Electronic Journal of Differential Equations, Vol. 2006(2006), No. 63, pp. 1-13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR ELLIPTIC EQUATIONS

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

$$
\begin{aligned}
& \text { Abstract. In this paper, we study the existence of solutions to the following } \\
& \text { nonlinear elliptic problem in a bounded subset } \Omega \text { of } \mathbb{R}^{N} \text { : } \\
& \qquad-\Delta_{p} u=f(x, u, \nabla u)+\mu \text { in } \Omega, \\
& \qquad u=0 \text { on } \partial \Omega, \\
& \text { where } \mu \text { is a Radon measure on } \Omega \text { which is zero on sets of } p \text {-capacity zero, } \\
& f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R} \text { is a Carathéodory function that satisfies certain conditions } \\
& \text { with respect to the one dimensional spectrum. }
\end{aligned}
$$

1. Introduction

We consider the quasilinear elliptic problem

$$
\begin{gather*}
-\Delta_{p} u=f(x, u, \nabla u)+\mu \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded open set in $\mathbb{R}^{N}, N \geq 2,1<p<+\infty, \mu$ is a Radon measure on Ω and $f: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function. We are interested in the existence of solutions to this problem. More precisely, we will prove the existence of a solution $u \in W_{0}^{1, p}(\Omega)$, if and only if the signed measure μ is zero on sets of capacity zero in Ω. (i.e $\mu(E)=0$ for every set E such that $\operatorname{cap}_{p}(E, \Omega)=0$).

Boccardo, Gallouet and Orsina have proved in [3] the existence of a solution to the problem

$$
\begin{gathered}
A u+g(x, u, \nabla u)=\mu \quad i n \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where $A(u)=-\operatorname{div}(a(x, \nabla u)), a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $g: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are Carathéodory functions such that for almost every $x \in \Omega$, for every $\xi \in \mathbb{R}^{N}$ and for every $s \in \mathbb{R}$,

$$
\begin{gathered}
a(x, \xi) \cdot \xi \geq \alpha|\xi|^{p}, \\
|a(x, \xi)| \leq l(x)+\beta|\xi|^{p-1}, \\
|g(x, s, \xi)| \leq b(|s|)\left[|\xi|^{p}+d(x)\right],
\end{gathered}
$$

2000 Mathematics Subject Classification. 35J15, 35J70, 35J85.
Key words and phrases. Boundary value problem; truncation; L^{1}; p-Laplacian; spectrum. © 2006 Texas State University - San Marcos.
Submitted January 23, 2006. Published May 19, 2006.
where α and β are two positive constants, $l \in L^{p^{\prime}}(\Omega), b$ a real-valued, positive, increasing, continuous function, and d a nonegative function in $L^{1}(\Omega)$. They assume that for almost every $x \in \Omega$, for every ξ and η in \mathbb{R}^{N}, with $\xi \neq \eta$,

$$
[a(x, \xi)-a(x, \eta)] \cdot(\xi-\eta)>0
$$

They require also that for almost every $x \in \Omega$, for every ξ in \mathbb{R}^{N}, for every s in \mathbb{R} such that $|s| \geq \sigma$,

$$
g(x, s, \xi) \operatorname{sgn}(s) \geq \rho|\xi|^{p}
$$

where ρ and σ are two positive real numbers and $\operatorname{sgn}(s)$ is the sign of s.
Let $(\beta, \alpha, u) \in \mathbb{R}^{N} \times \mathbb{R} \times W_{0}^{1, p}(\Omega) \backslash\{0\}$. If (β, α, u) is a solution of the problem

$$
\begin{gathered}
-\Delta_{p} u=\alpha m(x)|u|^{p-2} u+\beta \cdot|\nabla u|^{p-2} \nabla u \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

where $1<p<\infty$ and $m \in M=\left\{m \in L^{\infty}(\Omega): \operatorname{meas}\{x \in \Omega: m(x)>0\} \neq 0\right\}$. In this case, the pair (β, α) is said to be a one dimensional eigenvalue and u the associated eigenfunction. We designate by $\sigma_{1}\left(-\Delta_{p}, m\right) \subset \mathbb{R}^{N} \times \mathbb{R}$ the set of one dimensional eigenvalues (β, α) with $\alpha \geq 0$.
Proposition 1.1. (1) $\sigma_{1}\left(-\Delta_{p}, m\right)$ contains the union of the sequence of graphs of the functions $\Lambda_{n}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}, n=1,2, \ldots$, where $\Lambda_{n}(\beta)$ is defined for every $\beta \in \mathbb{R}^{N}$ by

$$
\frac{1}{\Lambda_{n}(\beta)}=\sup _{K \in A_{n}^{\beta}} \min _{u \in K} \int_{\Omega} e^{\beta \cdot x} m(x)|u|^{p} d x
$$

with $A_{n}^{\beta}=\left\{K \subset S_{\beta}, K\right.$ compact symmetrical; $\left.\gamma(K) \geq n\right\}$,

$$
S_{\beta}=\left\{u \in W_{0}^{1, p}(\Omega):\left(\int_{\Omega} e^{\beta . x} m(x)|\nabla u|^{p} d x\right)^{1 / p}=1\right\}
$$

and $\gamma(K)$ indicates the genus of K.
(2) $\Lambda_{1}($.$) is the first eigensurface of the spectrum of \sigma_{1}\left(-\Delta_{p}, m\right)$ in the sense

$$
\sigma_{1}\left(-\Delta_{p}, m\right) \subset\left\{(\beta, \alpha) \in \mathbb{R}^{N} \times \mathbb{R} ; \Lambda_{1}(\beta) \leq \alpha\right\}
$$

The proof of the above proposition can be found in [1]. When $\mu=h \in$ $W^{-1, p^{\prime}}(\Omega)$, Anane, Chakrone and Gossez have proved in [1] the existence of a solution to 1.1), in the sense

