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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A
2 x 2 REACTION-DIFFUSION SYSTEM WITH A CROSS
DIFFUSION MATRIX ON UNBOUNDED DOMAINS

SALAH BADRAOUI

ABSTRACT. This article concerns the behavior at FFoo of solutions to a reaction-
diffusion system with a cross diffusion matrix on unbounded domains. We
show that the solutions satisfy the free diffusion system for all positive time
whenever the initial distribution has limits at Foo.

1. INTRODUCTION

In this paper, we investigate the system of reaction-diffusion equations

2 2
ut:ag—kﬁ@—i—bﬂ—kﬂt,u,v), zeR, t>0,
Ox? Ox 0x? (1.1)
_ d%u da% v R 0
vt70@+ @+ﬁ%+g(tvuvv)a HAS 7t> )
supplemented with the initial conditions
u(z,0) = up(x), wv(x,0)=uv9(z), zeR. (1.2)

The diffusion coeflicients a and d are positive constants while the diffusion co-
efficients b, ¢ and the coefficient § are arbitrary constants. We assume also the
following three conditions:
(H1) (a —d)* +4bc >0, cd # 0 and ad > be.
(H2) ug, Vg € X.
(H3) f(t,u,v) and g(t,u,v) € X, for all t > 0 and u,v € X. Moreover f and
g are locally Lipshitz; namely, for all t; > 0 and all constant k& > 0, there
exist a constant L = L(k,¢1) > 0 such that

|f(t,w1) — f(t,w2)| < Ljwy —wal,

is verified for all wy = (u1,v1), we = (uz,v2) € R x R with |w| < k
|we| < k and t € [0,1].
System with specific functional responses has received extensive mathematical
treatment since the addition of diffusive terms to the Lotka-Volterra systems. For
the case of bounded regions, the questions of existence of globally bounded solutions
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and their large time behavior have been well studied; various results are presented
by Rothe [13]. Some situations of unbounded regions are presented in [I1].
The system with triangular diffusion matrix

up = alAu —uh(v), (z,t) € Q x (0,00),
vy = bAu + dAv + uh(v), (z,t) € Qx,(0,00),

on a bounded domain Q C R™ with Neumann boundary conditions, b > 0, a > d,

0 > —uo > 0, and h(s) is a differentiable nonnegative function on R has been
btudled by Kirane. In [8], He proved that if a > d > 0, b > 0, b? < 4ad, the solution
(u,v) converges uniformly in €2 to a constant (k1,ks) such that k1 > 0, ky > 0 and
k1h(ks) = 0.

Such equations describe reaction-diffusion processus in physics, chemistry, biol-
ogy and population dynamics.

Collet and Xin [5] have studied the same system on R™ with a diagonal
diffusion matrix (b # 0) and h(v) = v™, where m € N*. They proved the existence
of global solutions and showed that the L°° norm of v cannot grow faster than
O(Int). Also, the system was studied by Avrin [I] when b = 0, v = exp{—F/v},
E > 0 and the space variable is in R.

The system with a triangular diffusion matrix in the case of unbounded
domain and h(v) = v™ is studied by Badraoui in [2, B]. In [3] he showed the
existence of global classical solution if vo(z) > Lduo(m) and a > d, b > 0, or
a < 0,b < 0. In [3] he proved that the L> norm of v cannot grow faster than
O(Int).

Kouachi [I0] obtained a result concerning uniform boundedness of solutions to
a system like with a general full matrix of diffusion coefficients satisfying a
balance law. This result is generalized after by Kouachi [9] who used the notion of
invariant regions and Lyapunov functional.

Surprisingly enough, less attention has been given to the behavior of the solutions
when the spatial variable x approaches infinity despite the usefulness of this type
of result for the numerical treatment of such problems. We are only aware of the
article of Gladnov [7] which generalizes a result of behavior as x approaches infinity
of a semi-linear equation posed in R* studied by Beberns and Fulks [4].

