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WELL-POSEDNESS OF ONE-DIMENSIONAL KORTEWEG
MODELS

SYLVIE BENZONI-GAVAGE, RAPHAËL DANCHIN, STÉPHANE DESCOMBES

Abstract. We investigate the initial-value problem for one-dimensional com-
pressible fluids endowed with internal capillarity. We focus on the isothermal

inviscid case with variable capillarity. The resulting equations for the density
and the velocity, consisting of the mass conservation law and the momentum

conservation with Korteweg stress, are a system of third order nonlinear dis-

persive partial differential equations. Additionally, this system is Hamiltonian
and admits travelling solutions, representing propagating phase boundaries

with internal structure. By change of unknown, it roughly reduces to a quasi-

linear Schrödinger equation. This new formulation enables us to prove local
well-posedness for smooth perturbations of travelling profiles and almost-global

existence for small enough perturbations. A blow-up criterion is also derived.

Introduction

We are concerned with compressible fluids endowed with internal capillarity. The
models we consider are originated from the XIXth century work by van der Waals
[25] and Korteweg [21] and were actually derived in their modern form in the 1980s
using the second gradient theory, see for instance [26, 16]. They result in dispersive
systems of Partial Differential Equations. In fact, special cases of these models
also arise in other contexts, e.g. quantum mechanics. Our main motivation is
about fluids though, especially liquid-vapor mixtures with phase changes. Indeed,
Korteweg models allow phase “boundaries” of nonzero thickness that are often
called diffuse interfaces – by contrast with sharp interfaces in the Laplace-Young’s
theory. The interest for diffuse interfaces has been renewed in the late 1990s also
for numerical purposes, see [1] for a nice review.

The mathematical analysis of Korteweg models is rather recent. One may quote
only a few papers [9, 12, 15], in which nonzero viscosity and its regularizing ef-
fects play a fundamental role. One should also quote the recent work of Li and
Marcati [22], which concerns a similar model in QHD (Quantum HydroDynam-
ics), with weaker dissipation – due to relaxation –included. Here, we concentrate
on purely dispersive models, which are still physically meaningful. Although very
different from dissipative smoothing, dispersive smoothing is known to exist for var-
ious equations, see for instance the seminal work by Kato [19] on the Korteweg-de

2000 Mathematics Subject Classification. 76N10, 76T10.
Key words and phrases. Capillarity; Korteweg stress; local well-posedness;
Schrödinger equation.
c©2006 Texas State University - San Marcos.

Submitted June 14, 2004. Published May 2, 2006.
1



2 S. BENZONI-GAVAGE, R. DANCHIN, S. DESCOMBES EJDE-2006/59

Vries equation, [11, 17] on generalized Schrödinger equations, etc. See also the work
by Bedjaoui and Sainsaulieu on a dispersive two-phase flow model [3]. However, up
to our knowledge, no result of this kind is known on the most general models we
are interested in. This is a direction of research in progress, in connection with the
recent work of Kenig, Ponce and Vega [20]. The positive counterpart of neglect-
ing dissipation phenomena is that like most other purely dispersive models (e.g.
Korteweg-de Vries, Boussinesq, standard Schrödinger equations), the models we
consider can be viewed, to some extent, as Hamiltonian systems. The Hamiltonian
structure of non-dissipative Korteweg models has been discussed in a companion
paper [5].

We address here the local-in-time well-posedness of the non-dissipative Korteweg
models. On the one hand, for monotone pressure laws, it has been pointed out
by Gavrilyuk and Gouin [14] that these models admit a symmetric form, in the
classical sense of hyperbolic systems of conservation laws, at least for their first
order part and with non-dissipative – in a sense that we make precise below –
higher order terms. Even though this kind of systems enjoy natural L2 estimates,
it is not clear how to show their well-posedness (this is done in [3] by an artificial
viscosity method). On the other hand, when concentrating on models with constant
capillarity, Korteweg models – at least some of them – can be dealt with by Kato’s
theory of abstract evolution equations [18], disregarding the monotonicity of the
pressure. For more general capillarities though, because of the nonlinearity in
higher order terms, they are not amenable to Kato’s theory.

Restricting to one space dimension, where we can use Lagrangian coordinates,
we have been able to deal with both a nonmonotone pressure and a nonconstant
capillarity. For this, we have introduced an additional unknown that gives rise
to a system coupling a transport equation with a variable coefficients Schrödinger
equation. Taking advantage of symmetry properties of this system, inspired from
a work by Coquel on the numerics of Korteweg models, and introducing suitable
gauge functions, inspired from a work by Lim and Ponce [23], we obtain higher
order energy estimates without loss of derivatives, and eventually prove the local-
in-time well-posedness in Sobolev spaces of the one dimensional Korteweg models.
As a matter of fact, our main theorem is slightly more general since it also states
existence for data pertaining to Hk perturbations of any smooth reference solution
whose derivatives have sufficient decay at infinity. Our main motivation for proving
this is to investigate the stability of travelling wave solutions for the one-dimensional
model. Indeed, typical travelling solutions fail to belong to Sobolev spaces since
they have different endstates at −∞ and +∞ (see our companion paper [5] for more
details).

We finally derive a blow-up criterion involving the Lipschitz norm of the solution
and get a lower bound for the existence time in terms of the norm of the data which
entails almost global existence for small perturbations of a global solution (e.g a
capillary profile).

1. Derivation of Korteweg models

1.1. A general model in Eulerian coordinates. Korteweg-type models are
based on an extended version of nonequilibrium thermodynamics, which assumes
that the energy of the fluid not only depends on standard variables but on the
gradient of the density. In terms of the free energy for instance, this principle takes
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the form of a generalized Gibbs relation

dF = −S dT + g dρ+ φ∗ · dw ,

where F denotes the free energy per unit volume, S the entropy per unit volume1,
T the temperature, g the chemical potential and, in the additional term, w stands
for ∇ρ. The potential φ is most often assumed of the form

φ = Kw,

where K is called the capillarity coefficient, which may depend on both ρ and T .
In this case, F decomposes into a standard part F0 and an additional term due to
gradients of density,

F (ρ, T,∇ρ) = F0(ρ, T ) +
1
2
K(ρ, T )‖∇ρ‖2 ,

and similar decompositions hold for S and g. We shall use this special form in
our subsequent analysis. For the moment we keep the abstract potential φ and we
define the Korteweg tensor as

K := (ρdiv φ)I− φw∗ .

Neglecting dissipation phenomena, the conservation of mass, momentum and energy
read

∂tρ+ div(ρu) = 0 ,

∂t(ρu∗) + div(ρuu∗ + pI) = div K ,

∂t(E + 1
2ρ|u|

2) + div((E + 1
2ρ|u|

2 + p)u) = div(Ku + W) ,

where p = ρg − F is the (extended) pressure, E = F + TS is the internal energy
per unit volume, and

W := (∂tρ+ u∗ · ∇ρ)φ = −(ρdiv u)φ

is the interstitial working that was first introduced by Dunn and Serrin [13]. This
supplementary term ensures that the entropy S satisfies the conservation law

∂tS + div(Su) = 0 .

(This is obtained through formal computation, for presumably smooth solutions.)
There is also an alternate form of the momentum equation (still for smooth solu-
tions). Using the mass conservation law and the relation

dg = −sdT + v dp+ vφ∗ · dw ,

with s the specific entropy and v := 1/ρ the specific volume, we arrive at the
equation

∂tu + (u∗ · ∇)u = ∇(div φ− g)− s∇T .
The resulting evolution system for (ρ,u, S) is

∂tρ+ div(ρu) = 0 ,

∂tu + (u∗ · ∇)u = ∇(div φ− g)− s∇T ,
∂tS + div(Su) = 0 .

(1.1)

1By convention, extensive quantities per unit volume are denoted by upper case letters and
their specific counterparts will be denoted by the same, lower case, letters.
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The “Hamiltonian structure” of (1.1) is discussed in [5]. In particular, in the
isothermal case this system reduces to

∂tρ+ div(ρu) = 0 ,

∂tu + (u∗ · ∇)u = ∇(div φ− g) .
(1.2)

We shall see that for proving well-posedness, w, or a similar quantity, must be
considered at first as an independent unknown. To do so, one also needs an evolution
equation for w, which is easily obtained by differentiating the mass conservation
law. We get

∂tw∗ + div(uw∗) + div(ρDu) = 0 ,

where Du = (∇u)∗ is by definition the matrix of coefficient ∂jui on the i-th row
and j-th column. Therefore, one may also look at the equations of motion as

∂tρ+ div(ρu) = 0 ,

∂t(ρu∗) + div(ρuu∗ + pI−K) = 0 ,

∂tS + div(Su) = 0 ,

∂tw∗ + div(uw∗) + div(ρDu) = 0 .

(1.3)

It has been pointed out by Gavrilyuk and Gouin [14] that, if the total energy
H := E + 1

2ρ‖u‖
2 is a convex function of the conservative variable (ρ,m, S,w) –

with m := ρu –, then the system (1.3) admits a symmetric form similar to Friedrichs
symmetric hyperbolic systems of conservation laws. This symmetrization procedure
naturally involves the Legendre transform Π of H, which is a function of the dual
variables (q := g − 1

2‖u‖
2,u, T, φ). Indeed, one easily finds that

dH = dE − 1
2
‖u‖2 dρ+ u∗ · dm = (g − 1

2
‖u‖2) dρ+ u∗ · dm + T dS + φ∗ · dw .

The Legendre transform Π is by definition such that

dΠ = ρdq + m∗ · du + S dT + w∗ · dφ ,

and
Π = ρq + m∗ · u + ST + w∗ · φ−H = p+ w∗ · φ .

Then it is not difficult to see that (1.3) also reads

∂t

(∂Π
∂q

)
+ div

(∂(Πu)
∂q

)
= 0 ,

∂t

(∂Π
∂u

)
+ div

(∂(Πu)
∂u

)
− div

(∂Π
∂q

Dφ
)

= 0 ,

∂t

(∂Π
∂T

)
+ div

(∂(Πu)
∂T

)
= 0 ,

∂t

(∂Π
∂φ

)
+ div

(∂(Πu)
∂φ

)
+ div

(∂Π
∂q

Du
)

= 0 .

(1.4)

The first-order part in (1.4) is exactly of the Friedrichs symmetric type. An abstract
form for this system is

∂tU +
d∑

α=1

Aα(U)∂αU +
d∑

α=1

∂α

( d∑
β=1

Bα,β(U) ∂βU
)

= 0 ,
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with the property that for some positive definite symmetric matrix Σ(U) all ma-
trices Σ(U) Aα(U) are symmetric and∑

α

∑
β

(Xα)∗ Σ(U) Bα,β(U) Xβ = 0

for all vectors X1, . . . , Xd in R2d+2. This is what we mean by non-dissipative second
order part of the system, consistently with the usual terminology for parabolic
systems of second order conservation laws. One may observe that a similar system
(in nonconservative form) is studied in [3]. Here

U =


ρ
m
S
w

 , Σ = D2H , Aα = D2(Πuα) Σ ,

where the Hessian D2(Πuα) of Πuα is taken with respect to the dual variables

Q =


q
u
T
φ

 .

The actual expression of Bα,β also involves the Hessian matrix D2H, and more
precisely

Bα,β
∂

∂Uk
= −ρ ∂2H

∂wα∂Uk

∂

∂mβ
+ ρ

∂2H

∂mα∂Uk

∂

∂wβ

for all k ∈ {1, 2d + 2} (with U1 = ρ, U2 = m1, . . . , Ud+1 = md, Ud+2 = S,
Ud+3 = w1,. . . , U2d+2 = wd). The non-dissipativeness of the corresponding second
order terms in (1.4) is a calculus exercise, and is equivalent to the fact that these
terms formally cancel out in the computation of

d
dt

∫
U∗Σ(U)Udx = 2

∫
Q∂tUdx

along solutions.
Unfortunately, this interesting formulation is limited to monotone pressure laws,

since it makes use of the convexity of the total energy.

