Electronic Journal of Differential Equations, Vol. 2006(2006), No. 63, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR ELLIPTIC EQUATIONS

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

ABSTRACT. In this paper, we study the existence of solutions to the following nonlinear elliptic problem in a bounded subset Ω of \mathbb{R}^N :

$$-\Delta_p u = f(x, u, \nabla u) + \mu \quad \text{in } \Omega,$$

 $u = 0 \quad \text{on } \partial \Omega,$

where μ is a Radon measure on Ω which is zero on sets of *p*-capacity zero, $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function that satisfies certain conditions with respect to the one dimensional spectrum.

1. INTRODUCTION

We consider the quasilinear elliptic problem

$$-\Delta_p u = f(x, u, \nabla u) + \mu \quad \text{in } \Omega, u = 0 \quad \text{on } \partial\Omega,$$
(1.1)

where Ω is a bounded open set in \mathbb{R}^N , $N \geq 2$, $1 , <math>\mu$ is a Radon measure on Ω and $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function. We are interested in the existence of solutions to this problem. More precisely, we will prove the existence of a solution $u \in W_0^{1,p}(\Omega)$, if and only if the signed measure μ is zero on sets of capacity zero in Ω . (i.e $\mu(E) = 0$ for every set E such that $\operatorname{cap}_n(E, \Omega) = 0$).

Boccardo, Gallouet and Orsina have proved in [3] the existence of a solution to the problem

$$Au + g(x, u, \nabla u) = \mu \quad in\Omega,$$
$$u = 0 \quad \text{on } \partial\Omega,$$

where $A(u) = -\operatorname{div}(a(x, \nabla u)), a : \Omega \times \mathbb{R}^N \to \mathbb{R}$ and $g : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ are Carathéodory functions such that for almost every $x \in \Omega$, for every $\xi \in \mathbb{R}^N$ and for every $s \in \mathbb{R}$,

$$\begin{aligned} a(x,\xi).\xi &\geq \alpha |\xi|^p, \\ |a(x,\xi)| &\leq l(x) + \beta |\xi|^{p-1}, \\ |g(x,s,\xi)| &\leq b(|s|)[|\xi|^p + d(x)], \end{aligned}$$

²⁰⁰⁰ Mathematics Subject Classification. 35J15, 35J70, 35J85.

Key words and phrases. Boundary value problem; truncation; L^1 ; p-Laplacian; spectrum. ©2006 Texas State University - San Marcos.

Submitted January 23, 2006. Published May 19, 2006.

where α and β are two positive constants, $l \in L^{p'}(\Omega)$, b a real-valued, positive, increasing, continuous function, and d a nonegative function in $L^1(\Omega)$. They assume that for almost every $x \in \Omega$, for every ξ and η in \mathbb{R}^N , with $\xi \neq \eta$,

$$a(x,\xi) - a(x,\eta)].(\xi - \eta) > 0,$$

They require also that for almost every $x \in \Omega$, for every ξ in \mathbb{R}^N , for every s in \mathbb{R} such that $|s| \ge \sigma$,

$$q(x, s, \xi) \operatorname{sgn}(s) \ge \rho |\xi|^p,$$

where ρ and σ are two positive real numbers and $\operatorname{sgn}(s)$ is the sign of s.

Let $(\beta, \alpha, u) \in \mathbb{R}^N \times \mathbb{R} \times W_0^{1,p}(\Omega) \setminus \{0\}$. If (β, α, u) is a solution of the problem

$$-\Delta_p u = \alpha m(x)|u|^{p-2}u + \beta .|\nabla u|^{p-2}\nabla u \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega,$$

where $1 and <math>m \in M = \{m \in L^{\infty}(\Omega) : \max\{x \in \Omega : m(x) > 0\} \neq 0\}$. In this case, the pair (β, α) is said to be a one dimensional eigenvalue and u the associated eigenfunction. We designate by $\sigma_1(-\Delta_p, m) \subset \mathbb{R}^N \times \mathbb{R}$ the set of one dimensional eigenvalues (β, α) with $\alpha \geq 0$.