In this paper, we investigate the behavior of solutions to system for large
x. We show first that the linear operator

A‘( e(Var d(-)m+6(-)x>

generates an analytic semi-group over the Banach space Cyp(R) x Cyp(R), where
Cupa(R) is the space of bounded uniformly continuous real-valued functions on R,
endowed with the norm of the uniform convergence. After, we show that if the
initial conditions ug and vy have finite limits as x approaches Foo, the system
converges when x approaches +oo to the ordinary differential system associated to
it.

(1.3)

We will use the following notation:

Let X = (Cyp(R),||]|) be the space of bounded uniformly continuous real-valued
functions on R.

For u : [0,7] — X a continuous function, we use the norm

el = mas [lu()].
telo
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For w = (u,v) € X x X; we define

[[wll = flel + [lv]l-

Let f(t,w) = (f(t; u,v),g(t,u,v))t = (‘;g:z:’l’tji)

2. EXISTENCE OF A LOCAL SOLUTION

It is well known that for all A > 0, the linear operator )\6‘9—; + 58% generate
analytic semigroup of contractions G(t) on the Banach space. This semigroup is
given explicitly by the expression

T _ |2
Gonlte) = [ o= uggae

We recall here that Chen Caisheng [3] showed that the linear operator (Zﬁ Zﬁ

generates an analytic semigroup of contractions on the space LP(2) x LP(Q) (1 <
p < 00), where 2 is a bounded domain in R™.
Inspired by this result, we show that the linear operator

c(*)an d(")zz + B()z

generates an analytic semigroup of contractions on the Banach space X x X.

Proposition 2.1. Assuming (H1)-(H2), the linear operator

_ a()zz + B()z b(+)ze
A‘( e(Vas dom+M%>

generates an analytic semigroup of contractions on the space X x X, given explicitly
by

sy = L (Qe=a)Si(t) + (a = Ai)Sa(t) —bS1(t) + bSs(t)
B =N ZeSi(t) + ¢Sa(t) Qo — d)S1(8) + (d — M) Sa() )
(2.1)
where

1 1
A1 =§(a+d—\/(a—d)2+4bc), )\2:§(a+d+ V (a — d)? + 4bc),

and S1(t) and Sa(t) are the semigroups generated by the linear operators Ay ;—;—1—6%
and S3(t) respectively.

It should be noted that Ay, Ao > 0.

Proof. Tt is clear that S(0) = I. It is suffices to prove ([2.1)) for any w = (u,v) in
D(A) = {(uav) DU,V Ugg, Vgz € CUB(R)}~
We have

(i) limp o ZHY= = Aw, in X,
(i) S(t+7)w = S(t)S(r)w, for any t,7 > 0.
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In fact, we have
L1
lim —{S(t)w —w}
- 1
-\
« lim (1{()\2 - a)51 (t)u + (a - )\1)52(75)’11, —Uu— bSl (t)v + ()\1 — CL)SQ(t)U})
t\0 %{—cSl (t)u + CSQ(t)u + ()\2 — d)Sl (t)v + (d — Al)Sg(t)’U — ’U} ’

For the first component, we have

11
oo im0 — @)SiBu+ (0= M)Sa(thu —u =S (Ho + (M — a)S (t)e}

1 . S1(t)u —u
=Ny il m T
_bsl(t)tv—v +b52(t)tv—v}

{()\2 - a)()\luxz + 6“1) + ((1 - )\1)()\2umx + ﬁum) - b(Alvzr + 5”30)}

Sa(t)u —u
t

+(a7)\1)

_ 1
-\
1
+>\2_/\1{ (A2vzz + Bug)}
= QUgy +ﬂuz+bvmma

in Cyp(R). Similarly, we obtain

L lim !
Ay — A1 N0 ¢
= Clgy + AUy + 57}17

{—CSl (t)u + CSQ(t)U + ()\2 — d)Sl (t)U + (d — )\1)52(75)’1} — ’U}

in Cyp(R). Therefore (i) is true. Also, by direct computation, we see that (ii)
holds. O

As a consequence of this result we have the following proposition.

Proposition 2.2. Let (H1)-(H3) be satisfied. Then, the system (1.1)-(1.2) has a
unique local solution (u,v) € (C[0,To[, X x X) for some 0 < T < 0.