1.2. Eulerian capillarity models. For the rest of this article, we assume that
φ = Kw. Then we can write

g = g0 + 1
2K

′
ρ‖∇ρ‖2 ,

where g0 is independent of ∇ρ. In particular, the isothermal model reduces to

∂tρ+ div(ρu) = 0 ,

∂tu + (u∗ · ∇)u = ∇(K∆ρ+ 1
2K

′
ρ|∇ρ|2 − g0) ,

(1.5)

where g0 and K are given, smooth functions of ρ (with K > 0). One may also write
this system in conservative form, noting that

p = p0 + 1
2 (ρK ′

ρ −K)‖∇ρ‖2 , p0 = ρg0 − F0 ,
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hence the (complicated) momentum equation

∂t(ρu∗) + div(ρuu∗) +∇p0

= ∇(ρK∆ρ+ 1
2 (K + ρK ′

ρ)‖∇ρ‖2)− div(K∇ρ⊗∇ρ).

In one space dimension, our isothermal model reduces to

∂tρ+ ∂x(ρu) = 0 ,

∂tu+ u∂xu = ∂x(K∂2
xxρ+ 1

2K
′
ρ (∂xρ)2 − g0(ρ)) .

(1.6)

We point out that models of this kind actually arise in various other contexts. In
the special case

K(ρ) =
1
4ρ

,

the system (1.5) is equivalent – for irrotational flows – to a nonlinear Schrödinger
equation known as the Gross-Pitaevskii equation

i∂tψ +
1
2
∆ψ = g0(|ψ|2)ψ

for ψ =
√
ρeiϕ, ∇ϕ = u. See for instance [6], where g0(ρ) = 1

4ρ
2. It is also the case

K proportional to 1/ρ that is considered in [22], with almost no restriction on g0.
One may also observe that, in one dimension with

g0(ρ) = ρ
4 , K(ρ) =

1
4ρ

,

Equations in (1.6) appear as an equivalent form of the filament equation, see [2] p.
353.

1.3. Lagrangian capillarity models. The one-dimensional isothermal model be-
comes even simpler in Lagrangian formulation. Introducing y the mass Lagrangian
coordinate so that2 dy = ρdx− ρu dt we obtain with a little piece of calculus the
– at least formally – equivalent system

∂tv − ∂yu = 0 ,

∂tu+ ∂yp0 = −∂y

(
κ ∂2

yyv + 1
2κ

′
v(∂yv)2

)
,

(1.7)

with v := 1/ρ and κ(v) := K(1/v)(1/v)5. In the special case κ = constant, i.e.
K = cstρ−5, the system (1.7) is formally equivalent to the (good) Boussinesq
equation and is amenable to the theory of Kato [18], see [7] for more details. Our
aim here is to deal with general capillarities, motivated by physical reasons - since
there is no reason why K should be proportional to ρ5 - as well as by the various
analogies mentioned above.

Following an idea of Coquel [10], we rewrite the velocity equation as

∂tu+ ∂yp0 − ∂y(α∂yw) = 0 , α =
√
κ , w = −α∂yv.

Applying the differential operator −∂y(α·) to the first line of (1.7), we find that w
satisfies the equation

∂tw + ∂y(α∂yu) = 0 .

2 This change of variable may be justified rigorously for, say, C1 functions (ρ, u) and ρ bounded
away from zero.
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Considering w as an additional unknown, we are led to the system
∂tv − ∂yu = 0 ,

∂tu+ ∂yp0 − ∂y(α∂yw) = 0 ,

∂tw + ∂y(α∂yu) = 0 .
(1.8)

Alternatively, because of the constraint w = −α∂yv we may rewrite (1.8) as

∂tv − ∂yu = 0 ,

∂tu− ∂y(α(v)∂yw) = q(v)w ,

∂tw + ∂y(α(v)∂yu) = 0
(1.9)

with q(v) := p′0(v)/α(v).

2. Well-posedness results

We are interested in the well-posedness of (1.6) and (1.7) for data with finite
specific volumes (i.e. away from vacuum) and finite densities. More precisely, as
both systems are known to admit global smooth solutions (like of course constant
states, but also travelling wave solutions, see for instance [4, 5]), our main purpose
is to show the well-posedness of (1.6) and (1.7) in affine spaces about such reference
solutions.

Our strategy is to first prove the well-posedness of the system (1.9).

2.1. Semigroup method. The special case where α is constant is much easier,
and enters the framework of Kato [18]. As a matter of fact, (1.9) can always be
put in the abstract form

∂tv −A(v) · v = F(v, w) ,

with

v :=

v
u
w

 , A(v) :=

 0 ∂y 0
∂y 0 ∂yα(v)∂y

0 −∂yα(v)∂y 0

 ,

F(v, w) :=

 0
p′0(v)+1

α w
0

 .

(In fact, we have used again the expected relation w = −α∂yv to obtain a right
hand side F of order 0.) When α is constant, the antisymmetric operator A(v)
of course has constant coefficients, which makes a big difference. Indeed, because
A is the infinitesimal generator of a group of unitary operators on L2(R)3 (this is
due to Stone’s theorem, see [24], p. 41), it is possible to apply (a slight adaptation
of) Theorem 6 in [18] (p. 36) using the operator S = (1 − ∂2

yy)I3 and the spaces
Y = H2(R)3, X = L2(R)3, and thus show the following for any p0 a smooth
function of v.

Theorem 2.1. If v = (v, u, w)t is smooth and exponentially decaying to (v±, u±, 0)
when x→ ±∞, then there is a T ≥ 0 so that the Cauchy problem associated with

∂tv −Av = F(v, w)

and initial data in v(0) +H2(R)3 admits a unique solution such that v−v belongs
to C(0, T ;H2(R)3) ∩ C1(0, T ;L2(R)3).
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This theorem is essentially the same as Theorem 1 in [7], extended to solutions
having nonzero, and possibly different, limits at infinity. Our motivation for this
extension is the stability of diffuse interfaces.

For a general function α, the semi-group approach breaks down because the
operator A(v) involves the derivative ∂yv. Thus the Lipschitz estimate requested
by Kato’s theorem,

‖(A(v1)−A(v2)) · v‖X . ‖v1 − v2‖X‖v‖Y

means that the norm of vectors in X should control the first derivative of their first
components. This goal does not seem possible to achieve without augmenting also
the regularity index of the other components (to keep a semigroup generated by
A(v) in X). For this reason the Lipschitz estimate above is quite unlikely.

2.2. Alternative method. We introduce the complex valued function z = u+ iw
and regard equivalently the system (1.9) as the coupling of the variable coefficient
Schrödinger equation

∂tz + i∂y(α(v)∂yz) = q(v) Im z (2.1)

with the compatibility equation

∂tv − ∂y Re z = 0 .

Let Jv be an open interval of (0,+∞) and k ≥ 2 be an integer. Our main assumption
is

(H1) Both p0 and α belong to W k+2,∞
loc (Jv) and α is positive on Jv.

For a nonconvex pressure law v 7→ p0(v), it is easy to show that (1.9) does admit
non-constant, bounded, global, smooth solutions, which are in fact travelling wave
solutions. This is because of the Hamiltonian structure of (1.9), which implies that
the governing equations for the travelling waves are also Hamiltonian, see [4] or our
companion paper [5] for more details. In what follows, we assume the existence of
a reference global smooth solution, regardless of the convexity properties of p.

Theorem 2.2. Under assumption (H1) with k ≥ 2, let (u, v) be a given global
classical solution of system (1.9) with v(R2) ⊂ Jv and

∂yu ∈ C(R;Hk+1), ∂yv ∈ C(R;Hk+2).

Let u0 ∈ u(0)+Hk and v0 ∈ v(0)+Hk+1 be such that v0(R) ⊂⊂ Jv. There exists a
positive T such that the Cauchy problem associated with the system (1.9) and initial
data (u0, v0) has a unique solution (u, v) with v([−T, T ]×R) ⊂⊂ Jv and, denoting
ũ := u− u and ṽ := v − v,

(ũ, ṽ) ∈ C([−T, T ];Hk ×Hk+1) ∩ C1([−T, T ];Hk−2 ×Hk−1). (2.2)

Remark 2.3. Constants are obviously global classical solutions of (1.9). If (u, v)
is constant then the theorem can be slightly improved, see Section 4.4.

Remark 2.4. One can find an explicit bound by below for T (see (4.18)). Besides,
one can show that for Hk data, the time of existence of a Hk solution is the same
as for a H2 solution (see section 4.3).

In the case where the Sobolev norms of ∂yu and ∂yv are independent of the
time, there exists a constant C = C(α, q, u, v, v0(R)) such that T may be chosen
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such that

T ≥ 1
C

log
(

1 +
1

‖ũ0‖H2 + ‖∂y ṽ0‖H2

)
. (2.3)

Hence, if ‖ũ0‖H2+‖∂y ṽ0‖H2 ∼ ε for a small ε, the life span is greater than C log ε−1.

For simplicity, we shall restrict ourselves to the evolution for positive times. As
system (1.9) is time reversible, adapting our proof to negative is straightforward.

Our approach is quite classical. It consists in deriving first energy estimates
without loss of derivatives – in sufficiently high order Sobolev spaces – for a lin-
earized version of (2.1), and then solve the nonlinear problem through an iterative
scheme. There are some difficulties in both steps that will be pointed out along the
detailed proofs.

3. A variable coefficient linear Schrödinger equation

To show the (local) well-posedness of (1.9) by means of an iterative scheme, we
shall need the resolution of the linear Schrödinger equation

∂tz + i∂y(a(y, t)∂yz) = f(y, t) . (3.1)

Whatever the function a (smooth enough and real-valued), the operator i∂ya∂y is
obviously antisymmetric on L2(R). Under suitable assumptions on the asymptotic
behavior of a it is not difficult to show that i∂ya∂y is also skewadjoint 3 in L2(R).
Therefore i∂ya∂y is the infinitesimal generator of a group of unitary operators,
and the standard semigroup theory (see [24], p. 145–147) enables us to prove the
following.

Theorem 3.1. Assuming that a is real valued, belongs to C1([0, T ];W 1,∞(R)) and
that a(t) has finite limits at x = ±∞ for all t ∈ [0, T ], the Cauchy problem

∂tz + i∂y(a(y, t)∂yz) = f(y, t) ,

z(0) = z0

with z0 ∈ H2(R) and f ∈ L1([0, T ];H2(R)) ∩ C([0, T ];L2(R)) admits a unique
(classical) solution z ∈ C([0, T ];H2(R)) ∩ C1([0, T ];L2(R)). If z0 ∈ L2 and f ∈
L1([0, T ];L2(R)), we get a mild solution u ∈ C([0, T ];L2(R)) given by Duhamel’s
formula:

z(t) = S(t, 0)z0 +
∫ t

0

S(t, s)f(s) ds

with S(t, s) the solution operator of the homogeneous equation.

3.1. A priori estimates. Our aim is to obtain a more precise result, and especially
a priori estimates in view of our iterative scheme for the nonlinear problem. Of
course we immediately have from Duhamel’s formula the estimate

‖z(t)‖L2 ≤ ‖z(0)‖L2 +
∫ t

0

‖f(s)‖L2 ds ,

which can also be derived directly from the equation (3.1). Indeed, multiplying
(3.1) by z and integrating over R we get

1
2

d
dt
‖z‖2L2 −=

∫
∂y(a∂yz)z dy = <

∫
fz dy (3.2)

3It suffices to check that the range of ∂ya∂y − λ is dense in L2(R) for all λ /∈ R.
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and an integration by parts shows that the integral in the left-hand side has no
imaginary part since a is real. So it follows from Cauchy-Schwarz inequality that
(at least formally)

d
dt
‖z‖L2 ≤ ‖f‖L2

hence the result.
However, this L2 estimate does not provide enough information to solve the

non-linear system (1.9), which equivalently reads

∂tv − ∂y Re z = 0 ,

∂tz + i∂y(α(v)∂yz) = q(v) Im z .
(3.3)

The second-order term ∂y(α(v)∂yz) induces us to prove a priori estimates for equa-
tion (3.1) in higher order Sobolev spaces, a matter which is not obvious despite the
linearity of the equation, neither on the Duhamel formula – because differentiation
operators do not commute with the solution operator S(t, s) – nor in the direct
fashion described in L2. Indeed, let z(k) (resp. a(k) and f (k)) denote the k-th order
derivative of z (resp. a and f) with respect to y. By Leibniz formula, we have

∂k
y

(
∂y(a∂yz)

)
= ∂y

(
∂k

y (a∂yz)
)

= ∂y(a∂yz
(k)) +

k−1∑
j=0

(
k
j

)
∂y(z(j+1)a(k−j))

= ∂y(a∂yz
(k)) + k∂yaz

(k+1) +
k∑

`=1

(
k+1
`−1

)
z(`)a(k+2−`)

so we get the following equation for z(k):

∂tz
(k) + i∂y(a∂yz

(k)) = f (k) − ik(∂ya)∂yz
(k) − i

k∑
j=1

(
k+1
j−1

)
z(j)a(k+2−j). (3.4)

This can be rewritten using Duhamel’s formula as

z(k)(t) = S(t, 0)z(k)
0

+
∫ t

0

S(t, s)
(
f (k) − ik(∂ya)∂yz

(k) − i
k∑

j=1

(
k+1
j−1

)
z(j)a(k+2−j)

)
(s) ds .