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\langle h, v\rangle
$$

for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. This is done under the hypotheses of non-resonance with respect to the spectrum of one dimensional $\sigma_{1}\left(-\Delta_{p}, 1\right)$: There exists $(\beta, \alpha) \in$ $\mathbb{R}^{N} \times \mathbb{R}$ with $\alpha<\Lambda_{1}\left(\beta,-\Delta_{p}, 1\right)$ where $\Lambda_{1}\left(.,-\Delta_{p}, 1\right)$ is the first eigensurface of the spectrum of one dimensional $\sigma_{1}\left(-\Delta_{p}, 1\right)$, such that for all $\delta>0$ there exists $a_{\delta} \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
f(x, s, \xi) s \leq \alpha|s|^{p}+\beta|\xi|^{p-2} \xi s+\delta\left(|s|^{p-1}+|\xi|^{p-1}+a_{\delta}(x)\right)|s| \tag{1.2}
\end{equation*}
$$

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^{N} \times \mathbb{R}$; and for all $k>0$ there exist $\phi_{k} \in L^{1}(\Omega)$ and $b_{k} \in \mathbb{R}$ such that

$$
\begin{equation*}
\max _{|s| \leq k}|f(x, s, \xi)| \leq b_{k}|\xi|^{p}+\phi_{k}(x) \tag{1.3}
\end{equation*}
$$

for almost every $x \in \Omega$ and for all $\xi \in \mathbb{R}^{N}$.

Remark 1.2. (1) If $f(x, u, \nabla u)=\alpha m(x)|u|^{p-2} u+\beta .|\nabla u|^{p-2} \nabla u$, then 1.1) has a solution for every $\mu \in W^{-1, p^{\prime}}(\Omega)$, in the usual sense
$\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\langle h, v\rangle_{W^{-1, p^{\prime}}(\Omega), W_{0}^{1, p}(\Omega)}$
for every $v \in W_{0}^{1, p}(\Omega)$, if and only if $(\beta, \alpha) \notin \sigma_{1}\left(-\Delta_{p}, m\right)$.
(2) If $\mu \notin W^{-1, p^{\prime}}(\Omega)$, problem (1.1) does not have always a solution. Indeed in the case $1<p \leq N$, we have that $L^{1}(\Omega) \nsubseteq W^{-1, p^{\prime}}(\Omega)=-\Delta_{p}\left(W_{0}^{1, p}(\Omega)\right)$.

In this work, we assume (1.3) and that μ is a measure. We assume also that for each $\delta>0$ there exists $a_{\delta} \in L^{p}(\Omega)$ such that

$$
\begin{equation*}
f(x, s, \xi) s \leq-\rho|\xi|^{p}|s|+\alpha|s|^{p}+\beta|\xi|^{p-2} \xi s+\delta\left(|s|^{p-1}+|\xi|^{p-1}+a_{\delta}(x)\right)|s| \tag{1.4}
\end{equation*}
$$

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^{N} \times \mathbb{R}$, where $(\beta, \alpha) \in \mathbb{R}^{N} \times \mathbb{R}$ satisfies the same conditions as in 1.2 and ρ is a positive real number. In the case $\delta=1$, there exists $a_{1} \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
f(x, s, \xi) \operatorname{sgn}(s) \leq-\rho|\xi|^{p}+\alpha^{\prime}|s|^{p-1}+\beta^{\prime}|\xi|^{p-1}+a_{1}(x) \tag{1.5}
\end{equation*}
$$

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^{N} \times \mathbb{R}$, where $\alpha^{\prime}=\alpha+1$ and $\beta^{\prime}=|\beta|+1$.
Remark 1.3. (1) The conditions of the sign given in [3] imply (1.4) in the case $\alpha=0$ and $\beta=0$.
(2) The hypothesis 1.3 and 1.4 are satisfied for example if

$$
f(x, s, \xi)=-\rho|\xi|^{p} \operatorname{sgn}(s)+\alpha|s|^{p-2} s+\beta|\xi|^{p-2} \xi+g(x, s, \xi)+l(x, s, \xi)
$$

where g and l satisfy

$$
\begin{gathered}
g(x, s, \xi) s \leq 0 \\
|g(x, s, \xi)| \leq b(|s|)\left(|x|^{p}+c(x)\right), \\
s l(x, s, \xi) \leq C\left(|s|^{q-1}+|x|^{q-1}+d(x)\right)|s|
\end{gathered}
$$

with b continuous, $c(x) \in L^{1}(\Omega), q<p, d(x) \in L^{p^{\prime}}(\Omega)$ and C a constant.
For every compact subset K of Ω, the p-capacity of K with respect to Ω is defined as

$$
\operatorname{cap}_{p}(K, \Omega)=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x, u \in C_{0}^{\infty}(\Omega) \text { and } u \geq \chi_{K}\right\}
$$

where χ_{K} is the characteristic function of K; we will use the convention that $\inf (\emptyset)=+\infty$. The p-capacity of any open subset U of Ω is defined by $\operatorname{cap}_{p}(U, \Omega)=$ $\sup \left\{\operatorname{cap}_{p}(K, \Omega), K\right.$ compact and $\left.K \subseteq U\right\}$. Also the p-capacity of any subset $B \subseteq \Omega$ by $\operatorname{cap}_{p}(B, \Omega)=\inf \left\{\operatorname{cap}_{p}(U, \Omega), U\right.$ open and $\left.B \subseteq U\right\}$. We will denote by $\mathcal{M}_{b}(\Omega)$ the space of all signed measures on Ω and by $\mathcal{M}_{0}^{p}(\Omega)$ the space of all measures μ in $\mathcal{M}_{b}(\Omega)$ such that $\mu(E)=0$ for every set E such that $\operatorname{cap}_{p}(E, \Omega)=0$.

Our main result is stated as follows.
Theorem 1.4. Assume (1.3), (1.4) and that μ is a measure in $\mathcal{M}_{b}(\Omega)$. Then, there exists a solution u of

$$
\begin{gather*}
-\Delta_{p} u=f(x, u, \nabla u)+\mu \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.6}
\end{gather*}
$$

in the sense that $u \in W_{0}^{1, p}(\Omega), f(x, u, \nabla u) \in L^{1}(\Omega)$, and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\int_{\Omega} v d \mu
$$

for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, if and only if $\mu \in \mathcal{M}_{0}^{p}(\Omega)$.

