation*}
\sigma_{p+1}\left(B_{j}\right)=\sigma_{p+1}\left(B_{j}^{\prime}\right) \leq \max \left\{\sigma_{p+1}(F), \sigma_{p}\left(A_{0}\right)\right\}=\sigma_{p}\left(A_{0}\right)=\sigma \tag{4.16}
\end{equation*}
$$

Then from 4.12 and 4.16), we get

$$
\begin{equation*}
\sigma_{p+1}(f) \leq \max \left\{\sigma_{p+1}\left(f_{j}\right), \sigma_{p+1}\left(B_{j}\right)\right\}=\sigma_{p}\left(A_{0}\right)=\sigma \tag{4.17}
\end{equation*}
$$

This and the assumption $\sigma_{p+1}(f) \geq \sigma$ yield $\sigma_{p+1}(f)=\sigma$. If f is a solution of equation (1.2) satisfying $\sigma_{p+1}(f)=\sigma$, by Lemma 3.6, we have

$$
\bar{\lambda}_{p+1}(f)=\lambda_{p+1}(f)=\sigma_{p+1}(f)=\sigma .
$$

(ii) From the hypotheses of Theorem 2.7 and 4.12 - 4.17), we obtain

$$
\begin{equation*}
\sigma_{q}(f) \leq \sigma_{q}(F) \tag{4.18}
\end{equation*}
$$

From (1.2), a simple consideration of order implies

$$
\sigma_{q}(f) \geq \sigma_{q}(F)
$$

By this inequality and $(4.18), \sigma_{q}(f)=\sigma_{q}(F)$ which completes the proof.

References

[1] Belaïdi, B., Estimation of the hyper-order of entire solutions of complex linear ordinary differential equations whose coefficients are entire functions, E. J. Qualitative Theory of Diff. Equ. No. 5, (2002), 1-8.
[2] Belaïdi, B., Growth of solutions of certain non-homogeneous linear differential equations with entire coefficients, J. Ineq. Pure Appl. Math. (2) 5, (2004), Art40.
[3] Belaïdi, B. and Hamouda, S., Orders of solutions of an n-th order linear differential equation with entire coefficients, Electronic Journal of Differential Equations Vol. 2001(2001), No. 61, pp. 1-5.
[4] Frei, M., über die Lösungen linear Differentialgleichungen mit ganzen Funktionen als Koeffizienten, Comment. Math. Helv. 35, (1961), 201-222.
[5] Gunderson, G., Estimates for the logarithmic derivate of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37, (1988), 88-104.
[6] Hayman, W. K., The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
[7] Y. Z. He and X. Z. Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, 1988 (in Chinese).
[8] Kinnunen, L., Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. (4) 22, (1998), 385-405.
[9] Valiron, G., Lectures on the General Theory of Integral Functions, translated by E. F. Collingwood, Chelsea, New York, 1949.

Jin Tu
School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China
E-mail address: tujin2008@sina.com
Zongxuan Chen
Department of Mathematics, South China Normal University, Guangzhou, 510631, China
E-mail address: chzx@sina.com
Xiumin Zheng
Institute of Mathematics and Information, Jiangxi Normal University, Nanchang, 330027, China

E-mail address: xiaogui88@sohu.com

[^0]: 2000 Mathematics Subject Classification. 30D35, 34M10.
 Key words and phrases. Differential equations; growth of solutions; iterated order. © 2006 Texas State University - San Marcos.
 Submitted January 17, 2006. Published April 28, 2006.
 Supported by grant 10371009 from the Natural Science Foundation of China.