We see that the time integral involves the derivative ∂yz
(k). This derivative cannot

disappear through a direct a priori estimate either, because the real part of (3.4)
multiplied by z(k) contains the term

Im
∫

(∂ya)∂yz
(k)z(k) dy,

which cannot be rewritten without a derivative of z(k), unless a is constant or z(k)

is real.
This is a well identified problem for variable coefficients Schrödinger equations.

In [23] for instance, W. Lim and G. Ponce overcome the difficulty by introducing
appropriate weighted Sobolev spaces. We are going to show how weights, also called
gauges, can help to compensate the loss of derivative in our context.
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Let φk denote the k-th order gauge (to be determined), and multiply the equation
(3.4) by φk. Since

φk∂y(a∂yz
(k)) = ∂y(a∂y(φkz

(k)))− z(k)∂y(a∂yφk)− 2a∂yφk∂yz
(k),

we find the equation for φkz
(k),

∂t(φkz
(k)) + i∂y(a∂y(φkz

(k)))

= φkf
(k) + z(k)∂tφk − i

k−1∑
j=1

(
k+1
j−1

)
φkz

(j)a(k+2−j)

+ iz(k)
(
∂y(a∂yφk)− k(k + 1)

2
∂2

yya φk

)
+ i∂yz

(k)
(
2a∂yφk − kφk∂ya

)
.

(3.5)

From the above equality, it is now clear that the loss of derivative will be avoided
if and only if φk satisfies

2a∂yφk − kφk∂ya = 0.

Choose φk := ak/2 so that the last term in (3.5) vanishes. Then multiply (3.5) by
φkz(k) and integrate in time. If we keep only the real part of the equation, the
second order term in the left-hand side vanishes, as well as the last remaining term
of the right-hand side, hence the identity

1
2

d
dt
‖φkz

(k)‖2L2 = <
∫
φ2

kf
(k)z(k) dy +

∫
φk∂tφk|z(k)|2 dy

+
k−1∑
j=1

(
k+1
j−1

)
=

∫
a(k+2−j)φ2

kz
(j)z(k) dy.

(3.6)

We can now state estimates in Hk for the variable coefficient Schrödinger equation.

Proposition 3.2. Let z be a solution of (3.1) on R × [0, T ]. Assume in addition
that a is bounded away from zero by a and is bounded by ã. Then for all t ∈ [0, T ],
we have

‖z(t)‖L2 ≤ ‖z0‖L2 +
∫ t

0

‖f(τ)‖L2 dτ. (3.7)

Besides, denoting for k ∈ N∗,

Zk(t) :=
( k∑

j=1

‖(a
j
2 z(j))(t)‖2L2

)1/2

and Fk(t) :=
( k∑

j=1

‖(a
j
2 f (j))(t)‖2L2

)1/2

,

we have

Zk(t) ≤ eAk(t)
(
Zk(0) +

∫ t

0

e−Ak(τ)Fk(τ) dτ
)
, (3.8)

with Ak(t) :=
∫ t

0

(
k
2‖∂t log a(τ)‖L∞+Ck

(
‖∂3

ya(τ)‖Hk−2 +‖∂2
ya(τ)‖L∞

))
dτ for some

positive constant Ck depending only on k, a and ã if k ≥ 2, and C1 = 0.

Proof. The L2 estimate was already pointed out. In order to prove the k-th order
estimate, we sum equalities (3.6) for j = 1, . . . , k. This implies by Cauchy-Schwarz
inequality,

1
2

d
dt
Z2

k ≤ Zk

(
Fk +

k

2
‖∂t log a‖L∞ Zk +

k∑
j=2

j−1∑
`=1

(
j+1
`−1

)
ã

j
2 ‖a(j+2−`)z(`)‖L2

)
. (3.9)
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Note that in the case k = 1, the last term vanishes so that straightforward calcu-
lations yield (3.8). Let us assume from now on that k ≥ 2. Since a(j+2−`)z(`) =(
∂

(j−1)−(`−1)
y a′′

)(
∂`−1

y z′
)
, inequality (5.1) in the appendix ensures that

‖a(j+2−`)z(`)‖L2 ≤ Cj,`

(
‖a′′‖L∞‖z′‖Hj−1 + ‖z′‖L∞‖a(j+1)‖L2

)
.

Now, because

‖z′‖2L∞ ≤ ‖z′‖L2‖z′′‖L2 ≤ a−
3
2 ‖a1/2z′‖L2‖az′′‖L2 ,

we conclude that4 whenever 2 ≤ j ≤ k and 1 ≤ ` ≤ j − 1,

‖a(j+2−`)z(`)‖L2 ≤ Cj,`

(
‖a′′‖L∞ + ‖a(3)‖Hk−2

)
Zk,

for some constant Cj,` depending only on j, ` and a. Plugging this latter inequality
in (3.9), we end up with

1
2

d
dt
Z2

k ≤ FkZk +
(k

2
‖∂t log a‖L∞ + Ck

(
‖a′′‖L∞ + ‖a(3)‖Hk−2

))
Z2

k .

Then Gronwall lemma entails inequality (3.8). �

3.2. Existence of regular solutions. This section is devoted to the regularity of
solutions of (3.1), namely we want to prove the following theorem.

Theorem 3.3. Let k be an integer such that k ≥ 2, Let a = a(y, t) be bounded
by ã and bounded away from zero by a > 0 on R × [0, T ], and satisfy ∂2

ya ∈
L1(0, T ;Hk−1(R)) and ∂ta ∈ L1(0, T ;L∞(R)). Let z0 be in Hk(R) and f in
L1(0, T ;Hk(R)). Then the Cauchy problem

∂tz + i∂y(a(y, t)∂yz) = f(y, t) ,

z(0) = z0
(3.10)

admits a unique solution z ∈ C([0, T ];Hk(R)). If, besides, f ∈ C([0, T ];Hk−2(R))
then z also belongs to C1([0, T ];Hk−2(R)).

Proof. The proof is based on the following fourth-order regularization of equation
(3.10):

∂tzε + i∂y(a(y, t)∂yzε) + ε∂4
yzε = f ,

zε(0) = z0,
(3.11)

where ε > 0 stands for a positive parameter bound to go to zero.
We shall see in the proof however that this regularization does not enable us

to pass to the limit in the very space C([0, T ];Hk). For doing so, we shall adapt
the method by J. Bona and R. Smith in [8] which amounts to smoothing out
conveniently the data and the variable coefficients.

Let us briefly describe the main steps of the proof:
(1) Getting bounds for zε similar to (3.8) and independent of ε.
(2) Stating well-posedness in Hk(R) for the problem (3.11) with ε > 0.
(3) Showing that the family of solutions (zε) to (3.11) with regularized data

and coefficient converges to some z in the space C([0, T ];Hk(R)) when ε
approaches 0.

4remark that we always have j + 1 ≥ 3.
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Step 1: uniform a priori estimates. Let p ∈ N. We assume that we are given a
solution z ∈ C([0, T ];Hp(R)) to (3.11)5 corresponding to data z0 ∈ Hp(R) and
f ∈ L1([0, T ];Hp(R)). We claim that z satisfies an estimate similar to (3.8) with a
constant C independent of ε.

Let ` be an integer such that 0 ≤ ` ≤ p and φ` = a
`
2 be the `-th order gauge

introduced previously. Applying Leibniz formula to ∂4
y(αβ) with α := 1/φ` and

β = φ`z
(`), one obtains the following expansion:

φ`∂
4
yz

(`) = ∂4
y(φ`z

(`)) + 4φ`∂y(φ−1
` )∂3

y(φ`z
(`)) + 6φ`∂

2
y(φ−1

` )∂2
y(φ`z

(`))

+ 4φ`∂
3
y(φ−1

` )∂y(φ`z
(`)) + φ`∂

4
y(φ−1

` )(φ`z
(`)).

Hence, applying the operator φ`∂
`
y to the evolution equation in (3.11) and denoting

z̃` := a`/2z(`), we get

∂tz̃` + i∂y(a∂y z̃`) + ε∂4
y z̃`

= a
`
2 f (`) + z(`)∂ta

`
2 + iz̃`

(
a−

`
2 ∂y(a∂ya

`
2 )− `(`+ 1)

2
∂2

ya
)

− i
`−1∑
j=1

(
`+1
j−1

)
a

`
2 z(j)a(`+2−j) − εa`/2

(
4∂y(a−`/2)∂3

y z̃`

+ 6∂2
y(a−`/2)∂2

y z̃` + 4∂3
y(a−`/2)∂y z̃` + ∂4

y(a−`/2)z̃`

)
.

(3.12)

Now, multiplying (3.12) by z̃` and performing a time integration, we deduce that
1
2

d
dt
‖z̃`‖2L2 + ε‖∂2

y z̃`‖2L2 = <
∫
a`f (`)z(`) dy +

`

2

∫
∂t log a |z̃`|2 dy

+
`−1∑
j=1

(
`+1
j−1

)
=

∫
a(`+2−j)a`z(j)z(`) dy

− ε<
(
4R1 + 6R2 + 4R3 +R4)

(3.13)

with

R1 :=
∫
a`/2∂y(a−`/2) (∂3

y z̃`) z̃` dy, R2 :=
∫
a`/2∂2

y(a−`/2)(∂2
y z̃`) z̃` dy,

R3 :=
∫
a`/2∂3

y(a−`/2) (∂y z̃`) z̃` dy, R4 :=
∫
a`/2∂4

y(a−`/2)|z̃`|2 dy.

To bound R1, we perform an integration by parts:

R1 = −
∫ (

∂y(a`/2)∂y(a−`/2) + a`/2∂2
y(a−`/2)

)
(∂2

y z̃`)z̃` dy

−
∫
a`/2∂y(a−`/2)(∂2

y z̃`)∂y z̃` dy .

Using Hölder inequalities and applying the interpolation inequality

‖F ′‖2L∞ ≤ 2‖F‖L∞‖F ′′‖L∞ ,

to F = a±`/2, we get by Young’s inequality

|4R1| ≤
1
8
‖∂2

y z̃`‖2L2 + C‖∂2
ya‖2L∞‖z̃`‖2L2

5For notational convenience, we drop the indices ε in this step
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for some constant C depending only on ã ≥ ‖a‖L∞ and a−1 ≥ ‖a−1‖L∞ . We get a
similar bound for R2 using only Hölder and Young inequalities.

We claim that the same bound holds true for R3 and R4. This is only a matter
of using suitable integration by parts and standard inequalities like above. Indeed,
we may rewrite

R3 = −
∫ (

∂y(a`/2)∂2
y(a−`/2)(∂y z̃`)z̃` + a`/2∂2

y(a−`/2)|∂y z̃`|2

+ a`/2∂2
y(a−`/2)(∂2

y z̃`)z̃`

)
dy

and

R4 = −
∫ (

∂2
y(a`/2)∂2

y(a−`/2)|z̃`|2 + 2∂y(a`/2)∂2
y(a−`/2)∂y

(
|z̃`|2

)
+ a`/2∂2

y(a−`/2)∂2
y

(
|z̃`|2

))
dy.

Therefore, we eventually find a constant C depending only on ã and a so that∣∣∣4R1 + 6R2 + 4R3 +R4

∣∣∣ ≤ 1
2
‖∂2

y z̃`‖2L2 + C‖∂2
ya‖2L∞‖z̃`‖2L2 .

The other terms appearing in the right-hand side of (3.13) may be bounded like in
the case ε = 0. Hence

1
2

d
dt
‖z̃`‖2L2 +

ε

2
‖∂2

y z̃`‖2L2

≤ ‖z̃`‖L2‖a`/2f (`)‖L2 +
( `
2
‖∂t log a‖L∞ + Cε‖∂2

ya‖2L∞
)
‖z̃`‖2L2

+ C
(
‖∂2

ya‖L∞ + ‖∂3
ya‖H`−2

)
‖z‖2H` .

