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TRAVELLING WAVE SOLUTIONS IN DELAYED CELLULAR
NEURAL NETWORKS WITH NONLINEAR OUTPUT

XIUXIANG LIU, PEIXUAN WENG, ZHITING XU

Abstract. This paper concerns the existence of travelling wave solutions of

delayed cellular neural networks distributed in a 1-dimensional lattice with
nonlinear output. Under appropriate assumptions, we prove the existence of

travelling waves and extend some known results.

1. Introduction

Cellular neural networks (CNN) system were first proposed by Chua and Yang
[1, 2] as an achievable alternative to fully-connected neural networks in electric
circuit systems, so it is also called CY-CNN system. The structure of CNN is similar
to the cellular automata that any cell in a CNN is connected only to its neighboring
cells. In the recent years, the CNN approach has been applied to a broad scope
of problems arising from, for example, image and video signal processing, robotic
and biological visions etc. We refer the readers to [3, 4, 5] for some practical
applications. An 1-dimensional CNN without inputs is given by

dxi(t)
dt

= −xi(t) + z + αf(xi(t)) + βf(xi+1(t)), (1.1)

for i in a 1-dimensional lattice Z, where the positive coefficients α, β of the signal
output function f constitute the so-called space-invariant template that measures
the synaptic weights of self-feedback and neighborhood interaction. The quantity z
is called a threshold or bias term and is related to the independent voltage sources
in electric circuits. Due to the finite switching speed and finite velocity of signal
transmission, the distributed delays may exist for CNN systems. One of the models
with delay is proposed in [6] with z = 0 by

dxi(t)
dt

= −xi(t) + αf(xi(t)) + β

∫ τ

0

K(u)f(xi+1(t− u))du, (1.2)
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where τ > 0 is a constant, K : [0, τ ] → [0,+∞) is a piece-wise continuous function
satisfying ∫ τ

0

K(u)du = 1.

It is assumed that the self-feedback interaction is instantaneous and there exists
delay in neighborhood interaction. A typical output function f in (1.1) or (1.2) is
defined by

f(x) =


1 if x ≥ 1,
x if |x| ≤ 1,
−1 if x ≤ −1;

(1.3)

see for example [1, 2, 3, 4, 5, 6].
A travelling wave solution of (1.2) is defined as a solution of (1.2) with

xi(t) = φ(i− ct) := φ(s), for all i ∈ Z and t ∈ R, (1.4)

where c ∈ R is the wave speed. The profile equation for φ(s) can be written as

−cφ′(s) = −φ(s) + αf(φ(s)) + β

∫ τ

0

K(u)f(φ(s+ 1 + u))du. (1.5)

Assuming that the synaptic connection is sufficiently large so that

α+ β > 1, (1.6)

then there are three equilibria of (1.5):

x− = −(α+ β), x0 = 0, x+ = α+ β. (1.7)

Recently, Weng and Wu [7] studied the deformation and existence of travelling wave
solutions for (1.2) with (1.3), which satisfy different types of asymptotic boundary
conditions. For instance one type of conditions are

lim
s→−∞

φ(s) = x0, lim
s→∞

φ(s) = x+. (1.8)

Ling [6] discussed the deformation and existence of travelling wave solutions of (1.2)
with a nonlinear output function f on [−1, 1], that is

f(x) =


1 if x ≥ 1,
sin(π

2x) if |x| ≤ 1,
−1 if x ≤ −1.

(1.9)

This paper is a continuation of the work in [6, 7]. We consider the existence of
travelling wave solutions of (1.2) with a more general output function f under the
following hypotheses:

(H1) f is a continuous odd function on (−∞,+∞) and satisfies:
(1) f(x) = 1 for x ≥ 1;
(2) f(0) = 0 and f is differentiable at x = 0, µ = f ′(0) ≥ 1;
(3) f is non-decreasing and f(x) ≤ f ′(0)x on [0, 1].

Under the above hypotheses and (1.6), we see that x−, x0 and x+ are still equilibria
of (1.5), furthermore,

f ′(0)x− f(x) = o(x) as x→ 0. (1.10)
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In fact, noting that f(0) = 0, one has

lim
x→0

f ′(0)x− f(x)
x

= f ′(0)− lim
x→0

f(x)− f(0)
x

= 0,

hence f ′(0)x− f(x) = o(x).

2. Existence of Monotone Travelling Waves

In this section, we study the existence of travelling wave solutions of (1.2) under
the assumption (H1). First of all, we define the characteristic function of (1.5) at
x0 = 0 by

∆(λ, c, x0) = −cλ+ 1− µα− µβ

∫ τ

0

K(u)eλ(1+cu)du. (2.1)

The characteristic function (2.1) plays crucial roles in our study. The following
lemma is needed.