2. Proof of Main result

The notation $\langle.,$.$\rangle stands hereafter for the duality pairing between W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$. We define, for s and k in \mathbb{R}, with $k>0$,

$$
T_{k}(s)= \begin{cases}k \operatorname{sgn}(s) & \text { if }|s|>k \\ s & \text { if }|s| \leq k\end{cases}
$$

and $G_{k}(s)=s-T_{k}(s)$.
Lemma 2.1. Let $g \in L^{\infty}(\Omega)$ and $F \in\left(L^{p^{\prime}}(\Omega)\right)^{N}$. Under the hypotheses 1.3) and (1.4), the problem

$$
\begin{gather*}
-\Delta_{p} u=f(x, u, \nabla u)+g-\operatorname{div} F \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega, \tag{2.1}
\end{gather*}
$$

admits a solution $u \in W_{0}^{1, p}(\Omega)$ in the sense that $f(x, u, \nabla u)$ and $f(x, u, \nabla u) u$ are in $L^{1}(\Omega)$, and that

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\int_{\Omega} g v+\int_{\Omega} F \nabla v
$$

for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and for $v=u$.
Proof. Letting $l=g-\operatorname{div} F$, we have $l \in W^{-1, p^{\prime}}(\Omega)$. Then 1.4 implies (1.2), and Lemma 2.1 is a particular case of a result in (1).

Lemma 2.2. $\mathcal{M}_{0}^{p}(\Omega)=L^{1}(\Omega)+W^{-1, p^{\prime}}(\Omega)$ for every $1<p<+\infty$.
For the proof of the above lemma see [4].
Lemma 2.3. Let a, b be two nonnegative numbers, and let $\varphi(s)=s e^{\theta s^{2}}$ with $\theta=b^{2} /\left(4 a^{2}\right)$. Then for all $s \in \mathbb{R}, a \varphi^{\prime}(s)-b|\varphi(s)| \geq a / 2$.

Proof. For $s \in \mathbb{R}$ let $\psi(s)=a \varphi^{\prime}(s)-b|\varphi(s)|$. Then

$$
\psi(s)=e^{\theta s^{2}}\left[a\left(1+2 \theta s^{2}\right)-b|s|\right]=a e^{\theta s^{2}}\left[\left(1+2 \theta s^{2}\right)-2 \sqrt{\theta}|s|\right]
$$

Then ψ is even, and assuming that $s \geq 0$, we obtain that for every $s \geq 0$,

$$
\psi(s)=2 a e^{\theta s^{2}}\left[\left(\sqrt{\theta} s-\frac{1}{2}\right)^{2}+\frac{1}{4}\right] \geq \frac{a}{2}
$$

Remark 2.4. Let $\mu \in \mathcal{M}_{0}^{p}(\Omega)$. If $p>N$, then $L^{1}(\Omega) \subset W^{-1, p^{\prime}}(\Omega)$; therefore, $\mathcal{M}_{0}^{p}(\Omega)=W^{-1, p^{\prime}}(\Omega)$. Then the existence of a solution of 1.6 is a consequence of [1. Theorem 7.1]. That is why, we assume that $1<p \leq N$.

Proof of the Theorem 1.4 Note that if $u \in W_{0}^{1, p}(\Omega)$ is a solution of 1.6), then

$$
\mu=-\Delta_{p} u-f(x, u, \nabla u)
$$

with $\Delta_{p} u \in W^{-1, p^{\prime}}(\Omega)$ and $f(x, u, \nabla u) \in L^{1}(\Omega)$; So by Lemma 2.2, $\mu \in \mathcal{M}_{0}^{p}(\Omega)$.
Conversely, suppose that $\mu \in \mathcal{M}_{0}^{p}(\Omega)$, so by Lemma 2.2 there exists $g \in L^{1}(\Omega)$ and $F \in\left(L^{p^{\prime}}(\Omega)\right)^{N}$ such that $\mu=g-\operatorname{div} F$. There exists a sequence $\left(g_{n}\right)_{n}$ of $L^{\infty}(\Omega)$ that converges strongly to g in $L^{1}(\Omega)$ and $\widetilde{g} \in L^{1}(\Omega)$ such that $\left|g_{n}(x)\right| \leq|\widetilde{g}(x)|$ for every $n \in \mathbb{N}$ and for almost every $x \in \Omega$.

By Lemma 2.1. the problem

$$
\begin{gather*}
-\Delta_{p} u_{n}=f\left(x, u_{n}, \nabla u_{n}\right)+g_{n}-\operatorname{div} F \quad \text { in } \Omega \\
u_{n}=0 \quad \text { on } \partial \Omega \tag{2.2}
\end{gather*}
$$

admits a solution $u_{n} \in W_{0}^{1, p}(\Omega)$ in the sense that

$$
\begin{equation*}
f\left(x, u_{n}, \nabla u_{n}\right), f\left(x, u_{n}, \nabla u_{n}\right) u_{n} \in L^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x=\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) v d x+\int_{\Omega} g_{n} v+\int_{\Omega} F \nabla v \tag{2.4}
\end{equation*}
$$

for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and for $v=u_{n}$.
Lemma 2.5. The sequence $\left(u_{n}\right)_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$.
Proof. Let us choose $v=\varphi\left(T_{1}\left(u_{n}\right)\right)$ as a test function in 2.4, where $\varphi(s)=s e^{\theta s^{2}}$ with $\theta=\frac{b^{2}}{4 a^{2}}, a=1$ and $b=b_{1}\left(b_{1} \geq 0\right.$ is given for $k=1$ by (1.3). Setting

$$
\begin{gathered}
a(\xi)=|\xi|^{p-2} \xi \quad \forall \xi \in \mathbb{R}^{N} \\
\varphi_{1}=\varphi\left(T_{1}\left(u_{n}\right)\right), \quad \varphi_{1}^{\prime}=\varphi^{\prime}\left(T_{1}\left(u_{n}\right)\right)
\end{gathered}
$$

we have

$$
\begin{align*}
\int_{\Omega} a\left(\nabla u_{n}\right) \nabla\left[\varphi\left(T_{1}\left(u_{n}\right)\right)\right] d x= & \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi\left(T_{1}\left(u_{n}\right)\right) d x \tag{2.5}\\
& +\int_{\Omega} g_{n} \varphi\left(T_{1}\left(u_{n}\right)\right) d x+\int_{\Omega} F \nabla\left[\varphi\left(T_{1}\left(u_{n}\right)\right)\right] d x
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\int_{\Omega} a\left(\nabla u_{n}\right) \nabla\left[\varphi\left(T_{1}\left(u_{n}\right)\right)\right] d x & =\int_{\Omega} a\left(\nabla u_{n}\right) \varphi_{1}^{\prime} \nabla\left(T_{1}\left(u_{n}\right)\right) d x \\
& =\int_{\Omega} \varphi_{1}^{\prime}\left|\nabla\left(T_{1}\left(u_{n}\right)\right)\right|^{p} d x
\end{aligned}
$$