Summing the above inequalities for ` = 0, . . . , p and applying the usual Gronwall
type argument, we deduce that for t in [0, T ] and ε ≥ 0, we have(

Z2
p(t) + ε

p∑
`=0

‖∂2
y

(
a`/2z(`)

)
‖2L2

)1/2

≤ eAp,ε(t)
(
Zp(0) +

∫ t

0

Fp(τ)e−Ap,ε(τ) dτ
)

(3.14)
with

Z2
p(t) =

p∑
`=0

‖a`/2∂(`)
y z(t)‖2L2 , F 2

p (t) =
p∑

`=0

‖a`/2∂(`)
y f(t)‖2L2 ,

Ap,ε(t) =
∫ t

0

(p
2
‖∂t log a‖L∞ + Cp

(
‖∂2

ya‖L∞ + ‖∂3
ya‖Hp−2 + ε‖∂2

ya‖2L∞
))
dτ

where C0 = C1 = 0 and Cp depends only on p, a and ã for p ≥ 2.

Step 2: solving the regularized equation. This step is devoted to the proof of the
following result.

Proposition 3.4. Let k, a, z0 and f satisfy the hypotheses of theorem 3.3. System
(3.11) has a unique solution zε in the space

C([0, T ];Hk) ∩ L2(0, T ;Hk+2).

Proof. Denote by S(t) the analytic semi-group generated by ∂4
y and, for t > 0,

Eε
t := C([0, t];Hk) ∩ L2(0, t;Hk+2)
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endowed with the norm

‖z‖Eε
t

:= ‖z‖L∞t (Hk) + ε1/2‖∂2
yz‖L2

t (Hk)
.

We claim that for suitably small t > 0, the operator Φ defined for τ ∈ [0, t] by

Φ(z)(τ) = S(ετ)z0 +
∫ τ

0

S(ε(τ − s))
(
f(s)− i∂y(a(y, s)∂yz(y, s))

)
ds (3.15)

has a fixed point in Eε
t .

Obviously Φ maps Eε
t in Eε

t . Indeed, on the one hand, using standard properties
of S(τ), the terms pertaining to z0 and f belong to Eε

t . On the other hand, by
virtue of (5.2), we have

‖a∂yz‖Hk+1 . ‖a‖L∞‖∂yz‖Hk+1 + ‖∂yz‖L∞‖∂2
ya‖Hk−1 .

Hence, by standard computations relying on Hölder inequality,

‖a∂yz‖L1
t (Hk+1) ≤ C

(
ε−

1
2 ‖a‖L2

t (L∞) + ‖a‖L1
t (L∞) + ‖∂2

ya‖L1
t (Hk−1)

)
‖z‖Eε

t
.

This entails that ∂y(a∂yz) ∈ L1(0, t;Hk), hence the Duhamel term pertaining to
∂y(a∂yz) also belongs to Eε

t .
Therefore, if z2 and z1 both belong to Eε

t , we have for some constant C depending
only on k,

‖Φ(z2)− Φ(z1)‖Eε
t

≤ C‖a∂y(z2 − z1)‖L1
t (Hk+1),

≤ C
(
ε−

1
2 ‖a‖L2

t (L∞) + ‖a‖L1
t (L∞) + ‖∂2

ya‖L1
t (Hk−1)

)
‖z2 − z1‖Eε

t
.

Choosing t so small as to satisfy

2C
(
ε−

1
2 ‖a‖L2

t (L∞) + ‖a‖L1
t (L∞) + ‖∂2

ya‖L1
t (Hk−1)

)
≤ 1,

we conclude that Φ is a contractive map so that it has a unique fixed point in Eε
t .

Whence (3.11) has a unique solution in Et on the time interval [0, t].
Obviously, the above proof may be repeated starting from time t. We end up with

a solution on the whole interval [0, T ]. Uniqueness stems from estimate (3.14). �

Step 3. Passing to the limit. In this part, we are given a nonnegative smooth
function θ with support in [−1, 1] and such that

∫
R θ(y) dy = 1, and a smooth

radial function χ whose Fourier transform is supported in [−1, 1]. For η > 0, we
denote θη := η−1θ(η−1·) and χη := η−1χ(η−1·).

We shall make use repeatedly of the following two lemmas the proof of which is
left to the reader.

Lemma 3.5. Let X be a Banach space and u ∈ L1
loc(R;X). Then θη ∗ u tends to

u in L1
loc(R;X) when η approaches 0. Besides, for all q ≥ 1, a < b and η > 0, the

function θη ∗ u belongs to Lq(a, b;X) and we have

‖θη ∗ u‖Lq(a,b;X) ≤ η
1
q−1‖u‖L1(a−η,b+η;X).

Lemma 3.6. Let u be in Hk(R; C). Then χη∗u belongs to H∞(R; C) and tends to u
in Hk(R; C) when η approaches zero. Besides, there exists a constant C depending
only on p and k and such that

‖χη ∗ u‖Hp ≤ Cηk−p‖u‖Hk for p ≥ k.
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If u ∈ S ′(R; C) satisfies ∂2
yu ∈ Hk−2(R; C) then χη ∗ u− u ∈ Hk(R; C) and

‖χη ∗ u− u‖Hp ≤ Cηk−p‖∂2
yu‖Hk−2 for p ≤ k.

For ε > 0, mollify the data and the coefficient a by setting

z0,ε := χη(ε) ∗y z0, fε := χη(ε) ∗y f, aε := θε ∗t

(
χη(ε) ∗y a

)
,

where η is a positive function tending to 0 in 0 to be chosen hereafter, and with
the convention that a(y, t) = 0 if t > T .

According to lemma 3.6 and Sobolev embeddings, we have a/2 ≤ aε(y, t) ≤ 2ã
for small enough ε. This fact will be used repeatedly in the sequel.

Theorem 3.4 provides a solution zε ∈ C([0, T ];Hk) × L2(0, T ;Hk+2) for the
system

∂tzε + i∂y(aε(y, t)∂yzε) + ε∂4
yzε = fε ,

zε(0) = z0,ε.
(3.16)

We claim that (zε)ε>0 is a Cauchy sequence in C([0, T ];Hk). We first notice that
(zε) is uniformly bounded in C([0, T ];Hk). Indeed, combining lemmas 3.5 and 3.6
with estimate (3.14) leads to

‖zε(t)‖Hk ≤ C
(
‖z0‖Hk + ‖f(τ)‖L1

t (Hk)

)
exp

(
C

(
‖∂2

ya‖
2

L1
t+ε(L∞)

+ ‖∂t log a‖L1
t+ε(L∞) + ‖∂2

ya‖L1
t+ε(Hk−1)

)) (3.17)

for some C depending only on k, a and ã. Let 0 < δ ≤ ε and ζδ
ε := zε − zδ. Since

ζδ
ε satisfies

∂tζ
δ
ε + i∂y(aδ∂yζ

δ
ε ) + δ∂4

yζ
δ
ε =

(
fε − fδ

)
+ (δ − ε)∂4

yzε + i∂y

(
(aδ − aε)∂yzε

)
,

ζδ
ε |t=0 = z0,ε − z0,δ,

inequality (3.14) and lemmas 3.5, 3.6 ensure that

‖ζδ
ε (t)‖Hk ≤ C exp

(
C

(
‖∂2

ya‖
2

L1
t+ε(L∞)

+ ‖∂t log a‖L1
t+ε(L∞) + ‖∂2

ya‖L1
t+ε(Hk−1)

))
×

(
‖z0,ε − z0,δ‖Hk + ‖fε − fδ‖L1

t (Hk) + ε‖∂4
yzε‖L1

t (Hk)

+ ‖(aδ − aε)∂yzε‖L1
t (Hk+1)

)
(3.18)

for some C depending only on k, a and ã. By lemmas 3.5, 3.6, the first two terms
of the right-hand side tend to zero as ε and δ approach zero.

Let us admit for a while the following lemma.

Lemma 3.7. There exists a constant C depending only on k, a and ã and such
that

‖zε(t)‖Hk+2 + ε1/2‖zε‖L2
t (Hk+4)

≤ C
1

η(ε)2
(
‖z0‖Hk + ‖f‖L1

t (Hk) + ‖∂yzε‖L∞t (L∞)‖∂
3
ya‖L1

t+ε(Hk−2)

)
× exp

(
C

(
‖∂2

ya‖
2

L1
t+ε(L∞)

+ ‖∂t log a‖L1
t+ε(L∞) + ‖∂2

ya‖L1
t+ε(L∞)

))
.
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On the one hand, since we assumed that k ≥ 2, Sobolev embedding combined
with inequality (3.17) implies that ∂yzε is uniformly bounded in L∞(0, T ;L∞).
Lemma 3.7 then supplies a constant CT ≥ 0 such that for all ε > 0, we have

ε

∫ t

0

‖∂4
yzε‖Hk dτ = CT [η(ε)]−2

√
ε. (3.19)

On the other hand, according to inequality (5.2),

‖(aδ − aε)∂yzε‖L1
t (Hk+1)

. ‖aδ − aε‖L1
t (L∞)‖∂yzε‖L∞t (Hk+1) + ‖∂yzε‖L∞t (L∞)‖∂

2
y(aδ − aε)‖L1

t (Hk−1)
.

Since ∂yzε is uniformly bounded in L∞(0, T ;L∞) and ∂2
ya ∈ L1(0, T ;Hk−1), the

Lebesgue dominated convergence theorem entails that the last term approaches 0
when ε, δ → 0.

The estimation of ‖aδ − aε‖L1
T (L∞) relies on the identity

aδ − aε = χη(ε) ∗y

[
(θδ − θε) ∗t a

]
+ θδ ∗t

[
(χη(δ) − χη(ε)) ∗y a

]
.

From lemma 3.5, we gather

‖aδ − aε‖L1
T (L∞) ≤ ‖(θδ − θε) ∗t a‖L1

T (L∞) + ‖(χη(δ) − χη(ε)) ∗y a‖L1
T (L∞)

.

The first term may be bounded by

α(ε) := sup
0<δ≤δ′≤ε

‖(θδ − θδ′) ∗t a‖L1
T (L∞)

which, in view of lemma 3.5 is a nondecreasing positive function tending to 0 in 0.
To bound the other term, one can argue by interpolation and write

‖(χη(δ) − χη(ε)) ∗y a‖L∞

≤ ‖(χη(δ) − χη(ε)) ∗y a‖1/2
L2 ‖(χη(δ) − χη(ε)) ∗y ∂ya‖1/2

L2 ,

≤ C‖(χη(δ) − χη(ε)) ∗y a‖
2k+1
2k+2

L2 ‖(χη(δ) − χη(ε)) ∗y ∂
2
ya‖

1
2k+2

Hk−1 .

Hence, using lemma 3.6,

‖(χη(δ) − χη(ε)) ∗y a‖L∞ ≤ C[η(ε)]k+ 1
2 ‖∂2

ya‖Hk−1 .

Combining this with lemma 3.7, we conclude that for some CT ≥ 0,

‖aδ − aε‖L1
t (L∞)‖∂yzε‖L∞t (Hk+1) ≤ CT

(
[η(ε)]k−

3
2 + α(ε)[η(ε)]−2

)
.

Of course, with no loss of generality, one can assume that α(ε) ≥ ε. Now, choosing
η(ε) = α(ε)

1
6 and coming back to (3.19), we conclude that (zε) has some limit z in

C([0, T ];Hk) when ε approaches 0. �

For the proof of Lemma 3.7, the starting point is (3.13) with 0 ≤ ` ≤ k + 2. All
the terms of the right-hand side are going to be bounded like in the proof of (3.14)
except for

`−1∑
j=1

(
`+1
j−1

)
=

∫
a(`+2−j)

ε a`
εz

(j)
ε z

(`)
ε dy
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that we are now going to estimate for 2 ≤ ` ≤ k + 2. By Hölder inequality and
(5.1), we have for some C depending only on k, a and ã,∣∣∣ ∫

a(`+2−j)
ε a`

εz
(j)z

(`)
ε dy

∣∣∣
≤ C‖a`/2

ε z(`)
ε ‖L2

(
‖∂2

yaε‖L∞‖zε‖H` + ‖∂yzε‖L∞‖∂3
yaε‖H`−2

)
.