Proof. Tt suffices to set
A= <a(')$l + ﬁ()r b()mm >
wo = (Uowo)t-
Then, the system (1.1)), (1.2) is written as
wy = Aw + F(t,w), (2.2)
w(0) = wo. (2.3)
Taking into account [I2] proposition 5.1, theorem 6.1.4], the proof is complete. [

Let
Cy:={ueX: lim u(z) exist}.

—
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3. BEHAVIOR OF SOLUTIONS AS T — 00

It turns out that if ug, vg € C'y then the diffusive system, for x large, will behave
like the system of ordinary differential equations associated to it, and hence, for x
large, it can be replaced by the latter which is simpler to analyze.

For instance, for the numerical treatment of system —, one can develop
a numerical scheme for an approximated problem through a truncated domain
[ R, R] and use the system of ordinary differential equations in R\[—R, R].

Theorem 3.1. Under the assumptions (H1)-(H3), if ug,vo € Cy , thenu(t),v(t) €
Cy, for all t € [0,t] where t < tmax. Moreover, U(t) = lim, o0 u(x,t) and
V(t) = limg— 100 v(2,t) satisfy the system of ordinary differential equations

U'(t) = f(t,U(t), V(1))

(3.1)
VI(t) = g(t,U(1), V(1))
for any t < tymax, with the initial data

U(0) = liI}_l up(z), V(0)= 11111 vo (). (3.2)

Proof. The solution (u,v) satisfies the system of integral forms

()\2 — Al)u(t) = Sl (t)(()\g — CL)UO — bvo) + Sg(t)((a - )\1)“0 + b’Uo)
t
+ [ St =70 ~ @) (rw,0) = bo(ru,v))dr

0 (3.3)

+/ Sa(t — 1)((a — A1) f(T,u,v) + bg(T,u,v))dr,
0

()\2 — )\1)1)(15) = Sl (t)(*CUO + ()\2 - d)’Uo) + SQ(t)(CUO + (d — )\1)1}0)
t
+ [ sie=nef i + 0o - g
+ / Sa(t — )(cf(T,u,v) + (d = A\)g(7,u,v))dr.
0
Changing the spatial variable, v and v can be written as
(A2 — A)u(z, )

/ -’ (A2 — a)ug — bug) (y, t)dn + —= / e (a — A1)uo + bug)(z,t)dn

//e ”hl (Yr, T)dndr + — //e "hg (zr,T)dndr,

()\2 — Al)v(x,t)
= % / e (—eup + (A2 — d)vo) (y, t)dn + = / e (cug + (d — A1)vo)(z, )dn

\F/ / s(yr, T dnd7+f/ /e " hy(zy, T)dndr,

f

(3.5)

(3.6)
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where
y =+ Bt + 2nv/ Mt
z=x+ Bt + 2n+/ Aot
Yr :x+ﬁ(t_T)+277\/ )\1t7
zr=x+ B8t —7)+ 20/ Aa(t — 1),
and

hi(yr,7) = (A2 = a) f (., u,v) = bg(., u, 0)) (Y7, 7),

ha(z7,7) = ((@ = M) f (- u,0) +bg (., u, 0)) (27, 7),
hs(yr,7) = (=cf (., u,0) + (A2 — d)g (., u, 0))(y7, 7),

ha(zr,7) = (cf (., u,0) + (d = M)g (., u,0)) (27, 7).
To show that u and v have limits when z — 400, for any positive t < ty,x, it suf-
fices to verify that for any sequence of real numbers (x,,), satisfying lim, oo z, =

+00, the sequences (u(zp,t))n>1 and (v(xy,t))n>1 are Cauchy sequences in R. To
do so, let t < tyax, and set

Yn = Tn + B+ 20/ Mt, Yrp=xp+ 00 —7)+ 20/ M (t — 1),
Zn = Tn + Bt 420/ Aoty zrp =+ Bt —T) 4+ 20/ Aot — 7).