Proposition 1.1. (1) $\sigma_1(-\Delta_p, m)$ contains the union of the sequence of graphs of the functions $\Lambda_n : \mathbb{R}^N \to \mathbb{R}^+$, n = 1, 2, ..., where $\Lambda_n(\beta)$ is defined for every $\beta \in \mathbb{R}^N$ by

$$\frac{1}{\Lambda_n(\beta)} = \sup_{K \in A_n^\beta} \min_{u \in K} \int_{\Omega} e^{\beta \cdot x} m(x) |u|^p dx.$$

with $A_n^{\beta} = \{ K \subset S_{\beta}, K \text{ compact symmetrical; } \gamma(K) \ge n \},\$

$$S_{\beta} = \left\{ u \in W_0^{1,p}(\Omega) : \left(\int_{\Omega} e^{\beta \cdot x} m(x) |\nabla u|^p dx \right)^{1/p} = 1 \right\}$$

and $\gamma(K)$ indicates the genus of K.

(2) $\Lambda_1(.)$ is the first eigensurface of the spectrum of $\sigma_1(-\Delta_p, m)$ in the sense

$$\sigma_1(-\Delta_p, m) \subset \{(\beta, \alpha) \in \mathbb{R}^N \times \mathbb{R}; \Lambda_1(\beta) \le \alpha\}$$

The proof of the above proposition can be found in [1]. When $\mu = h \in W^{-1,p'}(\Omega)$, Anane, Chakrone and Gossez have proved in [1] the existence of a solution to (1.1), in the sense

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \langle h, v \rangle$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. This is done under the hypotheses of non-resonance with respect to the spectrum of one dimensional $\sigma_1(-\Delta_p, 1)$: There exists $(\beta, \alpha) \in \mathbb{R}^N \times \mathbb{R}$ with $\alpha < \Lambda_1(\beta, -\Delta_p, 1)$ where $\Lambda_1(., -\Delta_p, 1)$ is the first eigensurface of the spectrum of one dimensional $\sigma_1(-\Delta_p, 1)$, such that for all $\delta > 0$ there exists $a_{\delta} \in L^{p'}(\Omega)$ such that

$$f(x,s,\xi)s \le \alpha |s|^p + \beta |\xi|^{p-2} \xi s + \delta(|s|^{p-1} + |\xi|^{p-1} + a_\delta(x))|s|$$
(1.2)

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^N \times \mathbb{R}$; and for all k > 0 there exist $\phi_k \in L^1(\Omega)$ and $b_k \in \mathbb{R}$ such that

$$\max_{|s| \le k} |f(x, s, \xi)| \le b_k |\xi|^p + \phi_k(x)$$
(1.3)

for almost every $x \in \Omega$ and for all $\xi \in \mathbb{R}^N$.

Remark 1.2. (1) If $f(x, u, \nabla u) = \alpha m(x)|u|^{p-2}u + \beta \cdot |\nabla u|^{p-2}\nabla u$, then (1.1) has a solution for every $\mu \in W^{-1,p'}(\Omega)$, in the usual sense

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \langle h, v \rangle_{W^{-1, p'}(\Omega), W^{1, p}_{0}(\Omega)}$$

for every $v \in W_0^{1,p}(\Omega)$, if and only if $(\beta, \alpha) \notin \sigma_1(-\Delta_p, m)$.

(2) If $\mu \notin W^{-1,p'}(\Omega)$, problem (1.1) does not have always a solution. Indeed in the case $1 , we have that <math>L^1(\Omega) \nsubseteq W^{-1,p'}(\Omega) = -\Delta_p(W_0^{1,p}(\Omega))$.

In this work, we assume (1.3) and that μ is a measure. We assume also that for each $\delta > 0$ there exists $a_{\delta} \in L^{p'}(\Omega)$ such that

$$f(x,s,\xi)s \le -\rho|\xi|^p|s| + \alpha|s|^p + \beta|\xi|^{p-2}\xi s + \delta(|s|^{p-1} + |\xi|^{p-1} + a_\delta(x))|s| \quad (1.4)$$

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^N \times \mathbb{R}$, where $(\beta, \alpha) \in \mathbb{R}^N \times \mathbb{R}$ satisfies the same conditions as in (1.2) and ρ is a positive real number. In the case $\delta = 1$, there exists $a_1 \in L^{p'}(\Omega)$ such that

$$f(x,s,\xi)\operatorname{sgn}(s) \le -\rho|\xi|^p + \alpha'|s|^{p-1} + \beta'|\xi|^{p-1} + a_1(x)$$
(1.5)

for almost every $x \in \Omega$ and for all $(\xi, s) \in \mathbb{R}^N \times \mathbb{R}$, where $\alpha' = \alpha + 1$ and $\beta' = |\beta| + 1$.