Hence, summing inequalities (3.13) for ` = 0, . . . , k+2 and using the above inequal-
ity,

1
2
d

dt

k+2∑
`=0

‖a`/2
ε z(`)

ε ‖2L2 +
ε

2
‖∂2

y

(
a`/2

ε z(`)
ε

)
‖2L2

. <
k+2∑
`=0

∫
a`

εz
(`)
ε f (`)

ε dy + ‖∂yzε‖L∞‖∂3
yaε‖Hk‖zε‖Hk+2

+
(
‖∂2

yaε‖L∞ + ε‖∂2
yaε‖2L∞ + ‖∂t log aε‖L∞

)
‖zε‖2Hk+2 .

Since ∂2
y

(
a

`/2
ε z

(`)
ε

)
= ∂2

y

(
a

`/2
ε

)
z
(`)
ε + 2∂y

(
a

`/2
ε

)
∂yz

(`)
ε + a

`/2
ε ∂2

yz
(`)
ε , for some C de-

pending only on k, a and ã, we clearly have

‖zε‖2Hk+4 ≤ C
(
‖∂2

yaε‖2L∞
k+2∑
`=0

‖a`/2
ε z(`)

ε ‖2L2 +
k+2∑
`=0

‖∂2
y

(
a`/2

ε z(`)
ε

)
‖2L2

)
.

Hence, denoting Z2
ε :=

∑k+2
`=0 ‖a

`/2
ε z

(`)
ε ‖2L2 and κ := C−1, we end up with

1
2
d

dt
Z2

ε +
κε

2
‖zε‖2Hk+4 . Zε

(
‖fε‖Hk+2 + ‖∂yzε‖L∞‖∂3

yaε‖Hk

)
+

(
ε‖∂2

yaε‖2L∞ + ‖∂2
yaε‖L∞ + ‖∂t log aε‖L∞

)
Z2

ε .

According to lemmas 3.5 and 3.6, we have∫ t

0

(
ε‖∂2

yaε‖2L∞ + ‖∂2
yaε‖L∞ + ‖∂t log aε‖L∞

)
dτ

≤ C

(∫ t+ε

0

‖∂2
ya‖2L∞ dτ

)2

+ C

∫ t+ε

0

(
‖∂2

ya‖L∞ + ‖∂t log a‖L∞

)
dτ,

‖∂3
yaε‖L1

t (Hk)
≤ C[η(ε)]−2‖∂3

ya‖L1
t+ε(Hk−2)

,

Zε(0) ≤ C[η(ε)]−2‖z0‖Hk ,

‖fε‖L1
t (Hk+2) ≤ C[η(ε)]−2‖f‖L1

t (Hk),

so that Gronwall lemma yields the desired inequality.

4. The Korteweg model

This section is devoted to the proof of local well-posedness for (1.9).

4.1. Uniqueness and continuity with respect to the data. Let us start with
the proof of uniqueness in theorem 2.2. This is a straightforward corollary of the
proposition below.
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Proposition 4.1. Under the assumption (H1) with k = 2, let (u1, v1) and (u2, v2)
be two solutions of (1.9) on [0, T ]×R with v1 and v2 both taking values in a compact
subset K of Jv. Let δu := u2 − u1 and δv := v2 − v1. Assume that δu belongs to
C([0, T ];L2), δv belongs to C([0, T ];H1) and that in addition, ∂yu1 ∈ L1(0, T ;H1),
∂2

yyv1 ∈ L1(0, T ;H1) and ∂yv1 ∈ L∞(R × [0, T ]). Denote zj = uj + iwj with
wj := −α(vj)∂yvj for j = 1, 2, and δz := z2 − z1. There exists a constant C
depending only on K and on the functions α and q, such that

‖δv(t)‖2L2 + ‖δz(t)‖2L2 ≤
(
‖δv(0)‖2L2 + ‖δz(0)‖2L2

)
eC

R t
0 (1+‖∂yv1‖L∞ )(1+‖∂yz1‖H1 ) dτ .

Proof. Taking the difference of the systems satisfied by (v1, z1) and (v2, z2) we easily
compute that

∂tδv = ∂yδu, (4.1)

∂tδz + i∂y(α(v2)∂yδz) = f (4.2)

with

f = (q(v2)− q(v1))=z1 + q(v2)=δz
+ i∂y(α(v1)− α(v2))∂yz1 + i(α(v1)− α(v2))∂2

yyz1.

Multiplying (4.1) by δv, and integrating by parts the right-hand side term, we
readily get

1
2

d
dt
‖δv(t)‖2L2 = −

∫
δu∂yδv dy

=
∫

δw

α(v2)
δu dy +

∫
w1

( 1
α(v2)

− 1
α(v1)

)
δu dy.

(4.3)

On the other hand, Equation (4.2) is of the form (3.1) with z = δz, a = α(v2) so
we can apply the identity (3.2). This yields

1
2
d

dt
‖δz(t)‖2L2 =

∫ (
q(v2)− q(v1)

)
w1δu dy +

∫
q(v2)δwδu dy

+ =
∫
∂y(α(v2)− α(v1))∂yz1δz dy

+ =
∫

(α(v2)− α(v1))∂2
yyz1δz dy.

Adding (4.3) to this equality, we get

1
2

d
dt

(
‖δv(t)‖2L2 + ‖δz(t)‖2L2

)
≤ ‖ 1

α(v2)
‖L∞‖δw‖L2‖δu‖L2 + ‖w1‖L∞‖

1
α(v2)

− 1
α(v1)

‖L2‖δu‖L2

+ ‖q(v2)− q(v1)‖L2‖w1‖L∞‖δz‖L2 + ‖q(v2)‖L∞‖δz‖2L2

+ ‖∂y(α(v2)− α(v1))‖L2‖∂yz1‖L∞‖δz‖L2

+ ‖α(v2)− α(v1)‖L∞‖∂2
yyz1‖L2‖δz‖L2 .

All terms of the type ‖F (v2)− F (v1)‖L2 can be bounded by the mean value theo-
rem. Furthermore, we have

∂y(α(v2)− α(v1)) = −α
′(v2)
α(v2)

δw −
(
α′(v2)
α(v2)

− α′(v1)
α(v1)

)
w1
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so that
‖∂y(α(v2)− α(v1))‖L2 ≤ C(‖δw‖L2 + ‖w1‖L∞ ‖δv‖L2) .

Using the Sobolev embedding H1 ↪→ L∞, we eventually get the inequality
1
2

d
dt

(
‖δv(t)‖2L2 + ‖δz(t)‖2L2

)
≤ C

(
‖δv(t)‖2L2 + ‖δz(t)‖2L2

)(
1 + ‖w1‖L∞

)(
1 + ‖∂yz1‖H1

)
for some constant C depending only on the functions α and q, and on K. Applying
Gronwall lemma completes the proof. �

Remark 4.2. Let z be a smooth solution to (2.1). Combined with the existence
theorem, Proposition 4.1 shows the Lipschitz continuity of the mapping

z(0) +H2 −→ z + C([0, T ];L2)
z0 7−→ z solution of (2.1) with data z0 .

Actually, by adapting the method of [8], the above map may be shown to be con-
tinuous from z(0) +Hk to z + C([0, T ];Hk).

4.2. Existence of a local solution. Our aim here is to prove existence in Theorem
2.2. Uniqueness under condition (2.2) is given by Proposition 4.1. Remark that it
actually holds in a class which is much larger than the one defined in (2.2). The
existence proof proceeds in a classical way through the four main steps:

(a) Construction of approximate solutions,
(b) Uniform a priori estimates in large norm,
(c) Convergence in small norm,
(d) Continuity results.

To simplify the presentation however, we shall introduce the auxiliary function
λ := Λ(v) where Λ stands for a primitive of α.

We obviously have w = −∂yλ. Besides, observing that Λ is by assumption on
α monotonically increasing, we may also use its reciprocal Λ−1 : Jλ −→ Jv and
we have v = Λ−1(λ). Therefore, as far as v is valued in Jv, solving system (1.7)
amounts to solving

∂tλ− α](λ)∂yu = 0 ,

∂tz + i∂y (α](λ)∂yz) = q](λ)w,
(4.4)

with α] = α ◦ Λ−1, q] := q ◦ Λ−1, z = u+ iw, and under the constraint w = −∂yλ.
In what follows, we show that system (4.4) has a local solution (u, λ) with λ

valued in Jλ and such that (ũ := u− u, λ̃ := λ− λ) belongs to the space

Ek
T := C

(
[0, T ];Hk ×Hk+1

)
∩ C1

(
[0, T ];Hk−2 ×Hk−1

)
.

According to corollaries 5.5 and 5.6, this gives theorem 2.2.

(a) Construction of approximate solutions. Our approximate scheme will of course
take advantage of the linear estimates in Proposition 3.2. The most natural way
of computing the iterate zn+1 in terms of (λn, zn = un + iwn) is to consider the
equation

∂tz
n+1 + i∂y(α](λn)∂yz

n+1) = q](λn)wn . (4.5)
We remark however that since we did not assume that the data belong to a Sobolev
space, theorem 3.1 does not supply a solution for (4.5). Hence we are going to work
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with z̃n := zn−z (with the obvious notation z = u+ iw and w = −α(v)∂yv) rather
than with zn.

Regarding the computation of λn+1, we must keep in mind that we expect in
the limit that w = −∂yλ. Therefore it will be suitable to have also wn = −∂yλ

n

for all n ∈ N. This induces us to set

λn+1(y, t) := λ0(y) +
∫ t

0

(
α](λn)∂yu

n+1
)
(y, τ)dτ where λ0(y) := Λ(v0(y)).

Indeed, the term α](λn)∂yu
n+1 will be continuous in y and t (by Sobolev embed-

dings) so that differentiating the above inequality with respect to t yields

∂tλ
n+1 = α](λn)∂yu

n+1 (4.6)

in the classical sense. Then, differentiating with respect to y, we get

∂t∂yλ
n+1 = ∂y∂tλ

n+1 = ∂y

(
α](λn)∂yu

n+1
)

= −∂tw
n+1

in the weak sense – in fact, this equality will be true in Hk−2 because ∂yλ
n+1+wn+1

will belong to C1([0, T ];Hk−2). So, if the initial data for wn+1 is chosen so that
wn+1(y, 0) = w0 = −α(v0)∂yv0 = −∂yλ0, we shall have the identity

∂yλ
n+1 + wn+1 ≡ 0. (4.7)

Finally, our scheme is as follows. For the first term (λ0, z0 = u0 + iw0) of the
sequence, we just set for all (y, t) ∈ R2,

λ0(y, t) := λ0(y) , u0(y, t) := u0(y) and w0(y, t) := w0 := −∂yλ0(y, t).

Obviously λ0 is valued in Jλ and (ũ0 := u0−u0, λ̃0 := λ0−λ0
) belongs to ∩T>0E

k
T .

Then we define (λn, zn = un + iwn) inductively in the following way. Suppose
(λn, zn) has been defined in such a way that λn is valued in Jλ, wn = −∂yλ

n and,
for some T > 0, (ũn := un − u, λ̃n := λn − λ) belongs to Ek

T . Then inequality (5.2)
and corollaries 5.4 and 5.6 insure that the right-hand side of the first line of the
following system

∂tz̃
n+1 + i∂y(α](λn)∂y z̃

n+1) = Fn
1 + Fn

2 + Fn
3 + Fn

4 ,

z̃n
|t=0 = ũ0 + iw̃0,

(4.8)

with

Fn
1 := i∂2

yyz
(
α](λ)− α](λn)

)
, Fn

2 := i∂yλ∂yz
(
α′](λ)− α′](λ

n)
)
,

Fn
3 :=

(
q](λn)− q](λ)

)
w, Fn

4 :=
(
q](λn) + i∂yzα

′
](λ

n)
)
w̃n,

belongs to C([0, T ];Hk) ∩ C1([0, T ];Hk−2).
Hence Theorem 3.3 ensures that system (4.8) has a unique solution z̃n+1 in

C([0, T ];Hk) ∩ C1([0, T ];Hk−2). Then we set ũn+1 := <z̃n+1, un+1 := ũn+1 + u,
w̃n+1 := =z̃n+1, wn+1 := w̃n+1+w and zn+1 := un+1+iwn+1 so that zn+1 satisfies
(4.5) as required. Finally, we set

λn+1(t) := λ0 +
∫ t

0

α](λn)∂yu
n+1 dτ.