Then from (3.5)—(3.6]), we get

A2 = M||u(zm, t) — u(zy, t)]

Ao —a
< B2t L o) — walimlan+ S [ e untun) — vl
\a >\1|/ 2 0]
m) n d 77 m) n d
2 [ o)~ walenlan + L [ P unten) — wlan
1 [t 2
+ﬁ/ /6777 |hs(Yrm, T) — ha(Yrn, T)|dndT
o Jr
1 t 2
+ﬁ/ /67" |ha(Zrm, T) — ha(zrpn, T)|dndT.
o Jr
A2 = Ai[|v(zm, t) — v(@n, t)]
| | n2 |)‘2 d| 7]
> T € [uo(Ym) — wo(yn)|dn + 6 |00 (Ym) — vo(yn)|dn
|| —y? 3 \d /\1| —p? 3
—|— e |uo(zm) (zn)\dn—i—i e |vo(zm) — vo(2n)|dn (3.8)

/ / ™ | (Yr.oms T) — b (Y 7) |l
L / / e (ha(2rmy 7) — ha(2rm, 7)|dndr.
VT lo Jr
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Since ug,v9 € C4, for any positive € > 0, there is a natural number ng such that
for any m, n > ng

€lda — A
o) — wo(y)] < 22,
o) — vo(z)] < 222
A D Al (3.9)
D
[v0(ym) = vo(yn)| < =55
5|)\2 — )\1|
[o0(zm) — volzn)] < S22,

where D = 4max{|b|,|c|, |A2 — a|, |a — A1], |A2 — d|, |d — A1|}. On the other hand, it
is easy to show that for any ¢ € X, we have the estimate

Gl < YL (3.10)

for all t < tmax (see Appendix). Hence, for all continuous function ¥ : [0,7] — X,
we have

H Hl -1/2
G(t d <2——t , 3.11
/ | VAT ( )

for all t € [0,T], where T < timax-
Here, G(t) is the semigroup generated by the operator AA (A > 0) on X, and

||\I’||1 = maXte[O,T] H\Ij(t)H A]SO, from ‘) ‘ ) " " we get

1249,
dx
1 |)\2 a| || |a —>\1| |b| —1/2
< t
2 |>\2 al |\ |a A |b\ 12,
+ flli+ gl + flli+ g
B |{ NoT /11 \/—H [t or /111 \/—H 1}t
(3.12)
faday
dx
1 |C\ |A2 — |C| ld — | >\1\ 1/2
< — + wol| + = v |}~
2 |C| |A2 —d] | | |d >\1\ 12
+ flla+ gll1 + fllL + qgll1t
s+ B+ g 2
(3.13)
When we set
1 A2 —al 10| la — A 0]
A:
e {22 g+ g+ L2 g,
1 \ | A2 —d |C\ |d — /\1|
+ vol| + +
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and
_ 2 |A2 al |\ la >\1| |b|
PR i £l + '@iw I},

+
o /\1|{ i+ =5
we get from (3.12)-(3.13),

d d
| —u®)ll < At™Y2 4 Bt1/?, vl < At™Y2 4 Bi1/? (3.14)

wpvr

for all ¢ € [0, 7).
Let k& > 0 be a constant such that |ully < k and ||v|l; < k. Using the Lagrange
theorem and the estimates (3.14)) we obtain

0
[0 t) = ulan, ) < lam = @l 5@ DI < 7 — 2l (4672 + BE?),

0, 2) = 0, ) < fm — alll oo o, )] < o — 2l (A 4 BE?)
(3.15)
for all ¢ € [0,T]. Here, o', 2" are points between z,, and x,, and L = L(k,T) > 0
is a constant. On the other hand, we have from (H3) and (3.15)),

|hy (Yr.m: T) — hl(yr,m 7)|
< [A2 = all £ (7. u¥rm, 7), 0(Yrms 7)) = F(T,0(Yri0, T), 0 (Y 7))
+ [bllg (T, w(yr,m> ), v (Yrm: 7)) — 9(7, W(Yr 0, T); 0(Yrns 7))
< Lmax{|X2 — al, [b]}H{[w(¥Yrm, T) = w(Yr,ns )| + [0 Yrms T) — 0(Yrn, T}
< 2L max{|A2 — al, |b|}Ham — a:n|(A7'_1/2 + BTl/Q),