Remark 1.3. (1) The conditions of the sign given in [3] imply (1.4) in the case $\alpha = 0$ and $\beta = 0$.

(2) The hypothesis (1.3) and (1.4) are satisfied for example if

$$f(x,s,\xi) = -\rho|\xi|^p \operatorname{sgn}(s) + \alpha|s|^{p-2}s + \beta|\xi|^{p-2}\xi + g(x,s,\xi) + l(x,s,\xi)$$

where g and l satisfy

$$g(x, s, \xi)s \le 0,$$

$$|g(x, s, \xi)| \le b(|s|)(|x|^p + c(x)),$$

$$sl(x, s, \xi) \le C(|s|^{q-1} + |x|^{q-1} + d(x))|s|$$

with b continuous, $c(x) \in L^1(\Omega)$, $q < p, d(x) \in L^{p'}(\Omega)$ and C a constant.

For every compact subset K of Ω , the *p*-capacity of K with respect to Ω is defined as

$$\operatorname{cap}_{p}(K,\Omega) = \inf\{\int_{\Omega} |\nabla u|^{p} dx, \ u \in C_{0}^{\infty}(\Omega) \text{ and } u \geq \chi_{K}\}$$

where χ_K is the characteristic function of K; we will use the convention that $\inf(\emptyset) = +\infty$. The *p*-capacity of any open subset U of Ω is defined by $\operatorname{cap}_p(U,\Omega) = \sup\{\operatorname{cap}_p(K,\Omega), K \text{ compact and } K \subseteq U\}$. Also the *p*-capacity of any subset $B \subseteq \Omega$ by $\operatorname{cap}_p(B,\Omega) = \inf\{\operatorname{cap}_p(U,\Omega), U \text{ open and } B \subseteq U\}$. We will denote by $\mathcal{M}_b(\Omega)$ the space of all signed measures on Ω and by $\mathcal{M}_0^p(\Omega)$ the space of all measures μ in $\mathcal{M}_b(\Omega)$ such that $\mu(E) = 0$ for every set E such that $\operatorname{cap}_p(E,\Omega) = 0$.

Our main result is stated as follows.

Theorem 1.4. Assume (1.3), (1.4) and that μ is a measure in $\mathcal{M}_b(\Omega)$. Then, there exists a solution u of

$$-\Delta_p u = f(x, u, \nabla u) + \mu \quad in \ \Omega,$$

$$u = 0 \quad on \ \partial\Omega$$
(1.6)

in the sense that $u \in W_0^{1,p}(\Omega)$, $f(x, u, \nabla u) \in L^1(\Omega)$, and

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \int_{\Omega} v \, d\mu,$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, if and only if $\mu \in \mathcal{M}_0^p(\Omega)$.

2. Proof of Main Result

The notation $\langle ., . \rangle$ stands hereafter for the duality pairing between $W^{-1,p'}(\Omega)$ and $W_0^{1,p}(\Omega)$. We define, for s and k in \mathbb{R} , with k > 0,

$$T_k(s) = \begin{cases} k \operatorname{sgn}(s) & \text{if } |s| > k, \\ s & \text{if } |s| \le k, \end{cases}$$

and $G_k(s) = s - T_k(s)$.

Lemma 2.1. Let $g \in L^{\infty}(\Omega)$ and $F \in (L^{p'}(\Omega))^N$. Under the hypotheses (1.3) and (1.4), the problem

$$-\Delta_p u = f(x, u, \nabla u) + g - \operatorname{div} F \quad in \ \Omega,$$

$$u = 0 \quad on \ \partial\Omega,$$

(2.1)

admits a solution $u \in W_0^{1,p}(\Omega)$ in the sense that $f(x, u, \nabla u)$ and $f(x, u, \nabla u)u$ are in $L^1(\Omega)$, and that

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \int_{\Omega} gv + \int_{\Omega} F \nabla v$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ and for v = u.

Proof. Letting $l = g - \operatorname{div} F$, we have $l \in W^{-1,p'}(\Omega)$. Then (1.4) implies (1.2), and Lemma 2.1 is a particular case of a result in [1].