Of course we have to check that λn+1 is valued in Jλ. This will be the case for
small enough time.
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(b) Uniform a priori estimates in large norm. Let Kλ be a compact subset of Jλ

containing λ0(R) and such that δ := d(λ0(R), cKλ) > 0. Throughout this section,
we shall denote by C a “constant” – which may change from line to line – depending
only on k, q, α, δ and Kλ. Let αn := α](λn), α0 = α](λ0),

X̃0(t) := X̃0 :=
( k∑

j=0

‖α
j
2
0 ∂

j
y z̃0‖2L2

)1/2

,

X̃n(t) :=
( k∑

j=0

‖
(
(αn−1)

j
2 ∂j

y z̃
n
)
(t)‖2L2

)1/2

for n ≥ 1. Further define Ỹ n(t) := ‖λ̃n(t)‖L2 + X̃n(t) and Ỹ0 := ‖λ̃0‖L2 + X̃0.

We introduce the induction hypothesis

(HT
n ) z̃n ∈ C([0, T ];Hk) ∩ C1([0, T ];Hk−2), λ̃n ∈ C([0, T ];Hk+1) and λn(R ×

[0, T ]) ⊂ Kλ with the inequality

Ỹ n(t) ≤ Ỹ0e2C0
R t
0 Z(τ) dτ

1− Ỹ0

∫ t

0
e2C0

R τ
0 Z(τ ′) dτ ′ dτ

for some constant C0 ≥ 0 depending only on k, α, q and Kλ to be deter-
mined afterwards and

Z :=
(
1 + ‖∂yu‖Hk+1 + ‖w‖Hk+2

)3
.

We are going to show there is a positive time T > 0 such that the scheme described
in §a) yields a sequence (λn, zn) satisfying (HT

n ) for all n ∈ N.
Obviously (HT

0 ) is satisfied for all T and any C0 ≥ 0. Now we fix n ∈ N and
assume that (HT

p ) is true for all p ≤ n. According to Proposition 3.2, we have that
for all t ∈ R+,

X̃n+1(t) ≤ eAn
k (t)

(
X̃0 +

∫ t

0

e−An
k (τ)hn(τ) dτ

)
, (4.9)

with

An
k (t) := C

∫ t

0

(
‖∂t logαn(τ)‖L∞ + ‖∂yα

n(τ)‖Hk

)
dτ,

hn(t) = C
4∑

j=1

‖Fn
j ‖Hk .

We need a bound for An
k (t). For n = 0, the first term ∂t logα0(τ) is zero. Otherwise,

for n ≥ 1, we have by definition of vn and αn and according to (4.6),

∂t logαn = [logα]]′(λn)α](λn−1)∂yu
n =

α′](λ
n)

α](λn)
α](λn−1)∂yu

n .

Since ‖∂yũ
n‖L∞ . ‖ũn‖Hk , using (HT

n−1) and (HT
n ), we have that for all t ∈ [0, T ],

‖∂t logαn‖L∞ ≤ C
(
X̃n(t) + ‖∂yu(t)‖L∞

)
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for some C = C(k, α, λ, λ̃). The second term in An
k (t), ∂yα

n = α′](λ
n)∂yλ

n can be
bounded using inequality (5.5) in the appendix, which yields

‖∂yα
n‖Hk ≤ C‖wn‖Hk

k∑
j=0

‖λn‖j
L∞‖α

(j+1)
] (λn)‖L∞ ≤ C‖wn‖Hk .

Hence, we eventually obtain

∀t ∈ [0, T ], An
k (t) ≤ C

∫ t

0

(
X̃n(τ) + ‖∂yu(τ)‖L∞ + ‖w‖Hk

)
dτ. (4.10)

Let us now bound the source term hn(t). Using the fact that Hk is an algebra and
corollary 5.6, we get

‖Fn
1 ‖Hk . ‖∂2

yyz‖Hk‖α](λ)− α](λn)‖Hk ,

. ‖∂2
yyz‖Hk

(
‖λ̃n‖Hk + ‖λ̃n‖L∞(‖w‖Hk−1 + ‖w̃n‖Hk−1)

)
.

Hence, as Hk ↪→ L∞,

‖Fn
1 ‖Hk . ‖∂2

yyz‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃n‖Hk . (4.11)

From similar computations, we get

‖Fn
2 ‖Hk . ‖∂yz‖Hk‖w‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃n‖Hk , (4.12)

‖Fn
3 ‖Hk . ‖w‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃n‖Hk . (4.13)

We remark that here α] (resp. q]) has k+2 (resp. k+1) locally bounded derivatives.
To bound Fn

4 , we make use of inequality (5.6) which yields

‖q](λn)w̃n‖Hk . ‖w̃n‖Hk + ‖λ̃n‖L∞‖w
n‖Hk ,

. ‖w̃n‖Hk + ‖w‖Hk‖λ̃n‖Hk+1 .

Similar computations enable us to handle the term α′](λ
n)w̃n so that we end up

with
‖Fn

4 ‖Hk .
(
1 + ‖∂yz‖Hk

)(
‖w̃n‖Hk + ‖w‖Hk‖λ̃n‖Hk+1

)
. (4.14)

Plugging inequalities (4.10), (4.11), (4.12), (4.13) and (4.14) in (4.9), we conclude
that

X̃n+1(t) ≤ exp
(
C

∫ t

0

(
X̃n + ‖∂yu‖L∞ + ‖w‖Hk

)
dτ

)
×

(
X̃0 + C

∫ t

0

e−C
R τ
0

( eXn+‖∂yu‖L∞+‖w‖
Hk

)
dτ ′

×
(
X̃n +

(
1 + ‖w‖Hk−1

)(
‖w‖Hk

(
1 + ‖w‖Hk−1

+ ‖∂yz‖Hk

)
+ ‖∂2

yyz‖Hk

)
Ỹ n

)
dτ

)
.

(4.15)

To complete the estimates, we still have to find a bound for ‖λ̃n‖L2 . This is quite
straightforward. Indeed, we have

λ̃n+1(t) = λ̃0 +
∫ t

0

((
α](λn)− α](λ)

)
∂yu+ α](λn)∂yũ

n+1
)
dτ,

whence

‖λ̃n+1(t)‖L2 ≤ ‖λ̃0‖L2 + C

∫ t

0

(
‖∂yu‖L∞‖λ̃n‖L2 + ‖∂yũ

n+1‖L2

)
dτ.
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Adding this latter inequality to (4.15), we get

Ỹ n+1(t)

≤ eC
R t
0

(eY n+Z
)

dτ

(
Ỹ0 + C

∫ t

0

e−C
R τ
0

(eY n+Z
)

dτ ′ZỸ n dτ

)
+ C

∫ t

0

Ỹ n+1(τ) dτ,

with Z :=
(
1 + ‖∂yu‖Hk+1 + ‖w‖Hk+2

)3.
Now, applying Gronwall lemma, we get, up to a change of C,

Ỹ n+1(t) ≤ eC
R t
0

(eY n+Z
)

dτ

(
Ỹ0 + C

∫ t

0

e−C
R τ
0

(eY n+Z
)

dτ ′ZỸ n dτ

)
. (4.16)

We choose for C0 the constant C appearing in the above inequality (note that this
choice is independent of n) and we assume that T satisfies

C0Ỹ0

∫ T

0

e2C0
R t
0 Z(τ) dτ dt < 1. (4.17)

Taking advantage of (HT
n ), straightforward calculations yield for 0 ≤ s ≤ t ≤ T ,

eC0
R t

s
eY n(τ) dτ ≤

1− C0Ỹ0

∫ s

0
e2C0

R τ
0 Z dτ ′ dτ

1− C0Ỹ0

∫ t

0
e2C0

R τ
0 Z dτ ′ dτ

.

Inserting the above inequality in (4.16), we get

Ỹ n+1(t) ≤ Ỹ0eC0
R τ
0 Z dτ ′ dτ

1− C0Ỹ0

∫ t

0
e2C0

R τ
0 Z dτ ′ dτ

+ C0Ỹ0

∫ t

0

ZeC0
R t

s
Z dτ ′e2C0

R s
0 Z dτ ′

1− C0Ỹ0

∫ t

0
e2C0

R τ
0 Z dτ ′ dτ

ds,

whence

Ỹ n+1(t) ≤ Ỹ0e2C0
R τ
0 Z dτ ′ dτ

1− C0Ỹ0

∫ t

0
e2C0

R τ
0 Z dτ ′ dτ

as required. With our definition of λn+1, we have (up to a change of C0)

‖λ̃n+1(t)− λ̃0‖L∞ ≤ C0

∫ t

0

(
‖λ̃n‖L∞‖∂yu‖L∞ + ‖∂yũ

n+1‖L∞

)
ds,

≤ C0

∫ t

0

(
1 + ‖∂yu‖L∞

)(
Ỹ n + Ỹ n+1

)
ds,

≤
∫ t

0

C0ZỸ0e2C0
R s
0 Z dτ ′

1− C0Ỹ0

∫ s

0
e2C0

R τ
0 Z dτ ′ dτ

ds,

≤ − sup
τ∈[0,t]

Z(τ) log
(

1− C0Ỹ0

∫ t

0

e2C0
R τ
0 Z dτ ′ dτ

)
.

Therefore, the condition∫ T

0

e2C0
R t
0 Z dτ dt ≤

1− exp(−δ/ supt∈[0,T ] Z(t))

C0Ỹ0

(4.18)

which is a stronger condition than (4.17) ensures that λn+1 ⊂ Kλ on [0, T ].
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(c) Convergence in small norm. We aim at proving that (zn)n∈N is convergent in
the affine space z + C([0, T ];L2) and that (λn)n∈N is convergent in the affine space
λ+ C([0, T ];L2).

Let δzn := zn+1−zn, δun := un+1−un, δwn := wn+1−wn and δλn := λn+1−λn.
On the one hand, we have

∂tδz
n + i∂y(α](λn)∂yδz

n)

= −i∂yz
n∂y(α](λn)− α](λn−1))− i∂2

yyz
n(α](λn)− α](λn−1))

+ q](λn)δwn−1 + (q](λn)− q](λn−1))wn−1.

Hence, using the basic L2 estimate

1
2

d
dt
‖δzn‖2L2 ≤ ‖δzn‖L2

(
‖∂yz

n‖L∞‖∂y(α](λn)− α](λn−1))‖L2

+ ‖∂2
yyz

n‖L2‖α](λn)− α](λn−1)‖L∞ + ‖q](λn)‖L∞‖δwn−1‖L2

+ ‖q](λn)− q](λn−1)‖L2‖wn−1‖L∞

)
.

By the Sobolev embedding H1 ↪→ L∞, this implies

1
2

d
dt
‖δzn‖2L2

≤ ‖δzn‖L2

(
‖∂yz

n‖H1‖α](λn)− α](λn−1)‖H1

+ ‖q](λn)‖L∞‖δwn−1‖L2 + ‖q](λn)− q](λn−1)‖L2‖wn−1‖L∞

)
.

(4.19)

On the other hand, by (4.6), we have

∂tδλ
n = (α](λn)− α](λn−1))∂yu

n+1 + α](λn−1)∂yδu
n

so that taking the L2-scalar product with δλn and integrating by parts in the last
term,

1
2
d

dt
‖δλn‖2L2 =

∫ (
(α](λn)− α](λn−1))∂yu

n+1δλn

− δunα′](λ
n−1)∂yλ

n−1δλn − δunα](λn−1)∂yδλ
n
)

dy.

Now, as ∂yλ
n−1 = −wn−1, straightforward computations yield

1
2

d
dt
‖δλn‖2L2 ≤ ‖α](λn)− α](λn−1)‖L2‖∂yu

n+1‖L∞‖δλn‖L2

+ ‖δun‖L2‖α′](λn−1)‖L∞‖wn−1‖L∞‖δλn‖L2

+ ‖δun‖L2‖α](λn−1)‖L∞‖δwn‖L2 .