Since φ^{\prime} is an even function in $\mathbb{R}, \varphi^{\prime}$ is increasing in \mathbb{R}^{+}and $\left|T_{1}\left(u_{n}\right)\right| \leq 1$, we have

$$
\begin{aligned}
\int_{\Omega} F \nabla\left[\varphi\left(T_{1}\left(u_{n}\right)\right)\right] d x & \leq\|F\|_{L^{p^{\prime}}}\left\|\varphi\left(T_{1}\left(u_{n}\right)\right)\right\|_{1, p} \\
& \leq\|F\|_{L^{p^{\prime}}}\left(\int_{\Omega}\left|\varphi_{1}^{\prime} \nabla\left(T_{1}\left(u_{n}\right)\right)\right|^{p} d x\right)^{1 / p} \\
& \leq\|F\|_{L^{p^{p}}} \varphi^{\prime}(1)\left\|T_{1}\left(u_{n}\right)\right\|_{1, p}
\end{aligned}
$$

Since φ is increasing in \mathbb{R}, we get

$$
\int_{\Omega} g_{n} \varphi\left(T_{1}\left(u_{n}\right)\right) d x \leq \varphi(1) \int_{\Omega}\left|g_{n}\right| d x \leq \varphi(1)\|\widetilde{g}\|_{L^{1}}
$$

Writing

$$
\begin{aligned}
& \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi\left(T_{1}\left(u_{n}\right)\right) d x \\
& =\int_{\left\{\left|u_{n}\right| \leq 1\right\}} \varphi_{1} f\left(x, u_{n}, \nabla u_{n}\right) d x+\int_{\left\{\left|u_{n}\right|>1\right\}} \varphi_{1} f\left(x, u_{n}, \nabla u_{n}\right) d x
\end{aligned}
$$

By (1.3), we have

$$
\begin{aligned}
\left|\int_{\left\{\left|u_{n}\right| \leq 1\right\}} \varphi_{1} f\left(x, u_{n}, \nabla u_{n}\right) d x\right| & \leq \int_{\left\{\left|u_{n}\right| \leq 1\right\}}\left|\varphi_{1}\right|\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
& \leq \int_{\left\{\left|u_{n}\right| \leq 1\right\}}\left|\varphi_{1}\right|\left[b_{1}\left|\nabla u_{n}\right|^{p}+\phi_{1}(x)\right] d x \\
& \leq b_{1} \int_{\left\{\left|u_{n}\right| \leq 1\right\}}\left|\varphi_{1}\right|\left|\nabla u_{n}\right|^{p} d x+\varphi(1)\left\|\phi_{1}\right\|_{L^{1}} \\
& \leq b_{1} \int_{\Omega}\left|\varphi_{1}\right|\left|\nabla\left(T_{1}\left(u_{n}\right)\right)\right|^{p} d x+\varphi(1)\left\|\phi_{1}\right\|_{L^{1}}
\end{aligned}
$$

On the other hand, on $\left\{\left|u_{n}\right|>1\right\}, T_{1}\left(u_{n}\right)=\operatorname{sgn}\left(u_{n}\right)$, so $\varphi\left(T_{1}\left(u_{n}\right)\right)=\operatorname{sgn}\left(u_{n}\right) e^{\theta}$ and by (1.5), we get

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}\right|>1\right\}} \varphi_{1} f\left(x, u_{n}, \nabla u_{n}\right) d x \\
& =\int_{\left\{\left|u_{n}\right|>1\right\}} e^{\theta} f\left(x, u_{n}, \nabla u_{n}\right) \operatorname{sgn}\left(u_{n}\right) d x \\
& \leq e^{\theta} \int_{\left\{\left|u_{n}\right|>1\right\}}\left[-\rho\left|\nabla u_{n}\right|^{p}+\alpha^{\prime}\left|u_{n}\right|^{p-1}+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}+a_{1}(x)\right] d x .
\end{aligned}
$$

Adding the above inequalities, by 2.5 , we obtain

$$
\begin{align*}
& \int_{\Omega}\left[\varphi_{1}^{\prime}-b_{1}\left|\varphi_{1}\right|\right]\left|\nabla\left(T_{1}\left(u_{n}\right)\right)\right|^{p} d x+\rho e^{\theta} \int_{\left\{\left|u_{n}\right|>1\right\}}\left|\nabla u_{n}\right|^{p} d x \\
& \leq\|F\|_{L^{p^{\prime}}} \varphi^{\prime}(1)\left\|T_{1}\left(u_{n}\right)\right\|_{1, p}+\varphi(1)\|\widetilde{g}\|_{L^{1}}+\varphi(1)\left\|\phi_{1}\right\|_{L^{1}} \tag{2.6}\\
& \quad+e^{\theta} \int_{\left\{\left|u_{n}\right|>1\right\}}\left[\alpha^{\prime}\left|u_{n}\right|^{p-1}+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}+a_{1}(x)\right] d x .
\end{align*}
$$

Using Hölder's inequality, we have

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}\right|>1\right\}}\left|\nabla u_{n}\right|^{p-1} d x \leq\left\|u_{n}\right\|_{1, p}^{p-1}(\operatorname{meas}(\Omega))^{1 / p}, \\
& \int_{\left\{\left|u_{n}\right|>1\right\}}\left|u_{n}\right|^{p-1} d x \leq\left\|u_{n}\right\|_{p}^{p-1}(\operatorname{meas}(\Omega))^{1 / p}
\end{aligned}
$$

By Poincaré's inequality, there exists $c>0$ such that

$$
\left\|u_{n}\right\|_{p} \leq c\left\|\nabla u_{n}\right\|_{p}
$$

So

$$
\int_{\left\{\left|u_{n}\right|>1\right\}}\left|u_{n}\right|^{p-1} d x \leq c^{p-1}\left\|u_{n}\right\|_{1, p}^{p-1}(\operatorname{meas}(\Omega))^{1 / p} .
$$