Lemma 2.2. $\mathcal{M}_0^p(\Omega) = L^1(\Omega) + W^{-1,p'}(\Omega)$ for every 1 .

For the proof of the above lemma see [4].

Lemma 2.3. Let a, b be two nonnegative numbers, and let $\varphi(s) = se^{\theta s^2}$ with $\theta = b^2/(4a^2)$. Then for all $s \in \mathbb{R}$, $a\varphi'(s) - b|\varphi(s)| \ge a/2$.

Proof. For $s \in \mathbb{R}$ let $\psi(s) = a\varphi'(s) - b|\varphi(s)|$. Then

$$\psi(s) = e^{\theta s^2} [a(1+2\theta s^2) - b|s|] = a e^{\theta s^2} [(1+2\theta s^2) - 2\sqrt{\theta}|s|],$$

Then ψ is even, and assuming that $s \ge 0$, we obtain that for every $s \ge 0$,

$$\psi(s) = 2ae^{\theta s^2} \left[(\sqrt{\theta}s - \frac{1}{2})^2 + \frac{1}{4} \right] \ge \frac{a}{2}.$$

Remark 2.4. Let $\mu \in \mathcal{M}_0^p(\Omega)$. If p > N, then $L^1(\Omega) \subset W^{-1,p'}(\Omega)$; therefore, $\mathcal{M}_0^p(\Omega) = W^{-1,p'}(\Omega)$. Then the existence of a solution of (1.6) is a consequence of [1, Theorem 7.1]. That is why, we assume that 1 .

Proof of the Theorem 1.4. Note that if $u \in W_0^{1,p}(\Omega)$ is a solution of (1.6), then

$$u = -\Delta_p u - f(x, u, \nabla u)$$

with $\Delta_p u \in W^{-1,p'}(\Omega)$ and $f(x, u, \nabla u) \in L^1(\Omega)$; So by Lemma 2.2, $\mu \in \mathcal{M}_0^p(\Omega)$. Conversely, suppose that $\mu \in \mathcal{M}_0^p(\Omega)$, so by Lemma 2.2 there exists $g \in L^1(\Omega)$ and $F \in (L^{p'}(\Omega))^N$ such that $\mu = g - \operatorname{div} F$. There exists a sequence $(g_n)_n$ of $L^{\infty}(\Omega)$ that converges strongly to g in $L^{1}(\Omega)$ and $\tilde{g} \in L^{1}(\Omega)$ such that $|g_{n}(x)| \leq |\tilde{g}(x)|$ for every $n \in \mathbb{N}$ and for almost every $x \in \Omega$.

By Lemma 2.1, the problem

$$-\Delta_p u_n = f(x, u_n, \nabla u_n) + g_n - \operatorname{div} F \quad \text{in } \Omega,$$

$$u_n = 0 \quad \text{on } \partial\Omega,$$
 (2.2)

admits a solution $u_n \in W_0^{1,p}(\Omega)$ in the sense that

$$f(x, u_n, \nabla u_n), f(x, u_n, \nabla u_n)u_n \in L^1(\Omega),$$
 (2.3)

and

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla v \, dx = \int_{\Omega} f(x, u_n, \nabla u_n) v \, dx + \int_{\Omega} g_n v + \int_{\Omega} F \nabla v, \qquad (2.4)$$

for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ and for $v = u_n$.

Lemma 2.5. The sequence $(u_n)_n$ is bounded in $W_0^{1,p}(\Omega)$.

Proof. Let us choose $v = \varphi(T_1(u_n))$ as a test function in (2.4), where $\varphi(s) = se^{\theta s^2}$ with $\theta = \frac{b^2}{4a^2}$, a = 1 and $b = b_1$ ($b_1 \ge 0$ is given for k = 1 by (1.3)). Setting

$$a(\xi) = |\xi|^{p-2} \xi \quad \forall \xi \in \mathbb{R}^N,$$

$$\varphi_1 = \varphi(T_1(u_n)), \quad \varphi'_1 = \varphi'(T_1(u_n)),$$

we have

$$\int_{\Omega} a(\nabla u_n) \nabla [\varphi(T_1(u_n))] dx = \int_{\Omega} f(x, u_n, \nabla u_n) \varphi(T_1(u_n)) dx + \int_{\Omega} g_n \varphi(T_1(u_n)) dx + \int_{\Omega} F \nabla [\varphi(T_1(u_n))] dx.$$
(2.5)