(4.20)

Since the sequence (λn)n∈N is bounded in L∞(R× 0, T ), corollary 5.6 ensures that
there is a constant C such that

max
(
‖α](λn)− α](λn−1)‖L2 , ‖q](λn)− q](λn−1)‖L2

)
≤ C‖δλn−1‖L2 ,

‖α](λn)− α](λn−1)‖H1 ≤ C
(
‖wn−1‖L2 + ‖wn‖L2

)(
‖δλn−1‖L2 + ‖δwn−1‖L2

)
.
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Hence, adding (4.19) and (4.20) yields

1
2

d
dt

(Y n)2 ≤ CY n
(
(1 + ‖∂yz

n‖H1 + ‖∂yu
n+1‖L∞ + ‖wn−1‖L∞

+ ‖wn−1‖L2 + ‖wn‖L2)Y n−1 + (1 + ‖wn−1‖L∞)Y n
)

with Y n(t) :=
(
‖δλn‖2L2 + ‖δzn‖2L2)

)1/2.
Because (∂yu

n)n∈N is bounded in L∞(0, T ;H1) and (wn)n∈N is bounded in
L∞(0, T ;H2), we eventually get

Y n(t) ≤ C1

∫ t

0

Y n−1(τ) dτ + C2

∫ t

0

Y n(τ) dτ,

whence

e−C2tY n(t) ≤ C1

∫ t

0

e−C2τY n−1(τ) dτ.

A standard induction argument enables us to conclude that

Y n(t) ≤ Cn
1

n!
eC2tY 0(t) .

The series
∑

n C
n
1 /n! being convergent, this shows that (z̃n)n∈N and (λ̃n)n∈N are

Cauchy sequences in the Banach space C([0, T ];L2). We conclude that (zn)n∈N
tends to some function z in z + C([0, T ];L2), and that (λn)n∈N tends to some
function λ in λ+ C([0, T ];L2). Passing to the limit in the linear equation (4.7) we
readily get

∂yλ = −w .
Furthermore, we have in the limit λ ∈ Jλ. So we can define v := Λ−1(λ), and we
have (v − v) ∈ C([0, T ];L2). Now, by using the uniform bounds of §b), we have in
addition

z̃ := z − z ∈ L∞(0, T ;Hk) ∩ Lip(0, T ;Hk−2). (4.21)

An interpolation argument shows that for ε > 0, z̃n → z̃ in C([0, T ];Hk−ε) and
vn → v in v + C([0, T ];Hk+1−ε). This suffices to show that w = −∂yΛ(v) =
−α(v)∂yv and to pass to the limit in (4.6) and (4.8), thus obtaining

∂tΛ(v) = α(v)∂yu

∂tz + i∂y(α(v)∂yz) = q(v)w ,
z|t=0 = v0 + iw0,

Simplifying by α(v) in the first equation, we get ∂tv = ∂yu.

(d) Continuity results. Using (4.21) and the fact that both z and z̃ are solutions of
(2.1), it can be easily shown that ∂tz̃ + i∂y(α(v)∂y z̃) belongs to L∞(0, T ;Hk) (see
equation 4.23 below). Hence Theorem 3.3 ensures that z̃ belongs to C([0, T ];Hk).
This new result implies that ∂tz̃ ∈ C([0, T ];Hk−2). Therefore z̃ also belongs to
C1([0, T ];Hk−2). Now, since

∂tλ̃ =
(
α](λ)− α](λ)

)
∂yu+ α](λ)∂yũ,

Corollaries 5.4 and 5.6 guarantee that the right-hand side above belongs to the
space C([0, T ];Hk−1) so that λ̃ ∈ C1([0, T ];Hk−1). Since moreover ∂yλ = −w and
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w ∈ C([0, T ];Hk), we thus have λ ∈ C([0, T ];λ+Hk+1). Applying corollary 5.6, we
conclude that

v ∈ v + C([0, T ];Hk+1) ∩ C1([0, T ];Hk−1).

Remark 4.3. The lower bound for the existence time given by (4.18) depends on
k, b, b̃, α, q, ‖u0‖Hk and ‖∂yv0‖Hk . In the next subsection, we shall see that for Hk

data (k ≥ 2), the time of existence in Hk is the same as in H2. Hence inequality
(4.18) with k = 2 provides a lower bound. This proves remark 2.4.

4.3. Continuation results and life span. This section is devoted to the proof
of a continuation criterion for Hk solutions to (1.7). Let us first explain what we
mean by an Hk solution.

Definition 4.4. Under assumption (H1) with k ≥ 2, assume that (u, v) is a couple
of functions of (y, t) ∈ R × [0, T ) such that v is valued in Jv. We shall say that
(u, v) is a Hk solution of (1.7) on the time interval [0, T ) if (u, v) satisfies (1.7) on
R× [0, T ) (in the weak sense) and

(u− u, v − v) ∈ C([0, T );Hk ×Hk+1) ∩ C1([0, T );Hk−2 ×Hk−1) (4.22)

where (u, v) stands for a classical solution of (1.7) on R × R such that for all
(y, t) ∈ R2,

v(y, t) ∈ Jv, ∂yu ∈ C(R;Hk+1) and ∂yv ∈ C(R;Hk+2).

For given data (u0, v0) such that u0 − u(0) ∈ Hk and v0 − v(0) ∈ Hk+1, we define
the lifespan of a Hk solution as the supremum of all T such that (1.7) has a Hk

solution on [0, T ).

Our main continuation result is based on the following lemma.

Lemma 4.5. Under assumption (H1), let (u, v) be an Hk solution of (3.1) on
R × [0, T ) with v valued in Kv ⊂⊂ Jv. Denote by (u, v) a classical solution of
(3.1) such that (4.22) is fulfilled. Let Λ be a primitive of α, λ := Λ(v), w = −∂yλ

and z = u + iw. Further define λ := Λ(v), w = −∂yλ, z = u + iw, λ̃ := λ − λ,
w̃ := w − w, ũ := u− u and z̃ := z − z. Let

Ỹk(t) :=
(
‖λ̃‖2L2 +

k∑
j=0

‖(α(v)
j
2 z̃(j))(t)‖2L2

)1/2

.

Then there exists a constant C depending only on k, q, α and Kv, and such that

Ỹk(t) ≤ Ỹk(0)eCteC
R t
0 ‖∂y ez(τ)‖L∞ dτeC

R t
0 {‖∂2

yyz‖
Hk+‖w‖

Hk (1+‖w‖
Hk−1 )(1+‖∂yz‖

Hk )} dτ .

Proof. Denoting α] = α ◦ Λ−1 and q] = q ◦ Λ−1, one easily find that z̃ solves

∂tz̃ + i∂y(α](λ)∂y z̃) = i∂2
yyz

(
α](λ)− α](λ)

)︸ ︷︷ ︸
F1

+ i∂yλ∂yz
(
α′](λ)− α′](λ)

)︸ ︷︷ ︸
F2

+
(
q](λ)− q](λ)

)
w︸ ︷︷ ︸

F3

+
(
q](λ) + i∂yzα

′
](λ)

)
w̃︸ ︷︷ ︸

F4

.
(4.23)
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Hence, summing equalities (3.6) for j = 0, . . . , k, we get by Cauchy-Schwarz in-
equality

1
2

d
dt
X̃2

k ≤ max(1, α̃)
k
2 X̃k

4∑
j=1

‖Fj‖Hk +
k

2
‖∂t logα](λ)‖L∞X̃

2
k

+
k∑

j=2

j−1∑
`=1

(
j+1
`−1

)
α̃

j
2 ‖α

j
2 ∂j

y z̃‖L2‖∂j+2−`
y

(
α](λ)

)
∂`

y z̃‖L2

(4.24)

with

X̃k(t) :=
( k∑

j=0

‖(α(v)
j
2 z̃(j))(t)‖2L2

)1/2

.

As w = −∂yλ, w = −∂yλ and w̃ = −∂yλ̃, corollary 5.6 combined with the em-
bedding Hk ↪→ L∞ yields for some constant C depending only on k, b, b̃ and α,

‖F1‖Hk ≤ C‖∂2
yyz‖Hk‖α](λ)− α](λ)‖Hk ,

≤ C‖∂2
yyz‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃‖Hk .

(4.25)

Similar computations yield

‖F2‖Hk ≤ C‖∂yz‖Hk‖w‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃‖Hk , (4.26)

‖F3‖Hk ≤ C‖w‖Hk

(
1 + ‖w‖Hk−1

)
‖λ̃‖Hk . (4.27)

Regarding F4, we apply inequality (5.6) to q](λ)∂yλ̃ and α′](λ)∂yλ̃ so that we get

‖F4‖Hk ≤ C
(
1 + ‖∂yz‖Hk

)(
‖w̃‖Hk + ‖w‖Hk‖λ̃‖Hk+1

)
. (4.28)

Because ∂t logα](λ) = α′](λ)∂yu, we obviously have

‖∂t logα](λ)‖L∞ ≤ C‖∂yu‖L∞ . (4.29)

For bounding the last term in (4.24), we first use inequality (5.1) in the appendix
which implies

‖∂j+2−`
y

(
α](λ)

)
∂`

y z̃‖L2 . ‖∂y z̃‖L∞‖∂2
yy

(
α](λ)

)
‖

Hj−1 + ‖∂2
yy

(
α](λ)

)
‖L∞‖z̃‖Hj .

(4.30)
On the one hand,

‖∂2
yy

(
α](λ)

)
‖2

Hj−1 =
j+1∑
m=2

‖∂m
y α](λ)‖2L2 ,

hence according to lemma 5.3,

‖∂2
yy

(
α](λ)

)
‖

Hj−1 . ‖w‖Hj ,

on the other hand, ∂2
yy

(
α](λ)

)
= α′′] (λ)(∂yλ)2+α′](λ)∂2

yyλ so that, since ‖∂yλ‖2L∞ .
‖λ‖L∞‖∂2

yyλ‖L∞ , we get

‖∂2
yy

(
α](λ)

)
‖L∞ . ‖∂yw‖L∞ .

Coming back to (4.30), we end up with

‖∂j+2−`
y

(
α](λ)

)
∂`

yz‖L2 .
(
‖∂y z̃‖L∞ + ‖w‖Hk

)
‖z̃‖Hk . (4.31)
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Plugging inequalities (4.25), (4.26), (4.27), (4.28), (4.29) and (4.31) in (4.24), we
get

1
2

d
dt
X̃2

k .
(
1 + ‖∂y z̃‖L∞ + ‖∂yu‖L∞

)
X̃2

k

+
(
1 + ‖w‖Hk−1

)(
‖∂2

yyz‖Hk + ‖w‖Hk(1 + ‖∂yz‖Hk)
)
X̃kỸk.

(4.32)

To conclude, we still have to bound ‖λ̃‖L2 . For doing so, we use the fact that

∂tλ̃ =
(
α](λ)− α](λ)

)
∂yu+ α](λ)∂yũ,

whence
1
2

d
dt
‖λ̃‖2L2 . ‖∂yu‖L∞‖λ̃‖2L2 + ‖λ̃‖L2‖∂yũ‖L2 .

Adding this last inequality to (4.32), we eventually get

1
2

d
dt
Ỹ 2

k .
(
1 + ‖∂y z̃‖L∞ +

(
1 + ‖w‖Hk−1

)(
‖∂2

yyz‖Hk + ‖w‖Hk(1 + ‖∂yz‖Hk)
))
Ỹ 2

k .

Then Gronwall’s lemma completes the proof. �

One can now state a continuation result which is very similar to the standard
one for quasi-linear hyperbolic symmetric systems.

Proposition 4.6. Under assumption (H1), let (u, v) be a Hk solution of (3.1) on
R× [0, T ). Assume in addition that∫ T

0

(
‖∂yu(τ)‖L∞ + ‖∂2

yyv(τ)‖L∞

)
dτ <∞ and v(R× [0, T )) ⊂⊂ Jv. (4.33)

Then (u, v) may be continued beyond T into a smooth solution of (1.7).

Proof. Let (u, v) satisfy the hypotheses of the proposition and denote by (u, v) a
classical solution of (3.1) such that (4.22) is fulfilled. Introducing w = −∂y

(
Λ(v)

)
,

a straightforward interpolation shows that∫ T

0

‖∂yw(t)‖L∞ dt

≤ C

∫ T

0

(
‖α(v)‖L∞‖∂2

yyv‖L∞ + ‖α′(v)‖L∞‖v‖L∞‖∂2
yyv‖L∞

)
dt <∞.

Since ∂yv ∈ C(R;Hk+2) and ∂yu ∈ C(R;Hk+1),
∫ T

0

(
‖∂yu(t)‖L∞+‖∂yw(t)‖L∞

)
dt <

∞. Therefore, lemma 4.5 may be applied. From it, we get (with an obvious
notation)

ũ ∈ L∞(0, T ;Hk), w̃ ∈ L∞(0, T ;Hk) and ∂y ṽ ∈ L∞(0, T ;Hk).