Lemma 2.1. Assume that α ≥ 1. There exist exactly a pair of numbers (c∗, λ∗)
with c∗ < 0, λ∗ = λ(c∗) > 0 such that

(i) ∆(λ∗, c∗, x0) = 0, ∂
∂λ∆(λ∗, c∗, x0) = 0;

(ii) for c∗ < c ≤ 0, ∆(λ, c, x0) < 0 for any λ ∈ R;
(iii) for any c < c∗, there exists λ1 > 0, ε1 > 0 such that ∆(λ1, c, x

0) = 0, and
for any small ε ∈ (0, ε1) one has ∆(λ1 + ε, c, x0) > 0.

Proof. A simple calculation leads to

∂

∂c
∆(λ, c, x0) = −λ

(
1 + µβ

∫ τ

0

K(u)ueλ(1+cu)du
)
,

∂

∂λ
∆(λ, c, x0) = −c− µβ

∫ τ

0

K(u)(1 + cu)eλ(1+cu)du,

∂2

∂λ2
∆(λ, c, x0) = −µβ

∫ τ

0

K(u)(1 + cu)2eλ(1+cu)du < 0 .

Note that,

∆(0, c, x0) = 1− µ(α+ β) < 0 for any c ∈ R,
lim

c→−∞
∆(λ, c, x0) = +∞ for any λ > 0,

∆(λ, 0, x0) = 1− µα− µβeλ < 0 for any λ ∈ R,

and that ∆(λ, c, x0) is a concave function of λ ∈ R for any given c ∈ R. Therefore,
there exist exactly a pair of numbers (c∗, λ∗) with c∗ < 0, λ∗ = λ(c∗) > 0 satisfying
(i) and (iii).

Note that ∆(λ, 0, x0) < 0 for any λ ∈ R. Furthermore, for any given λ < 0, we
have ∂∆

∂c > 0. Therefore, ∆(λ, c, x0) = 0 has no real roots for any c ∈ (c∗, 0]. This
completes the proof. �

We now consider the existence of monotone travelling waves of (1.2) for c < c∗.
Our approach is based on monotone iteration, coupled with the concept of upper
and lower solutions introduced below.
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Definition 2.2. A function V : R → R is called an upper solution of (1.5) if it is
differentiable almost everywhere (a.e.) and satisfies the inequality

−cV ′(s) ≥ −V (s) + αf(V (s)) + β

∫ τ

0

K(u)f(V (s+ 1 + cu))du.

Similarly, a function v : R → R is called a lower solution of (1.5) if it is differentiable
almost everywhere and satisfies the inequality

−cv′(s) ≤ −v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du.

For any c < c∗, we define following two functions:

V (s) =

{
x+ s ≥ 0,
x+eλ1s s ≤ 0,

v(s) =

{
0 s ≥ 0,
η(1− eεs)eλ1s s ≤ 0,

where x+ is defined in (1.7), λ1, ε are as in Lemma 2.1 and η ∈ (0, 1) is chosen
small so that V (s) ≥ v(s) and to be decided in the following such that v(s) is a
lower solution. Clearly, we have 0 ≤ v(s) ≤ V (s) ≤ x+ and v(s) 6≡ 0 for s ∈ R.

Lemma 2.3. For any c < c∗ < 0, V is an upper solution and v is a lower solution
of (1.5).

Proof. If s ≥ 0, V (s) = x+. Note that f(u) ≤ 1 for any u ∈ R, then we have

cV ′(s)− V (s) + αf(V (s)) + β

∫ τ

0

K(u)f(V (s+ 1 + cu))du ≤ 0− x+ + α+ β = 0.

If s ≤ 0, V (s) = x+eλ1s. Note that V (s) ≤ x+eλ1s for s ∈ R. Therefore, if
x+eλ1s > 1, one has f(V (s)) = 1 < x+eλ1s ≤ µx+eλ1s; if x+eλ1s ≤ 1, one also
has f(V (s)) ≤ µV (s) = µx+eλ1s from the assumption (3) in (H1). According to
Lemma 2.1, we have

cV ′(s)− V (s) + αf(V (s)) + β

∫ τ

0

K(u)f(V (s+ 1 + cu))du

≤ cλ1x
+eλ1s − x+eλ1s + µαx+eλ1s + µβ

∫ τ

0

K(u)x+eλ1(s+1+cu)du

= −x+eλ1s∆(λ1, c, x
0) = 0.