Replacing this in (2.6) and using that $\varphi_{1}^{\prime}-b_{1}\left|\varphi_{1}\right| \geq \frac{1}{2}$, we obtain

$$
\frac{1}{2} \int_{\Omega}\left|\nabla\left(T_{1}\left(u_{n}\right)\right)\right|^{p} d x+\rho e^{\theta} \int_{\left\{\left|u_{n}\right|>1\right\}}\left|\nabla u_{n}\right|^{p} d x \leq c_{1}\left\|u_{n}\right\|_{1, p}+c_{2}\left\|u_{n}\right\|_{1, p}^{p-1}+c_{3}
$$

where $c_{1}=\|F\|_{L^{p^{\prime}}} \varphi^{\prime}(1), c_{2}=e^{\theta}\left[\alpha^{\prime} c^{p-1}+\beta^{\prime}\right](\operatorname{meas}(\Omega))^{\frac{1}{p}}$ and $c_{3}=\varphi(1)\|\widetilde{g}\|_{L^{1}}+$ $\varphi(1)\left\|\phi_{1}\right\|_{L^{1}}+e^{\theta}\left\|a_{1}(x)\right\|_{L^{1}}$. Set $c_{4}=\min \left(\frac{1}{2}, \rho e^{\theta}\right)$, we have

$$
c_{4}\left\|u_{n}\right\|_{1, p}^{p} \leq c_{1}\left\|u_{n}\right\|_{1, p}+c_{2}\left\|u_{n}\right\|_{1, p}^{p-1}+c_{3}
$$

since $p>1,\left(u_{n}\right)_{n}$ is a bounded sequence in $W_{0}^{1, p}(\Omega)$.
For a subsequence, still denoted by $\left(u_{n}\right)_{n}$, we have

$$
\begin{gather*}
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, p}(\Omega) \\
u_{n} \rightarrow u \quad \text { strongly in } L^{p}(\Omega) \tag{2.7}\\
u_{n}(x) \rightarrow u(x) \quad \text { for almost every } x \in \Omega
\end{gather*}
$$

Lemma 2.6. For every $k>0$, the sequence $\left(T_{k}\left(u_{n}\right)\right)_{n}$ converges strongly to $T_{k}(u)$ in $W_{0}^{1, p}(\Omega)$.

Proof. Let $k>0$. Consider $\varphi(s)=s e^{\theta s^{2}}$ with $\theta=\frac{b^{2}}{4 a^{2}}, a=1$ and $b=a_{k}\left(a_{k} \geq 0\right.$ is given by 1.3. Setting

$$
a(\xi)=|\xi|^{p-2} \xi, \quad \forall \xi \in \mathbb{R}^{N}, \varphi_{n}=\varphi\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right), \quad \varphi_{n}^{\prime}=\varphi^{\prime}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) .
$$

By 2.7), the continuity of φ and φ^{\prime}, and the dominated convergence theorem, we have

$$
\begin{gather*}
\varphi_{n} \rightharpoonup 0 \quad \text { and } \quad \varphi_{n}^{\prime} \rightharpoonup 1 \quad \text { weak-* in } L^{\infty}(\Omega) \text { and a. e. } x \in \Omega \\
\varphi_{n} \rightarrow 0 \quad \text { and } \quad \varphi_{n}^{\prime} \rightarrow 1 \quad \text { in } L^{q}(\Omega) \text { for every } q \geq 1 \tag{2.8}
\end{gather*}
$$

We will denote by ε_{n} any quantity which converges to zero as n tends to infinity. Let $v=\varphi_{n}$, be a test function in 2.4. Then

$$
\begin{align*}
& \int_{\Omega} a\left(\nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x \\
& =\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x+\int_{\Omega} g_{n} \varphi_{n} d x+\int_{\Omega} F \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} \tag{2.9}\\
& :=A+B+C+D
\end{align*}
$$

For the third term on the right-hand side: Since $\varphi_{n} \rightharpoonup 0$ weak-* in $L^{\infty}(\Omega)$ and $g_{n} \rightarrow g$ in $L^{1}(\Omega)$, we have $\int_{\Omega} g_{n} \varphi_{n} d x \rightarrow 0$ so that

$$
\begin{equation*}
C=\varepsilon_{n} . \tag{2.10}
\end{equation*}
$$

For the forth term on the right-hand side: It is clear that $F \varphi_{n}^{\prime} \rightarrow F$ in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$ and $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega)$, so that

$$
\begin{equation*}
D=\varepsilon_{n} . \tag{2.11}
\end{equation*}
$$

For the second term on the right-hand side:

$$
\begin{aligned}
& \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x \\
& =\int_{\left\{\left|u_{n}\right|>k\right\}} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x+\int_{\left\{\left|u_{n}\right| \leq k\right\}} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x:=B_{1}+B_{2}
\end{aligned}
$$

On the set $\left\{\left|u_{n}\right|>k\right\}, \varphi_{n}$ has the same sign as u_{n}, so by (1.5),

$$
\begin{aligned}
& f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} \\
& \leq-\rho\left|\nabla u_{n}\right|^{p}\left|\varphi_{n}\right|+\alpha^{\prime}\left|u_{n}\right|^{p-1}\left|\varphi_{n}\right|+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}\left|\varphi_{n}\right|+a_{1}(x)\left|\varphi_{n}\right| \\
& \leq\left[\alpha^{\prime}\left|u_{n}\right|^{p-1}+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}+a_{1}(x)\right]\left|\varphi_{n}\right| .
\end{aligned}
$$