Let η be a positive time which satisfies (4.18) with ‖z̃‖L∞(0,T ;Hk) instead of Ỹ0.
Theorem 2.2 supplies a solution on the time interval [0, η] for (1.7) with data (u(T−
η
2 ), v(T − η

2 )). By virtue of uniqueness, this solution is a continuation of (u, v)
beyond T . �

Because H2 ↪→ Lip, we conclude that the Hk regularity is controlled by the H2

regularity so that the time of existence in H2 is the same as in Hk.
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4.4. Further comments on the case of a constant profile. In this section, we
briefly review how theorem 2.2 and blow-up criteria may be improved if we restrict
ourselves to the case of a constant profile (u, v). The main improvement is that we
do not have to suppose that v has a limit at −∞ and +∞. Only assumptions on
∂yv are needed.

Going along the lines of the proof of theorem 2.2, one can observe that the
scheme reduces to solving

∂tz̃
n+1 + i∂y(α](λn)∂y z̃

n+1) = q](λn)w̃n,

z̃n
|t=0 = ṽ0 + iw̃0,

with w̃0 := −∂yλ0, λ0 = Λ(v0) and ũ0 = u0 − u. Then we set un+1 := u+ <zn+1,
wn+1 := =zn+1 and

λn+1 = Λ(v0) +
∫ t

0

α(vn)∂yu
n+1.

Therefore, most of the terms in Fn
1 , Fn

2 , Fn
3 and Fn

4 vanish and we end up with
the inequality

X̃n+1(t) ≤ eC
R t
0

eXn(τ) dτ
(
X̃0 + C

∫ t

0

e−C
R τ
0

eXn(τ ′) dτ ′X̃n(τ) dτ
)

for some constant C depending only on k, b, b̃, α and q.
Also one has to assume only that q and α have k+1 bounded derivatives (instead

of k+2 in the general case) and no control on ‖λ̃n‖L2 is needed to close the estimates.
Therefore, we eventually get the following existence theorem.

Theorem 4.7. Let u ∈ R and k ≥ 2. Under assumption (H1) with k − 1, let
Kv ⊂⊂ Jv, u0 ∈ u + Hk and v0 ∈ L∞ with ∂yv0 ∈ Hk and v0(R) ⊂ Kv. There
exists a positive T such that the Cauchy problem associated with the system (1.9)
and initial data (u(0), v(0)) = (u0, v0) has a unique solution (u, v) which satisfies

u− u , ∂yv ∈ C([0, T ];Hk) ∩ C1([0, T ];Hk−2) and v(R× [0, T ]) ⊂ Jv (4.34)

with moreover,

(v − v0) ∈ C([0, T ];Hk+1) ∩ C1([0, T ];Hk−1). (4.35)

Besides, there exists a constant C = C(α, q,Kv) such that T may be chosen such
that

T ≥ 1
C

log
(
1 +

1
‖u0 − u‖H2 + ‖∂yv0‖H2

)
.

Proof. Under the assumptions of theorem 4.7, the estimate of lemma 4.5 reduces
to

X̃k(t) ≤ X̃k(0)eCteC
R t
0 ‖∂yz(τ)‖L∞ dτ (4.36)

with C depending only on k, q, α and Jv, z := (u− u) + iw and

Xk(t) :=
( k∑

j=0

‖(α(v)
j
2 z(j))(t)‖2L2

)1/2

.

From the above estimate, we gather that the blow-up criterion stated in (4.33)
remains true under the assumptions of theorem 4.7 and that the time of existence
in Hk is the same as in H2. Indeed, from (4.36) and Sobolev embeddings we get

X̃k(t) ≤ X̃k(0)eCteC
R t
0 X2(τ) dτ .



EJDE-2006/59 WELL-POSEDNESS 31

Hence, X̃k remains bounded as long as X̃2 does. Thus the lifespan in Hk is the
same as in H2. Now, the above inequality with k = 2 yields

X̃2(t) ≤
X̃2(0)eCt

1− X̃2(0)(eCt − 1)
while X̃2(0)(eCt − 1) < 1.

This gives the desired lower bound for the life span in H2. �

5. Appendix

In this section, we state some technical estimates for products or composition of
functions which have been used repeatedly throughout the paper.

Most of them are based on the following Gagliardo-Nirenberg inequality.

Lemma 5.1. Let k ∈ N and j ∈ {0, . . . , k}. There exists a constant Cj,k depending
only on j and k such that

‖∂j
yv‖

L
2k
j
≤ Cj,k‖v‖

1− j
k

L∞ ‖∂k
yv‖

j
k

L2 .

We can now state some tame estimates for the product of two functions.

Lemma 5.2. Let k ∈ N and j ∈ {0, . . . , k}. There exist a constant Cj,k depending
only on j and on k and a constant Ck depending only on k, and such that

‖∂j
yu∂

k−j
y v‖L2 ≤ Cj,k

(
‖u‖L∞‖∂k

yv‖L2 + ‖v‖L∞‖∂k
yu‖L2

)
, (5.1)

‖uv‖Hk ≤ Ck

(
‖u‖L∞‖v‖Hk + ‖v‖L∞‖∂k

yu‖L2

)
. (5.2)

Proof. Because

‖uv‖Hk ≤ Ck

(
‖uv‖L2 + ‖∂k

y (uv)‖L2

)
,

Leibniz formula entails that

‖uv‖Hk ≤ Ck

(
‖u‖L∞‖v‖L2 +

k∑
j=0

‖∂j
yu∂

k−j
y v‖L2

)
so that inequality (5.1) (used repeatedly) yields (5.2). Let us focus on the proof of
(5.1). According to Hölder inequality, we have

‖∂j
yu∂

k−j
y v‖L2 ≤ ‖∂j

yu‖
L

2k
j
‖∂k−j

y v‖
L

2k
k−j

.

This obviously yields (5.1) if j = 0 or k. Else, using lemma 5.1, we get

‖∂j
yu∂

k−j
y v‖L2 ≤ Cj,k

(
‖u‖L∞‖∂k

yv‖L2

)1− j
k
(
‖v‖L∞‖∂k

yu‖L2

)j/k

,

and Young inequality leads to (5.1). �

Let us now state estimates in Sobolev spaces for the composition of functions.

Lemma 5.3. Let k ≥ 1 and F be in W k,∞
loc (R). There exists a constant Ck such

that for all v ∈ L∞ such that ∂k
yv ∈ L2, there holds

‖∂k
y

(
F (v)

)
‖

L2 ≤ Ck‖∂k
yv‖L2

k−1∑
j=0

‖v‖j
L∞‖F

(j+1)(v)‖L∞ .
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Proof. This inequality stems from Faá-di-Bruno’s formula:

∂k
y

(
F (v)

)
=

∑ k!
i1! · · · ik!

(
∂yv

1!

)i1

· · ·
(
∂k

yv

k!

)ik

F (i1+···+ik)(v)

where the sum is over all the (i1, . . . , ik) ∈ Nk such that i1 + 2i2 + · · · + kik = k.
On the one hand, Hölder inequality gives

‖
(
∂yv

)i1 · · ·
(
∂k

yv
)ikF (i1+···+ik)(v)‖L2 ≤ ‖F (i1+···+ik)(v)‖L∞

k∏
`=1

‖∂`
yv‖

i`

L
2k
`
. (5.3)

On the other hand, lemma 5.1 yields for 1 ≤ ` ≤ k,

‖∂`
yv‖L

2k
`
≤ C`,k‖v‖

1− `
k

L∞ ‖∂k
yv‖

`
k

L2 .

Inserting this inequality in (5.3) completes the proof of lemma 5.3. �

Corollary 5.4. Let F ∈W k,∞
loc , k ∈ N. There exists a constant Ck so that

‖F (v)w‖Hk ≤ Ck

(
‖F (v)‖L∞‖w‖Hk + ‖w‖L∞‖∂k

yv‖L2

k−1∑
j=0

‖F (j+1)(v)‖L∞‖v‖j
L∞

)
.

(5.4)

‖F (v)∂yv‖Hk ≤ Ck‖∂yv‖Hk

k∑
j=0

‖F (j)(v)‖L∞‖v‖j
L∞ . (5.5)

‖F (v)∂yw‖Hk

≤ Ck

(
‖F (v)‖L∞‖∂yw‖Hk + ‖w‖L∞‖∂yv‖Hk

k∑
j=0

‖F (j+1)(v)‖L∞‖v‖j
L∞

)
.

(5.6)

Proof. The three results are obvious if k = 0 so let us assume that k ≥ 1. Then
applying inequality (5.2) yields

‖F (v)w‖Hk ≤ Ck

(
‖F (v)‖L∞‖w‖Hk + ‖w‖L∞‖∂k

y

(
F (v)

)
‖L2

)
.

Lemma 5.3 enables us to bound the last term in the right-hand side. This yields
(5.4).

For proving (5.5), we introduce F a primitive of F . We have

‖F (v)∂yv‖Hk ≤ Ck

(
‖F (v)∂yv‖L2 + ‖∂k+1

y

(
F(v)

)
‖L2

)
.

Now, applying lemma 5.3 yields the desired result.
For proving (5.6), we first notice that by virtue of Leibniz formula, we have

‖F (v)∂yw‖Hk ≤ Ck

∑
0≤`≤j≤k

‖∂`
y

(
F (v)

)
∂j+1−`

y w‖L2 .

Hence, according to (5.1),

‖F (v)∂yw‖Hk ≤ Ck

∑
0≤j≤k

(
‖F (v)‖L∞‖∂j+1

y w‖L2 + ‖w‖L∞‖∂j+1
y

(
F (v)

)
‖L2

)
,

≤ Ck

(
‖F (v)‖L∞‖∂yw‖Hk + ‖w‖L∞

k+1∑
m=1

‖∂m
y

(
F (v)

)
‖L2

)
,

and applying lemma 5.3 achieves the proof of (5.6). �
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Corollary 5.5. Let I be a bounded interval of R and F be in W k,∞(R; I) for some
k ∈ N and satisfy F (0) = 0. Let v ∈ Hk be a I-valued function. There exists a
constant C = Ck such that

‖F (v)‖Hk ≤ Ck

(
‖F ′‖L∞(I)‖v‖L2 + ‖∂k

yv‖L2

k−1∑
j=0

‖v‖j
L∞‖F

(j+1)‖L∞(I)

)
.

Proof. We first use the fact that

‖F (v)‖Hk ≤ Ck

(
‖F (v)‖L2 + ‖∂k

y (F (v))‖L2

)
.

The last term in the right-hand side may be bounded according to lemma 5.3. For
bounding the first one, we take advantage of first order Taylor’s formula

F (v) = v

∫ 1

0

F ′(τv) dτ.

which obviously implies ‖F (v)‖L2 ≤ ‖F ′‖L∞(I)‖v‖L2 . �

Corollary 5.6. Let I be a bounded interval of R and F be in W k+1,∞(R; I) for
some k ∈ N. Let v and w be two I-valued functions such that ∂yv and ∂yw ∈ Hk−1

and w − v ∈ Hk. Then F (w) − F (v) belongs to Hk and there exists a constant
C = Ck such that

‖F (w)− F (v)‖Hk ≤ Ck

(
‖F ′‖L∞(I)‖w − v‖Hk + ‖w − v‖L∞

(
‖∂k

yv‖L2 + ‖∂k
yw‖L2

)
×

k−1∑
j=0

(
‖v‖L∞ + ‖w‖L∞

)j

‖F (j+2)‖L∞(I)

)
.

Proof. Arguing by density, it suffices to prove the inequality for smooth I-valued
functions. According to first order Taylor’s formula, we have

F (w)− F (v) =
∫ 1

0

(w − v)F ′(v + τ(w − v)) dτ.

Therefore,

‖F (w)− F (v)‖Hk ≤
∫ 1

0

‖(w − v)F ′(v + τ(w − v))‖Hk dτ.

Fix a τ ∈ [0, 1]. From corollary 5.4, we get

‖(w − v)F ′(v + τ(w − v))‖Hk

≤ Ck

(
‖F ′(v + τ(w − v))‖L∞‖w − v‖Hk + ‖w − v‖L∞‖∂k

yv + τ(∂k
yw − ∂k

yv)‖L2

×
k−1∑
j=0

‖F (j+2)‖L∞(I)‖v + τ(w − v)‖j
L∞

)
whence the desired inequality follows. �
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