So V (s) is an upper solution of (1.5).
Next we show that v is a lower solution of (1.5). That is,

cv′(s)− v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du ≥ 0. (2.2)

If s ≥ 0, it is obviously that (2.2) holds because

cv′(s)− v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du

=0− 0 + 0 +

{
β
∫ τ

− s+1
c
K(u)η(1− eε(s+1+cu))eλ1(s+1+cu)du if− s+1

c ∈ [0, τ)
0 if− s+1

c ≥ τ

≥0.
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If s < 0, we will consider the following three cases, namely, −(cτ + 1) < s < 0,
−1 < s ≤ −(cτ + 1), and s ≤ −1.

Case 1. −(cτ + 1) < s < 0. In this case, for any u ∈ [0, τ ], one has s+ 1 + cu > 0
which implies v(s + 1 + cu) = 0. Moreover, if s < 0, 0 < η < 1, one has 0 <
ηeλ1s(1− eεs) < 1. So we can obtain

cv′(s)− v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du

= −ηeλ1s(−cλ1 + 1) + ηe(λ1+ε)s (−c(λ1 + ε) + 1)

+ αf(η(1− eεs)eλ1s)

= −ηeλ1s∆(λ1, c, x
0) + ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G1,

where

G1 = −µβη
∫ τ

0

K(u)eλ1(s+1+cu)[1− eε(s+1+cu)]du− αeλ1s(1− eεs)|o(η)|

≥ η
(
µβ

∫ τ

0

K(u)eλ1(s+1+cu) [eε(s+1+cu) − 1 ]du− αeλ1s(1− eεs)
|o(η)|
η

)
.

Thus, G1 ≥ 0 if η is small enough. ¿From Lemma 2.1, ∆(λ1, c, x
0) = 0, ∆(λ1 +

ε, c, x0) > 0, hence (2.2) holds.

Case 2. −1 < s ≤ −(cτ+1). In this case, for u ∈ [0,− s+1
c ], one has s+1+cu ≥ 0,

and for u ∈ (− s+1
c , τ ] one has s+ 1 + cu < 0. Choose η ∈ (0, 1), we have

cv′(s)− v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du

= −ηeλ1s(−cλ1 + 1) + ηe(λ1+ε)s [−c(λ1 + ε) + 1] + αf(η(1− eεs)eλ1s)

+ β

∫ τ

− s+1
c

K(u)f(η(1− eε(s+1+cu))eλ1(s+1+cu))du

= −ηeλ1s∆(λ1, c, x
0) + ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G2

= ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G2,

where

G2 = µβη

∫ τ

0

K(u)eλ1(s+1+cu)[eε(s+1+cu) − 1]du− αeλ1s(1− eεs)|o(η)|

+ β(µη − |o(η)|)
∫ τ

− s+1
c

K(u)eλ1(s+1+cu)(1− eε(s+1+cu))du

= µβη

∫ − s+1
c

0

K(u)eλ1(s+1+cu)[eε(s+1+cu) − 1]du− αeλ1s(1− eεs)|o(η)|

− β|o(η)|
∫ τ

− s+1
c

K(u)eλ1(s+1+cu)(1− eε(s+1+cu))du

≥ µβη

∫ − s
c

0

K(u)eλ1(s+1+cu)[eε(s+1+cu) − 1]du− αeλ1s(1− eεs)|o(η)|

− β|o(η)|
∫ τ

− s+1
c

K(u)eλ1(s+1+cu)(1− eε(s+1+cu))du
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≥ µβη
[
eλ1(eε − 1)

∫ − s
c

0

K(u)du− αeλ1s(1− eεs)
|o(η)|
η

− |o(η)|
η

∫ τ

− s+1
c

K(u)eλ1(s+1+cu)(1− eε(s+1+cu))du
]
.

Therefore, G2 ≥ 0 if η is small enough, and similar to case 1, we have (2.2).
Case 3. s ≤ −1. In this case for any u ∈ [0, τ ], s+ 1 + cu ≤ 0. Hence

cv′(s)− v(s) + αf(v(s)) + β

∫ τ

0

K(u)f(v(s+ 1 + cu))du

= −ηeλ1s(−cλ1 + 1) + ηe(λ1+ε)s [−c(λ1 + ε) + 1] + αf(ηeλ1s(1− eεs))

+ β

∫ τ

0

K(u)f(ηeλ1(s+1+cu)(1− eε(s+1+cu)))du

= −ηeλ1s∆(λ1, c, x
0) + ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G3

= ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G3,

where

G3 = −
[
αeλ1s(1− eεs) + β

∫ τ

0

K(u)eλ1(s+1+cu)(1− eε(s+1+cu))du
]
|o(η)|.