On the other hand,

$$\int_{\Omega} a(\nabla u_n) \nabla [\varphi(T_1(u_n))] dx = \int_{\Omega} a(\nabla u_n) \varphi'_1 \nabla (T_1(u_n)) dx$$
$$= \int_{\Omega} \varphi'_1 |\nabla (T_1(u_n))|^p dx.$$

Since φ' is an even function in \mathbb{R} , φ' is increasing in \mathbb{R}^+ and $|T_1(u_n)| \leq 1$, we have

$$\int_{\Omega} F\nabla[\varphi(T_1(u_n))] dx \le \|F\|_{L^{p'}} \|\varphi(T_1(u_n))\|_{1,p}$$

$$\le \|F\|_{L^{p'}} (\int_{\Omega} |\varphi_1'\nabla(T_1(u_n))|^p dx)^{1/p}$$

$$\le \|F\|_{L^{p'}} \varphi'(1) \|T_1(u_n)\|_{1,p}.$$

Since φ is increasing in \mathbb{R} , we get

$$\int_{\Omega} g_n \varphi(T_1(u_n)) dx \le \varphi(1) \int_{\Omega} |g_n| dx \le \varphi(1) \|\widetilde{g}\|_{L^1}.$$

Writing

$$\begin{split} &\int_{\Omega} f(x, u_n, \nabla u_n) \varphi(T_1(u_n)) dx \\ &= \int_{\{|u_n| \le 1\}} \varphi_1 f(x, u_n, \nabla u_n) dx + \int_{\{|u_n| > 1\}} \varphi_1 f(x, u_n, \nabla u_n) dx. \end{split}$$

By (1.3), we have

$$\begin{split} |\int_{\{|u_n| \le 1\}} \varphi_1 f(x, u_n, \nabla u_n) dx| &\le \int_{\{|u_n| \le 1\}} |\varphi_1| |f(x, u_n, \nabla u_n)| dx \\ &\le \int_{\{|u_n| \le 1\}} |\varphi_1| [b_1| \nabla u_n|^p + \phi_1(x)] dx \\ &\le b_1 \int_{\{|u_n| \le 1\}} |\varphi_1| |\nabla u_n|^p dx + \varphi(1) \|\phi_1\|_{L^1} \\ &\le b_1 \int_{\Omega} |\varphi_1| |\nabla (T_1(u_n))|^p dx + \varphi(1) \|\phi_1\|_{L^1}. \end{split}$$

On the other hand, on $\{|u_n| > 1\}$, $T_1(u_n) = \text{sgn}(u_n)$, so $\varphi(T_1(u_n)) = \text{sgn}(u_n) e^{\theta}$ and by (1.5), we get

$$\begin{split} &\int_{\{|u_n|>1\}} \varphi_1 f(x, u_n, \nabla u_n) dx \\ &= \int_{\{|u_n|>1\}} e^{\theta} f(x, u_n, \nabla u_n) \operatorname{sgn}(u_n) dx \\ &\leq e^{\theta} \int_{\{|u_n|>1\}} [-\rho |\nabla u_n|^p + \alpha' |u_n|^{p-1} + \beta' |\nabla u_n|^{p-1} + a_1(x)] dx. \end{split}$$

Adding the above inequalities, by (2.5), we obtain

$$\int_{\Omega} [\varphi'_{1} - b_{1} |\varphi_{1}|] |\nabla (T_{1}(u_{n}))|^{p} dx + \rho e^{\theta} \int_{\{|u_{n}|>1\}} |\nabla u_{n}|^{p} dx
\leq \|F\|_{L^{p'}} \varphi'(1) \|T_{1}(u_{n})\|_{1,p} + \varphi(1) \|\widetilde{g}\|_{L^{1}} + \varphi(1) \|\phi_{1}\|_{L^{1}}
+ e^{\theta} \int_{\{|u_{n}|>1\}} [\alpha'|u_{n}|^{p-1} + \beta'|\nabla u_{n}|^{p-1} + a_{1}(x)] dx.$$
(2.6)

Using Hölder's inequality, we have

$$\int_{\{|u_n|>1\}} |\nabla u_n|^{p-1} dx \le ||u_n||_{1,p}^{p-1}(\operatorname{meas}(\Omega))^{1/p},$$
$$\int_{\{|u_n|>1\}} |u_n|^{p-1} dx \le ||u_n||_p^{p-1}(\operatorname{meas}(\Omega))^{1/p}.$$