\ho(2rm»T) — h2(2rm, T)|
< = Xl (7, ulzrom, ), 0(zrm, 7)) = F (7 u(zrin, 7), 0z, )
+ [bllg(, w(Zrims 7, 0y 7)) = 97 (W0 7)s 0 (Y, 7))
< Lmax{la — M|, [b[H{[w(zr.m, 7) = w(zrn, T)| + [(zrm, 7) — 0(zrn, 7|}
< 2L max{|a — A\ ], |b|Ham — $n|(AT_1/2 i BT%)7

s (yrm T) = h3(Yr.n: 7))
< lellf (7 w(yrm, ), 0 (Yrm: 7)) = F (T w(Yrins ), 0(Yrn, 7))
+ X2 = dllg(m, uWr.m> 7), 0(Yrms 7)) = 9T wYr s 7)s 0(Yrm, 7))
< Lmax{|c|,| A2 — d[}H{|w(Yr,m,T) = w(Yrons T)| + [0 Yrims T) = 0(Yrn, T)|}
< 2L max {|c], | A2 — d|} |zm — zn| (A2 + Br1/2),
and
|ha(27,ms T) — ha(270, 7)|
<|ellf(myulzrm, T), v(zrm, 7)) — F(Tyu(2rm, T), v(2rn, T))]
+1d = Mllg(m, w(zrm, 7), v(rm, 7)) = 9(7, w(Yr i, T), 0(Yrn, 7))
< Lmax{|c|, |d — M| H|u(zrm, T) — w(zrm, T)| + [0(Zrm, T) — (270, T)| }
< 2L max{|c|, |d — M |}am — zn|(AT7Y/2 + Br1/2).
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Let
M|X2 — M| = 2L max {|b], ||, | A2 — al,|a — A1],|Aa — d], |d — M|} .
Then
P2 (Yrms ) = ha (Y )] < Mo = M|z — @ (AT71/2 4 B'/2),
|ha(Zrm, T) = ho(Zrm, T)| < M|Ag — Ai||@m — 2o |(AT7Y2 + B71/2), (3.16)
B3 (Yrms T) = ha(Yrons T)] < M2 = Ml|@m — 2| (AT72 4 BT1/?) '
|h4(sz,T) — ha(Zrm, T)| < M|Ag = M|z — 20| (AT7Y/2 + BT1/2).
Inserting (3.9) and (3.16) in (3.7)-(3-8), we get for any m, n > ng
(L t) — w(Tp, t)| < €+ M|z, — x| (2482 + §Bt?’/2)7
(3.17)

|0(2Zm, t) — 0(xp, t)| < €+ M|z, — x,| (2482 + ;Bzf%)7
for all ¢ € [0,T]. Setting
Yn = Yrn T BT H20VNT, Y = e + B — o) + 20/ (T —0),
2 :zm+ﬁr+2n\/ATr Zyn = 2nr + BT — o) + 20y Da(7 — 0).
Then, from (3.9) and (3.16)) into . .7 we obtain

‘)\2*>\1Hu(yrm> )* (y‘rn, )|

A a _ |b _
'2 | / () — oy, )ldn + L / 7 oo () — vl ldi

b 2
'“ A / o) — o (2 )Idn+\u 7 fuo(4) — o)

— —n? / _ /
+ \/’E A /]R e |h1 (yo,m’ 0) hy (ya,nv U) |d77d0'
1" .
— = |y (! h dnd
+ o= [ [ (et o) = ha(ep o

2
< elAa = M|+ M|As — M|z — 20| (2477 + gBT%)
and

|>\2 - >\1||U(zr,ma7—) - v(z'r,naT”

‘C|/ —n? ’ / |)‘2 d‘
< —= [ e |uo(yp) — wo(yy)|dn +
N o (Yrm) (yn)]

/ 7 oo (yl) — vo (g )l
+ |C| 6 -’ [uo(z),) — uo(z,,)|dn + |d )\1|/€ " |vo(2m,) — vo(2r,)|dn
/ /6 n’ ‘h3 ygm7 )7h3(y</7,n’g)|dndo.