So we can choose η small enough such that

ηe(λ1+ε)s∆(λ1 + ε, c, x0) +G3 > 0.

Hence (2.2) still holds in this case. According to the above discussion, we know
that v(s) is a lower solution of (1.5). This completes the proof. �

Now we let C = C(R, [x0, x+]), and

S1 =
{
φ ∈ C :(i) φ(s) is nondecreasing for s in R;

(ii) lim
s→−∞

φ(s) = x0, lim
s→∞

φ(s) = x+.
}
.

Assume that c < c∗ < 0. Consider the following equivalent form of equation (1.5),

dφ(s)
ds

+ γφ(s) = F (φ)(s), (2.3)

where

F (φ)(s) = (γ +
1
c
)φ(s)− α

c
f(φ(s))− β

c

∫ τ

0

K(u)f(φ(s+ 1 + cu))du.

Note that c < 0 and f is non-decreasing, so we can choose γ > − 1
c > 0 such that

F (φ)(s) ≥ F (ψ)(s) provided that φ(s) ≥ ψ(s) for s ∈ R. It is easy to show that
(2.3) is equivalent to

φ(s) = e−γs

∫ s

−∞
eγuF (φ)(u)du.

Define an operator T : S1 → C by

(Tφ)(s) = e−γs

∫ s

−∞
eγuF (φ)(u)du, φ ∈ S1, s ∈ R. (2.4)

Then we have the following result.

Lemma 2.4. Assume that c < c∗ < 0. Then T defined in (2.4) satisfies
(1) if φ ∈ S1, then Tφ ∈ S1;
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(2) if φ is an upper ( resp. a lower) solution of (1.5), then φ(s) ≥ (Tφ)(s)
(resp. φ(s) ≤ (Tφ)(s)) for s ∈ R;

(3) if φ(s) ≥ ψ(s) for s ∈ R, then (Tφ)(s) ≥ (Tψ)(s) for s ∈ R;
(4) if φ is an upper (a lower) solution of (1.5), then Tφ is also an upper (a

lower) solution of (1.5).

Proof. (1) is a direct verification by L’Hospital rule. On the other hand, the mono-
tonicity of F leads to the conclusion (3). In the following, we only show that (2)
and (4) hold. In fact, if φ(s) is an upper solution of (1.5), then

dφ(s)
ds

+ γφ(s) ≥ F (φ)(s).

This leads to
d(eγsφ(s))

ds
≥ eγsF (φ)(s).

Integrating the inequality above from −∞ to s , we obtain (2). Noting that
F (φ)(s) ≥ F ((Tφ)(s)) from (2), we have

d(Tφ)(s))
ds

+ γ(Tφ)(s) = F (φ)(s) ≥ F ((Tφ)(s)).

This means that (Tφ)(s) is also an upper solution of (1.5). The proof is similar if
φ(s) is a lower solution. Thus the proof is complete. �

Consider the iterative scheme

V0 = V and Vn = TVn−1, n = 1, 2, · · · .

By Lemma 2.2, we have

x0 ≤ v(s) ≤ Vn(s) ≤ Vn−1(s) ≤ · · · ≤ V (s) ≤ x+.

By Lebesgue’s dominated convergence theorem, the limit exists which allows defin-
ing the function φ(s) = limn→∞ Vn(s) ≥ v(s) exists and is a fixed point of T .
Therefore, φ is a solution of (1.2) and satisfies

lim
s→−∞

φ(s) = x0, lim
s→∞

φ(s) = x+.

So we can obtain the following existing theorem of travelling waves.

Theorem 2.5. For any c < c∗ < 0, there exists a wave solution φ(s) of (1.2)
which is increasing and satisfies

lim
s→−∞

φ(s) = x0, lim
s→∞

φ(s) = x+.

Note that f is an odd function, let ψ = −φ, then (1.5) is changed to

−cψ′(s) = −ψ(s) + αf(ψ(s)) + β

∫ τ

0

K(u)f(ψ(s+ 1 + u))du.

which is exactly of the same form as (1.5), so we have the following result.

Theorem 2.6. For any c < c∗ < 0, there exists a wave solution φ(s) of (1.2)
which is decreasing and satisfies

lim
s→−∞

φ(s) = x0, lim
s→∞

φ(s) = x−.
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In the rest of this section, we will discuss the existence of monotone travelling
waves of (1.2) for c > 0. By the facts

∆(0, c, x0) = 1− µ(α+ β) < 0; lim
λ→−∞

∆(λ, c, x0) = +∞;

∂∆
∂λ

(λ, c, x0) < 0, λ ∈ R;
∂2∆
∂λ2

(λ, c, x0) < 0, λ ∈ R.