By Lemma 2.5 and 2.8), we have $B_{1} \leq \varepsilon_{n}$, so that

$$
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x+\varepsilon_{n}
$$

By (1.3), we have

$$
\begin{aligned}
\left|\int_{\left\{\left|u_{n}\right| \leq k\right\}} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x\right| & \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|\left|\varphi_{n}\right| d x \\
& \leq \int_{\left\{\left|u_{n}\right| \leq k\right\}}\left[b_{k}\left|\nabla u_{n}\right|^{p}+\phi_{k}(x)\right]\left|\varphi_{n}\right| d x \\
& \leq b_{k} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}\left|\varphi_{n}\right| d x+\int_{\Omega} \phi_{k}(x)\left|\varphi_{n}\right| d x
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}\left|\varphi_{n}\right| d x= & \int_{\Omega} a\left(\nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)\left|\varphi_{n}\right| d x \\
= & \int_{\Omega}\left(a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi_{n}\right| d x \\
& +\int_{\Omega} a\left(\nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}(u)\left|\varphi_{n}\right| d x \\
& +\int_{\Omega} a\left(\nabla T_{k}(u)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi_{n}\right| d x
\end{aligned}
$$

By (2.8), since $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$, we have

$$
\begin{align*}
& \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \varphi_{n} d x \\
& \leq \varepsilon_{n}+b_{k} \int_{\Omega}\left(a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)\left|\varphi_{n}\right| d x \tag{2.12}
\end{align*}
$$

For the firs term on the right-hand side (A): We verify easily that $a\left(\nabla T_{k}\left(u_{n}\right)\right)+$ $a\left(\nabla G_{k}\left(u_{n}\right)\right)=a\left(\nabla u_{n}\right)$, so that

$$
\begin{aligned}
& \int_{\Omega} a\left(\nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x \\
& =\int_{\Omega} a\left(\nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x+\int_{\Omega} a\left(\nabla G_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)\right. \\
& \left.\quad-T_{k}(u)\right) \varphi_{n}^{\prime} d x:=A_{1}+A_{2}
\end{aligned}
$$

We have $\nabla\left(T_{k}\left(u_{n}\right)\right)=0$ if $\nabla\left(G_{k}\left(u_{n}\right)\right) \neq 0$, so

$$
\begin{aligned}
A_{2} & =-\int_{\Omega} a\left(\nabla G_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}(u)\right) \varphi_{n}^{\prime} d x \\
& =-\int_{\Omega} a\left(\nabla G_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}(u)\right) \chi_{\left\{\left|u_{n}\right| \geq k\right\}} \varphi_{n}^{\prime} d x
\end{aligned}
$$

Since $\nabla T_{k}(u)=0$ on the set $\{|u| \geq k\}, \nabla T_{k}(u) \chi_{\left\{\left|u_{n}\right| \geq k\right\}} \rightarrow 0$ for almost every $x \in \Omega$, so, by Lebesgue theorem $A_{2}=\varepsilon_{n}$. For $\left(A_{1}\right)$, we have

$$
\begin{aligned}
& \int_{\Omega} a\left(\nabla T_{k}\left(u_{n}\right)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x \\
& =\int_{\Omega}\left[a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x \\
& \quad+\int_{\Omega} a\left(\nabla T_{k}(u)\right) \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x:=A_{1.1}+A_{1.2}
\end{aligned}
$$

By (2.8), since $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega)$, we have $A_{1.2}=\varepsilon_{n}$. Thus

$$
\begin{equation*}
A=\int_{\Omega}\left[a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \varphi_{n}^{\prime} d x+\varepsilon_{n} \tag{2.13}
\end{equation*}
$$

By (2.10), 2.11), (2.12), (2.13) and from (2.9), we obtain

$$
\int_{\Omega}\left[a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\left[\varphi_{n}^{\prime}-b_{k}\left|\varphi_{n}\right|\right] d x \leq \varepsilon_{n}
$$

Since $\varphi_{n}^{\prime}-b_{k}\left|\varphi_{n}\right| \geq \frac{1}{2}$ with $a=1$ and $b=b_{k}$) and

$$
\begin{gathered}
{\left[a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \geq 0} \\
\int_{\Omega}\left[a\left(\nabla T_{k}\left(u_{n}\right)\right)-a\left(\nabla T_{k}(u)\right)\right] \nabla\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x=\varepsilon_{n}
\end{gathered}
$$

therefore,

$$
\left\langle-\Delta_{p}\left(T_{k}\left(u_{n}\right)\right)+\Delta_{p}\left(T_{k}(u)\right), T_{k}\left(u_{n}\right)-T_{k}(u)\right\rangle \rightarrow 0
$$

Since $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega)$,

$$
\begin{aligned}
& \left\langle-\Delta_{p}\left(T_{k}(u)\right), T_{k}\left(u_{n}\right)-T_{k}(u)\right\rangle \rightarrow 0, \\
& \left\langle-\Delta_{p}\left(T_{k}\left(u_{n}\right)\right), T_{k}\left(u_{n}\right)-T_{k}(u)\right\rangle \rightarrow 0
\end{aligned}
$$

Since $-\Delta_{p}$ belongs to the class $\left(S^{+}\right)($see [2] $), T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $W_{0}^{1, p}(\Omega)$.

Lemma 2.7. The following to limit hold:

$$
\begin{gather*}
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|\nabla u_{n}\right|^{p} d x\right]=0, \tag{2.14}\\
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x\right]=0 .
\end{gather*}
$$

Proof. For the first limit, we define $\psi: \mathbb{R} \rightarrow \mathbb{R}^{+}$by $\psi(-s)=-\psi(s)$ for all $s \in \mathbb{R}$ and

$$
\psi(s)= \begin{cases}0 & \text { if } 0 \leq s \leq k-1 \\ s-(k-1) & \text { if } k-1 \leq s \leq k \\ 1 & \text { if } s \geq k\end{cases}
$$

where $k>1$, so that ψ is continuous, bounded in \mathbb{R} and $\psi\left(u_{n}\right) \in W_{0}^{1, p}(\Omega)$. We choose $v=\psi\left(u_{n}\right)$, as a test function in 2.4 we have

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \psi\left(u_{n}\right) d x \\
& =\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x+\int_{\Omega} g_{n} \psi\left(u_{n}\right) d x+\int_{\Omega} F \nabla \psi\left(u_{n}\right) d x .
\end{aligned}
$$

Using Young's inequality, we obtain

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi\left(u_{n}\right)\right|^{p} d x \leq & \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x+\int_{\left\{\left|u_{n}\right| \geq k-1\right\}}\left|g_{n}\right| d x \\
& +c \int_{\left\{k-1<\left|u_{n}\right|<k\right\}}|F|^{p^{\prime}} d x+\frac{1}{2} \int_{\Omega}\left|\nabla \psi\left(u_{n}\right)\right|^{p} d x
\end{aligned}
$$