- —n? /
+ / / ¢ B2 s @) — ha(Zh s 0)|ddo

2
< ela = Al + M|Az = Al — 2, |(A7F + SBr?).
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Whence
2
[ 7) = (yrin, )] < &+ Mg — 20| (24712 4 ZBTE) (3.18)
2 .
[0(Zrms T) = V(27 T)| < €4 M|y — xn| (2472 + gBT%), (3.19)
and from (3.18))-(3.19) in (3.7)-(3.8) we get
22 22 s
[ t) = i, D)] < (14 M) + M|y — 20| (G A2 + 5= BtE)
’ zj (20
|0(2m, 1) — u(zn, t)] < e(1 4+ Mt) + M? |a:mf:17n|( +3X5Bt5),
for all t € [0,T]. Iterating this operation N times we obtain
(Mt)> (M)t
(w(Tm, t) — u(zy, t)] < e(1+ Mt+ o (N =]
(2M)™ No1
m — Tn At
tle I|(1><3><5><---><(2N—1) i
2M)N N+1
Bt
T Ix3xbx- x 2N+ 1) 2)’
and
(M) (M)~
[0(zm, 8) = vlan, O] < (1 Mt + =57~ ))
M)N
o =l (g X (2N — 1)
N
x AtN=% (2M) BtV+1),

I1x3x5x---x (2N +1)
Passing to the limit when N approaches infinity, we obtain
() — u(wn, )] < Mt |u(m,t) —v(zn,t)| < e, (3.21)

for all ¢ € [0,T]. From these inequalities, we deduce that the sequences (u(zp,t))n
and (v(zy,t)), are Cauchy sequences of continuous functions from [0, 7] into X,
hence they converge uniformly on [0,7] to some continuous functions U and V,
respectively.

The solution (u,v) satisfies the system of integral equation

(A2 = M)u(z, 1)

f/ [(A2 — a)ug — bug|(y, t)dn + f/e " [(a — A1)uo + buo](z,t)dn

//e"hlyT, Ydndr + — //e"hng, Ydndr,

()\2 — )\1)’0(1’7 t)

B %/ e [~eup + (A2 — d)vo] (. t)dn + % / e~ [eup + (d = Ar)uo] (=, )y

//e "hg (yr, T)dndr + — //e ”h4 (zr, T)dndr.
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With the previous substitution of the spatial variable, and for any sequence (zy,),
tending to 400, we have

(/\2 — /\1)u(l‘n, t)

B \% / ™ [(A2 — a)uo — bvo] (yn, t)dn + - / ™ [(a— Ar)up + bvo] (zn, t)dn

// 1Yz, T)dndT + — //e "’ ho (27 n, T)dndr,
\/7

(3.22)
()\2 — )\1)1)(1'7“ t)
1 _
N T _/ e~ [~cug + (A2 — d)vo] (yn, t)d
2
/ e [cug + (d — A1)vo](2zn, t)dn (3.23)
/ /e ”hg (Yrom, T)dndr + — / /e ”h4 (27, T)dndr.
By the dominated convergence theorem we have
lim [ e [(As — a)ug — bvo) (yn, t)dn = VT{( A2 — a)Up — bV},
n—oo R
lim [ e [(a— A1)uo + buo)(zn, £)dn = va{(a — A\)Us + bVp},
R (3.24)
2
lim [ e " [—cug + (A2 — d)vo)(yn, t)dn = Vr{—cUy + (A2 — d) Vo },
n—oo R
Hm [ e [eup + (d — A)vo (2, £)dn = V/a{cUo + (d — A1) Vo,
n—oo R
where Uy = lim,, o0 ug(z,,) and Vo = lim,, o vo(z,). We also have
™" hi(Yrn, 7| < C(T)e ™,
fori=1,2,3,4and all 0 <7 <t < T, where
C(T) = max {|X2 — al, [b], [a = M, [e], [d = M [ (I Il + Nlgllh)
Using again the dominated convergence theorem, we obtain
t 2
lim / / e hi(Yrn,T)
0K (3.25)
= ﬁ/ {2 —a)f(r,U(7),v(7)) — bg(7,U(7),v(7)) }dT,
0
t 2
lim / / e ho(Yrm,T)
0 IR (3.26)

- / {(a= M) F(r,U(7),0(r)) + bg(7, U (7), () dr.
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‘We have also

t
lim / /e*"th(mi,T)

: (3.27)
= \/7?/0 {—Cf(T, U(T), ’U(T)) + ()\2 - d)g(T, U(T)v U(T)>}d7-7

lim 67772 h4(y7,na T)

’HOO/O /R (3.28)

t
= ﬁ/ {cf(r,U(7),v(7)) + (d— A)g(,U(7),v(7)) }dT.