By Poincaré's inequality, there exists c > 0 such that

 $||u_n||_p \le c ||\nabla u_n||_p.$

 So

$$\int_{\{|u_n|>1\}} |u_n|^{p-1} dx \le c^{p-1} ||u_n||_{1,p}^{p-1} (\operatorname{meas}(\Omega))^{1/p}.$$

6

Replacing this in (2.6) and using that $\varphi'_1 - b_1 |\varphi_1| \ge \frac{1}{2}$, we obtain

$$\frac{1}{2} \int_{\Omega} |\nabla(T_1(u_n))|^p dx + \rho e^{\theta} \int_{\{|u_n|>1\}} |\nabla u_n|^p dx \le c_1 ||u_n||_{1,p} + c_2 ||u_n||_{1,p}^{p-1} + c_3,$$

where $c_1 = \|F\|_{L^{p'}} \varphi'(1)$, $c_2 = e^{\theta} [\alpha' c^{p-1} + \beta'] (\operatorname{meas}(\Omega))^{\frac{1}{p}}$ and $c_3 = \varphi(1) \|\widetilde{g}\|_{L^1} + \varphi(1) \|\phi_1\|_{L^1} + e^{\theta} \|a_1(x)\|_{L^1}$. Set $c_4 = \min(\frac{1}{2}, \rho e^{\theta})$, we have

$$c_4 \|u_n\|_{1,p}^p \le c_1 \|u_n\|_{1,p} + c_2 \|u_n\|_{1,p}^{p-1} + c_3,$$

since p > 1, $(u_n)_n$ is a bounded sequence in $W_0^{1,p}(\Omega)$.

For a subsequence, still denoted by $(u_n)_n$, we have

$$u_n \rightharpoonup u \quad \text{weakly in } W_0^{1,p}(\Omega),$$

$$u_n \rightarrow u \quad \text{strongly in } L^p(\Omega),$$

$$u_n(x) \rightarrow u(x) \quad \text{for almost every } x \in \Omega.$$

(2.7)

Lemma 2.6. For every k > 0, the sequence $(T_k(u_n))_n$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$.

Proof. Let k > 0. Consider $\varphi(s) = se^{\theta s^2}$ with $\theta = \frac{b^2}{4a^2}$, a = 1 and $b = a_k$ ($a_k \ge 0$ is given by (1.3). Setting

$$a(\xi) = |\xi|^{p-2}\xi, \quad \forall \xi \in \mathbb{R}^N, \varphi_n = \varphi(T_k(u_n) - T_k(u)), \quad \varphi'_n = \varphi'(T_k(u_n) - T_k(u)).$$

By (2.7), the continuity of φ and φ' , and the dominated convergence theorem, we have

$$\varphi_n \to 0 \quad \text{and} \quad \varphi'_n \to 1 \quad \text{weak-* in } L^{\infty}(\Omega) \text{ and a. e. } x \in \Omega,$$

 $\varphi_n \to 0 \quad \text{and} \quad \varphi'_n \to 1 \quad \text{in } L^q(\Omega) \text{ for every } q \ge 1.$

$$(2.8)$$

We will denote by ε_n any quantity which converges to zero as n tends to infinity. Let $v = \varphi_n$, be a test function in (2.4). Then

$$\int_{\Omega} a(\nabla u_n) \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx$$

=
$$\int_{\Omega} f(x, u_n, \nabla u_n) \varphi_n dx + \int_{\Omega} g_n \varphi_n dx + \int_{\Omega} F \nabla (T_k(u_n) - T_k(u)) \varphi'_n \qquad (2.9)$$

:= $A + B + C + D$

For the third term on the right-hand side: Since $\varphi_n \to 0$ weak-* in $L^{\infty}(\Omega)$ and $g_n \to g$ in $L^1(\Omega)$, we have $\int_{\Omega} g_n \varphi_n dx \to 0$ so that

$$C = \varepsilon_n. \tag{2.10}$$

For the forth term on the right-hand side: It is clear that $F\varphi'_n \to F$ in $(L^{p'}(\Omega))^N$ and $T_k(u_n) \rightharpoonup T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, so that

$$D = \varepsilon_n. \tag{2.11}$$

For the second term on the right-hand side:

$$\int_{\Omega} f(x, u_n, \nabla u_n) \varphi_n dx$$

=
$$\int_{\{|u_n| > k\}} f(x, u_n, \nabla u_n) \varphi_n dx + \int_{\{|u_n| \le k\}} f(x, u_n, \nabla u_n) \varphi_n dx := B_1 + B_2.$$