So that

$$
\begin{align*}
0 \leq & \frac{1}{2} \int_{\Omega}\left|\nabla \psi\left(u_{n}\right)\right|^{p} d x \\
\leq & \int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x+\int_{\left\{\left|u_{n}\right| \geq k-1\right\}}\left|g_{n}\right| d x \tag{2.15}\\
& +c \int_{\left\{k-1<\left|u_{n}\right|<k\right\}}|F|^{p^{\prime}} d x .
\end{align*}
$$

Using (1.5) and that $\psi(s)$ has the same sign as s, and that is zero if $|s| \leq k-1$, we get

$$
\begin{aligned}
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x= & \int_{\left\{\left|u_{n}\right|>k-1\right\}} f\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x \\
\leq & \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left[-\rho\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right|+\alpha^{\prime}\left|u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right|\right. \\
& \left.+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right|+a_{1}(x)\left|\psi\left(u_{n}\right)\right|\right] d x .
\end{aligned}
$$

From (2.15), we have

$$
\begin{align*}
& \rho \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right| d x \\
& \leq \int_{\left\{\left|u_{n}\right| \geq k-1\right\}}\left|g_{n}\right| d x+c \int_{\left\{k-1<\left|u_{n}\right|<k\right\}}|F|^{p^{\prime}} d x+\alpha^{\prime} \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right| d x \\
& \quad+\beta^{\prime} \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|\nabla u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right| d x+\int_{\left\{\left|u_{n}\right|>k-1\right\}} a_{1}(x)\left|\psi\left(u_{n}\right)\right| d x \tag{2.16}
\end{align*}
$$

Since $u_{n} \rightarrow u$ in $L^{p}(\Omega)$, there exists $v \in L^{p}(\Omega)$ such that $\left|u_{n}\right| \leq|v|$. Since $\left|g_{n}\right| \leq|\widetilde{g}|$, $|\widetilde{g}| \in L^{1}(\Omega)$ and $|\psi(s)| \leq 1$, we have

$$
\begin{aligned}
& \rho \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right| d x \\
& \leq \int_{\Omega}\left[|\widetilde{g}|+c|F|^{p^{\prime}}+\alpha^{\prime}|v|^{p-1}+a_{1}(x)\right] \chi_{\{|v| \geq k-1\}} d x+\beta^{\prime} \int_{\{|v|>k-1\}}\left|\nabla u_{n}\right|^{p-1} d x \\
& \leq \int_{\Omega} r(x) \chi_{\{|v| \geq k-1\}} d x+\beta^{\prime}\left\|u_{n}\right\|_{1, p}^{p-1}\left(\int_{\Omega} \chi_{\{|v| \geq k-1\}} d x\right)^{1 / p},
\end{aligned}
$$

where $r(x)=|\widetilde{g}|+c|F|^{p^{\prime}}+\alpha^{\prime}|v|^{p-1}+a_{1}(x)$. We have $r \in L^{1}(\Omega)$ and $\left(u_{n}\right)_{n}$ is bounded in $W_{0}^{1, p}(\Omega)$, so that

$$
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right| d x\right]=0
$$

Since

$$
\begin{aligned}
\int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|\nabla u_{n}\right|^{p} d x & =\int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right| d x \\
& \leq \int_{\left\{\left|u_{n}\right|>k-1\right\}}\left|\nabla u_{n}\right|^{p}\left|\psi\left(u_{n}\right)\right| d x
\end{aligned}
$$

it follows that

$$
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|\nabla u_{n}\right|^{p} d x\right]=0
$$

For the second limit, we let $l: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by $l(x, s, \xi)=f(x, s, \xi)-\alpha|s|^{p-1} \operatorname{sgn}(s)-\beta|\xi|^{p-2} \xi-\left(|s|^{p-1}+|\xi|^{p-1}+a_{1}(x)\right) \operatorname{sgn}(s)$. From (1.4), we get $l(x, s, \xi) s \leq-\rho|\xi|^{p}|s|$ for almost every $x \in \Omega$, and for all $(\xi, s) \in$ $\mathbb{R}^{N} \times \mathbb{R}$.

By 2.15 and using that $\psi(s)$ has the same sign as s and that it is zero if $|s| \leq k-1$, we have

$$
\begin{aligned}
0 \leq & \int_{\left\{\left|u_{n}\right| \geq k-1\right\}}\left|g_{n}\right| d x \\
& +c \int_{\left\{k-1<\left|u_{n}\right|<k\right\}}|F|^{p^{\prime}} d x+\int_{\Omega} l\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) d x \\
& +\int_{\Omega}\left[\alpha^{\prime}\left|u_{n}\right|^{p-1}+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}+a_{1}(x)\right]\left|\psi\left(u_{n}\right)\right| d x .
\end{aligned}
$$

Since $l\left(x, u_{n}, \nabla u_{n}\right) \psi\left(u_{n}\right) \leq-\left|l\left(x, u_{n}, \nabla u_{n}\right)\right| \chi_{\left\{\left|u_{n}\right| \geq k\right\}}$, we have

$$
\begin{aligned}
\int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|l\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq & \int_{\left\{\left|u_{n}\right| \geq k-1\right\}}\left|g_{n}\right| d x+c \int_{\left\{k-1<\left|u_{n}\right|<k\right\}}|F|^{p^{\prime}} d x \\
& +\int_{\left\{\left|u_{n}\right| \geq k-1\right\}} \alpha^{\prime}\left|u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right| d x \\
& +\int_{\left\{\left|u_{n}\right| \geq k-1\right\}} \beta^{\prime}\left|\nabla u_{n}\right|^{p-1}\left|\psi\left(u_{n}\right)\right| d x \\
& +\int_{\left\{\left|u_{n}\right| \geq k-1\right\}} a_{1}(x)\left|\psi\left(u_{n}\right)\right| d x .
\end{aligned}
$$

In the same way as in the first limit, we prove that

$$
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|l\left(x, u_{n}, \nabla u_{n}\right)\right| d x\right]=0
$$