Thus, we know, for any fixed c > 0, the equation ∆(λ, c, x0) = 0 has a unique real
root λ2 = λ2(c) < 0. Furthermore, there is ε2 > 0 such that for 0 < ε < ε2, one
has

∆(λ2 − ε, c, x0) > 0. (2.5)
We note that (1.5) becomes

φ′(s) =
1
c
(φ(s)− α− β) (2.6)

if φ(s) ≥ 1 for large |s|, and

φ(s) = (φ(0)− α− β)e
s
c + α+ β.

Therefore, (2.6) has no monotone solution satisfying (1.8), so we consider monotone
solutions with boundary conditions

lim
s→−∞

φ(s) = x+, lim
s→∞

= x0.

Let

S2 =
{
φ ∈ C : (i)φ(s) is nonincreasing for s ∈ R;

(ii) lim
s→−∞

φ(s) = x+, lim
s→∞

φ(s) = x0.},

V̄ (s) =

{
x+, s ≤ 0,
x+eλ2s, s ≥ 0,

and

v̄(s) =

{
0, s ≤ 0,
η(1− e−εs)eλ2s, s ≥ 0,

where λ2, ε are given in (2.5). We can show that V̄ (s) is an upper solution and
v̄(s) is a lower solution of (1.5) while η is appropriately chosen, with the argument
similar to that for the situation where c < c∗ < 0. Let

H(φ)(s) = (
1
c
− γ)φ(s)− α

c
f(φ(s))− β

c

∫ τ

0

K(u)f(φ(s+ 1 + cu))du.

We choose γ > 1/c such that H(φ)(s) ≤ H(ψ)(s) provided that φ(s) ≥ ψ(s) for
s ∈ R. Note that (1.5) is equivalent to

φ(s) = −eγs

∫ ∞

s

e−γuH(φ)(u)du.

Define an operator Q : S2 → C by

(Qφ)(s) = −eγs

∫ ∞

s

e−γuH(φ)(u)du, φ ∈ S2, s ∈ R. (2.7)

Similar to the proof of Lemma 2.3 we have the following result.

Lemma 2.7. Let Q be defined in (2.7). Then
(1) if φ ∈ S2, then Qφ ∈ S2;
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(2) if φ is an upper (a lower) solution of (1.5), then φ(s) ≥ (Qφ)(s) (φ(s) ≤
(Qφ)(s)) for s ∈ R;

(3) if φ(s) ≥ ψ(s) for s ∈ R, then (Qφ)(s) ≥ (Qψ)(s) for s ∈ R;
(4) if φ is an upper (a lower) solution of (1.5), then Qφ is also an upper (a

lower) solution of (1.5).

Then we can show the existence of a monotone solution in S2 of (1.5) by mono-
tone iteration method, with the argument similar to that of the situation where
c < c∗ < 0. In particular, we have the following.

Theorem 2.8. For any c > 0, we have the following conclusions.
(1) There exists a wave solution φ(s) of (1.2) which is decreasing and satisfies

lim
s→−∞

φ(s) = x+, lim
s→∞

φ(s) = x0.

(2) There exists a wave solution φ(s) of (1.2) which is increasing and satisfying

lim
s→−∞

φ(s) = x−, lim
s→∞

φ(s) = x0.

Finally, we shall briefly discuss the existence of monotone waves of CNN model
with some explicit output function f .

Example 2.9. Let the output function f be defined as (1.3). Obviously, the as-
sumption (H1) is satisfied with µ = 1. Then (1.2) has monotone waves by Theorem
2.1-2.3, which leads to [6, Theorem 2.1-2.2].

Example 2.10. Let the output function f be defined as (1.9) [see [7]). Then the
assumption (H1) is satisfied with µ = π

2 > 1. Hence (1.2) has monotone waves by
Theorem 2.1-2.3.

Example 2.11. Let the output function f be defined by

f(x) =


1 if x ≥ 1,
2x− x2 if 0 ≤ x ≤ 1,
2x+ x2 if − 1 ≤ x ≤ 0,
−1 if x ≤ −1.

Obviously the assumption (H1) is satisfied with µ = 2, which leads to (1.2) having
monotone waves by Theorem 2.1-2.3.

Acknowledgments. The authors are grateful to the anonymous referee for her/his
suggestions and comments on the original manuscript.
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