On the set $\{|u_n| > k\}$, φ_n has the same sign as u_n , so by (1.5),

$$f(x, u_n, \nabla u_n)\varphi_n$$

$$\leq -\rho |\nabla u_n|^p |\varphi_n| + \alpha' |u_n|^{p-1} |\varphi_n| + \beta' |\nabla u_n|^{p-1} |\varphi_n| + a_1(x) |\varphi_n|$$

$$\leq [\alpha' |u_n|^{p-1} + \beta' |\nabla u_n|^{p-1} + a_1(x)] |\varphi_n|.$$

By Lemma 2.5 and (2.8), we have $B_1 \leq \varepsilon_n$, so that

$$\int_{\Omega} f(x, u_n, \nabla u_n) \varphi_n dx \le \int_{\{|u_n| \le k\}} f(x, u_n, \nabla u_n) \varphi_n dx + \varepsilon_n dx$$

By (1.3), we have

$$\begin{split} |\int_{\{|u_n| \le k\}} f(x, u_n, \nabla u_n) \varphi_n dx| \le \int_{\{|u_n| \le k\}} |f(x, u_n, \nabla u_n)| |\varphi_n| dx \\ \le \int_{\{|u_n| \le k\}} [b_k |\nabla u_n|^p + \phi_k(x)] |\varphi_n| dx \\ \le b_k \int_{\Omega} |\nabla T_k(u_n)|^p |\varphi_n| dx + \int_{\Omega} \phi_k(x) |\varphi_n| dx, \end{split}$$

and

$$\begin{split} \int_{\Omega} |\nabla T_k(u_n)|^p |\varphi_n| dx &= \int_{\Omega} a(\nabla T_k(u_n)) \nabla T_k(u_n) |\varphi_n| dx \\ &= \int_{\Omega} (a(\nabla T_k(u_n)) - a(\nabla T_k(u))) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_n| dx \\ &+ \int_{\Omega} a(\nabla T_k(u_n)) \nabla T_k(u) |\varphi_n| dx \\ &+ \int_{\Omega} a(\nabla T_k(u)) (\nabla T_k(u_n) - \nabla T_k(u)) |\varphi_n| dx. \end{split}$$

By (2.8), since $(T_k(u_n))_n$ is bounded in $W_0^{1,p}(\Omega)$, we have

$$\int_{\Omega} f(x, u_n, \nabla u_n) \varphi_n dx
\leq \varepsilon_n + b_k \int_{\Omega} \left(a(\nabla T_k(u_n)) - a(\nabla T_k(u)) \right) \left(\nabla T_k(u_n) - \nabla T_k(u) \right) |\varphi_n| dx.$$
(2.12)

For the first erm on the right-hand side (A): We verify easily that $a(\nabla T_k(u_n)) + a(\nabla G_k(u_n)) = a(\nabla u_n)$, so that

$$\begin{split} &\int_{\Omega} a(\nabla u_n) \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx \\ &= \int_{\Omega} a(\nabla T_k(u_n)) \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx + \int_{\Omega} a(\nabla G_k(u_n)) \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx := A_1 + A_2. \end{split}$$

We have $\nabla(T_k(u_n)) = 0$ if $\nabla(G_k(u_n)) \neq 0$, so

$$A_{2} = -\int_{\Omega} a(\nabla G_{k}(u_{n}))\nabla(T_{k}(u))\varphi_{n}'dx$$
$$= -\int_{\Omega} a(\nabla G_{k}(u_{n}))\nabla(T_{k}(u))\chi_{\{|u_{n}|\geq k\}}\varphi_{n}'dx.$$

Since $\nabla T_k(u) = 0$ on the set $\{|u| \ge k\}$, $\nabla T_k(u)\chi_{\{|u_n|\ge k\}} \to 0$ for almost every $x \in \Omega$, so, by Lebesgue theorem $A_2 = \varepsilon_n$. For (A_1) , we have

$$\int_{\Omega} a(\nabla T_k(u_n))\nabla (T_k(u_n) - T_k(u))\varphi'_n dx$$

=
$$\int_{\Omega} [a(\nabla T_k(u_n)) - a(\nabla T_k(u))]\nabla (T_k(u_n) - T_k(u))\varphi'_n dx$$