0
Thanks to (3.24]) and (3.25)-(3.28]), if we pass to the limit in (3.22))-(3.23)), we obtain

U(t) = Uy + / U ),V (r)dr,

t
Vit)=W +/ g(m, U(1), V(7))dr,
0
for all 0 <t < T. The ordinary differential system then follows. |

We remark remark that the same analysis holds for

up,v9 € C_ ={ue X : lim wu(z) exist}.

Conclusions. We have proved the result of asymptotic behavior when z — oo
thanks to the explicit expression of the semigroup generated by the linear operator

_ a()zz + B()e b()az
A—( (e dom+A@)’

where A\ = 3 in the space X2, where X = (Cyp(R),|.||) under some conditions over
the coefficients a, b, c and d. The analytic expression of the semigroup generated
by the operator A if A\ # [ still an open problem.

REFERENCES

[1] J. D. Avrin; Qualitative Theory for a Model of Laminar Flames with Arbitrary Nonnegative
Initial Data, J. Differential Equations 84, pp. 290-308, 1990.

[2] Salah Badraoui; Ewxistence of Global Solutions for Systems of Reaction-Diffusion Equations
on Unbounded Domains, Electron. J. Diff. Eqns., Vol 2002, No. 74, pp. 1-10, 2002.

[3] Salah Badraoui; Large Time Asymptotic Bounds of L Solutions for Some Reaction-Diffusion
Equations, Arab J. Math. Sc. Volume 8, Number 2, pp. 27-39, 2002.

[4] J. W. Beberns & W. Fulks; The small Heat-Loss Problem, J. Diff. Equat. 57, pp. 324-332,
1985.

[5] Chen Caisheng; Global Existence and Asymptotic Behavior of Solutions for a Strongly Coupled
Parabolic System, Journal of Mathematical Research & Exposition, Vol. 14, No. 2, 1994.

[6] P. Collet & J. Xin; Global Ezistence and Large Time Asymptotic Bounds of L*° Solutions of
Thermal Diffusive Combustion Systems on R™, Ann. Sc. Norm. Sup. Pisa, Cl. Sc., IV. Ser.
23, pp. 625-642, 1996.

[7] A. L. Gladnov; Behavior of Solutions of Semilinear Parabolic Equations as x — oo, Mathe-
matics Notes, Vol 51, No 2, pp. 124-128, 1990.

[8] Mokhtar Kirane; Global Bounds and Asymptotics for a System of Reaction-Diffusion Equa-
tions, Journal of Mathematical Analysis and Applications, 138, pp. 328-342, 1989.

[9] Said Kouachi; Global Ezistence of Solutions in Invariant Regions for Reaction-Diffusion Sys-
tems with a Balance Law and a Full Matrixz of Diffusion Coefficients, EJQTDE, No. 4, pp.
1-10, 2003.



EJDE-2006/61 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 13

[10] Said Kouachi; Uniform Boundedness and Global Existence of Solutions for Reaction-
Diffusion Systems with a Balance Law and a Full matriz of Diffusion Coefficients, EJQTDE,
No. 7, pp. 1-9, 2001.

[11] A. Okubo; Diffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin,
1980.

[12] A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer, New York, 1983.

[13] F. F. Rothe; Global Solutions of Reaction-Diffusion, Lecture Notes in Math. 1072, Springer,
Berlin, 1984.

LABORATOIRE LAIG, UNIVERSITE DU 08 MAI 1945, BP. 401, GUELMA 24000, ALGERIA
E-mazil address: sabadraoui@hotmail.com



	1. Introduction
	2. Existence of a local solution
	3. Behavior of solutions as x 
	Conclusions

	References