Also

$$
\begin{gathered}
\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| \leq\left|l\left(x, u_{n}, \nabla u_{n}\right)\right|+\alpha^{\prime}\left|u_{n}\right|^{p-1}+\beta^{\prime}\left|\nabla u_{n}\right|^{p-1}+a_{1}(x), \\
\lim _{k \rightarrow+\infty}\left[\sup _{n \in \mathbb{N}} \int_{\left\{\left|u_{n}\right| \geq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x\right]=0 .
\end{gathered}
$$

Lemma 2.8. The sequence $\left(u_{n}\right)_{n}$ converges strongly to u in $W_{0}^{1, p}(\Omega)$.
Proof. We begin by proving that the sequence $\left\{\left|\nabla u_{n}\right|^{p}\right\}$ is equi-integrable in $L^{1}(\Omega)$. Let $\varepsilon>0$ be fixed. Let now E be a measurable subset of Ω, we have

$$
\int_{E}\left|\nabla u_{n}\right|^{p} d x=\int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} d x+\int_{E \cap\left\{\left|u_{n}\right|>k\right\}}\left|\nabla u_{n}\right|^{p} d x
$$

By lemma 2.7 there exists $k>0$ such that for all $n \in \mathbb{N}$,

$$
\int_{\left\{\left|u_{n}\right|>k\right\}}\left|\nabla u_{n}\right|^{p} d x \leq \frac{\varepsilon}{2}
$$

For k fixed, we have

$$
\int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} d x \leq \int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x
$$

Since $T_{k}\left(u_{n}\right)$ converges strongly to $T_{k}(u)$ in $W_{0}^{1, p}(\Omega)$, there exists $\gamma>0$ such that

$$
\operatorname{meas}(E)<\gamma \Rightarrow \forall n \in \mathbb{N} \quad \int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x \leq \frac{\varepsilon}{2}
$$

so that

$$
\forall n \in \mathbb{N} \quad \int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|\nabla u_{n}\right|^{p} d x \leq \frac{\varepsilon}{2}
$$

Then, there exists $\gamma>0$ such that

$$
\operatorname{meas}(E)<\gamma \Rightarrow \forall n \in \mathbb{N} \int_{E}\left|\nabla u_{n}\right|^{p} d x \leq \varepsilon
$$

Therefore, the sequence $\left\{\left|\nabla u_{n}\right|^{p}\right\}$ is equi-integrable in $L^{1}(\Omega)$. By Lemma 2.6 we have $\nabla u_{n} \rightarrow \nabla u$ for almost every $x \in \Omega$, so, $\left|\nabla u_{n}\right|^{p} \rightarrow|\nabla u|^{p}$ strongly in $L^{1}(\Omega)$, thus the sequence $\left(u_{n}\right)_{n}$ converges strongly to u in $W_{0}^{1, p}(\Omega)$.

Lemma 2.9. The sequence $\left(f\left(x, u_{n}, \nabla u_{n}\right)\right)_{n}$ converges to $f(x, u, \nabla u)$ in $L^{1}(\Omega)$.
Proof. We begin by proving that the sequence $\left\{\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|\right\}$ is equi-integrable in $L^{1}(\Omega)$. Let $\varepsilon>0$ be fixed. Let now E be a measurable subset of Ω, we have

$$
\begin{aligned}
& \int_{E}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x \\
& =\int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x+\int_{E \cap\left\{\left|u_{n}\right|>k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x .
\end{aligned}
$$

By Lemma 2.7, there exists $k>0$ such that

$$
\forall n \in \mathbb{N}, \int_{E \cap\left\{\left|u_{n}\right|>k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\varepsilon}{2}
$$

When k is fixed, by 1.3 we have

$$
\int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \int_{E}\left[b_{k}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}+\phi_{k}(x)\right] d x
$$

Since $\phi_{k} \in L^{1}(\Omega)$ and $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ strongly in $W_{0}^{1, p}(\Omega)$, there exists $\gamma>0$ such that

$$
\operatorname{meas}(E)<\gamma \Rightarrow \forall n \in \mathbb{N} \int_{E}\left[b_{k}\left|\nabla T_{k}\left(u_{n}\right)\right|^{p}+\phi_{k}(x)\right] d x \leq \frac{\varepsilon}{2}
$$

so that

$$
\forall n \in \mathbb{N} \int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right| d x \leq \frac{\varepsilon}{2}
$$

Therefore, the sequence $\left\{\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|\right\}_{n}$ is equi-integrable in $L^{1}(\Omega)$. Since f : $\Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function, we have $f\left(x, u_{n}, \nabla u_{n}\right) \rightarrow f(x, u, \nabla u)$ for almost every $x \in \Omega$. so $f\left(x, u_{n}, \nabla u_{n}\right) \rightarrow f(x, u, \nabla u)$ strongly in $L^{1}(\Omega)$.

Going back to the the proof of Theorem 1.1, by (2.4) we have that for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$,

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x=\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) v d x+\int_{\Omega} g_{n} v+\int_{\Omega} F \nabla v
$$

As n approaches infinity, we get that for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$,

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\int_{\Omega} g v+\int_{\Omega} F \nabla v .
$$

Thus the problem

$$
\begin{gathered}
-\Delta_{p} u=f(x, u, \nabla u)+\mu \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

admits a solution $u \in W_{0}^{1, p}(\Omega)$ in the sense that $f(x, u, \nabla u) \in L^{1}(\Omega)$, and for every $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$,

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x=\int_{\Omega} f(x, u, \nabla u) v d x+\int_{\Omega} v d \mu
$$

References

[1] A. Anane, O. Chakrone, J. P. Gossez; Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires, Bollettino U.M.I. (8) 4-B (2001), 483-519.
[2] J. Berkovits, V. Mustonen; Nonlinear mapping of monotone type (classification and degree theory), 1988, Math. Univer. Oulu, Linnanmaa, Oulu, Finland.
[3] L. Boccardo, T. Gallouet, L. Orsina; Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 75. (1997), 203-223.
[4] L. Boccardo, T. Gallouet, L. Orsina; Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 5 (1996), 539-551.

Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address, Aomar Anane: anane@sciences.univ-oujda.ac.ma
E-mail address, Omar Chakrone: chakrone@sciences.univ-oujda.ac.ma
E-mail address, Mohammed Chehabi: chehb_md@yahoo.fr