+
$$\int_{\Omega} a(\nabla T_k(u))\nabla (T_k(u_n) - T_k(u))\varphi'_n dx := A_{1.1} + A_{1.2}$$

By (2.8) , since $T_k(u_n) \rightharpoonup T_k(u)$ weakly in $W_0^{1,p}(\Omega)$, we have $A_{1,2} = \varepsilon_n$. Thus

$$A = \int_{\Omega} [a(\nabla T_k(u_n)) - a(\nabla T_k(u))] \nabla (T_k(u_n) - T_k(u)) \varphi'_n dx + \varepsilon_n.$$
(2.13)

By (2.10), (2.11), (2.12), (2.13) and from (2.9), we obtain

$$\int_{\Omega} [a(\nabla T_k(u_n)) - a(\nabla T_k(u))] \nabla (T_k(u_n) - T_k(u)) [\varphi'_n - b_k |\varphi_n|] dx \le \varepsilon_n$$

Since $\varphi'_n - b_k |\varphi_n| \ge \frac{1}{2}$ with a = 1 and $b = b_k$) and

$$[a(\nabla T_k(u_n)) - a(\nabla T_k(u))]\nabla (T_k(u_n) - T_k(u)) \ge 0,$$

$$\int_{\Omega} [a(\nabla T_k(u_n)) - a(\nabla T_k(u))]\nabla (T_k(u_n) - T_k(u))dx = \varepsilon_n;$$

therefore,

$$\langle -\Delta_p(T_k(u_n)) + \Delta_p(T_k(u)), T_k(u_n) - T_k(u) \rangle \to 0.$$

Since $T_k(u_n) \rightharpoonup T_k(u)$ weakly in $W_0^{1,p}(\Omega)$,

$$\langle -\Delta_p(T_k(u)), T_k(u_n) - T_k(u) \rangle \to 0,$$

 $\langle -\Delta_p(T_k(u_n)), T_k(u_n) - T_k(u) \rangle \to 0.$

Since $-\Delta_p$ belongs to the class (S^+) (see [2]), $T_k(u_n) \to T_k(u)$ strongly in $W_0^{1,p}(\Omega)$.

Lemma 2.7. The following to limit hold:

$$\lim_{k \to +\infty} [\sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |\nabla u_n|^p dx] = 0,$$

$$\lim_{k \to +\infty} [\sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |f(x, u_n, \nabla u_n)| dx] = 0.$$
(2.14)

Proof. For the first limit, we define $\psi : \mathbb{R} \to \mathbb{R}^+$ by $\psi(-s) = -\psi(s)$ for all $s \in \mathbb{R}$ and

$$\psi(s) = \begin{cases} 0 & \text{if } 0 \le s \le k - 1, \\ s - (k - 1) & \text{if } k - 1 \le s \le k, \\ 1 & \text{if } s \ge k, \end{cases}$$

where k > 1, so that ψ is continuous, bounded in \mathbb{R} and $\psi(u_n) \in W_0^{1,p}(\Omega)$. We choose $v = \psi(u_n)$, as a test function in (2.4) we have

$$\begin{split} &\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \psi(u_n) dx \\ &= \int_{\Omega} f(x, u_n, \nabla u_n) \psi(u_n) dx + \int_{\Omega} g_n \psi(u_n) dx + \int_{\Omega} F \nabla \psi(u_n) dx. \end{split}$$

Using Young's inequality, we obtain

$$\int_{\Omega} |\nabla \psi(u_n)|^p dx \le \int_{\Omega} f(x, u_n, \nabla u_n) \psi(u_n) dx + \int_{\{|u_n| \ge k-1\}} |g_n| dx + c \int_{\{k-1 < |u_n| < k\}} |F|^{p'} dx + \frac{1}{2} \int_{\Omega} |\nabla \psi(u_n)|^p dx.$$

So that

$$0 \leq \frac{1}{2} \int_{\Omega} |\nabla \psi(u_n)|^p dx$$

$$\leq \int_{\Omega} f(x, u_n, \nabla u_n) \psi(u_n) dx + \int_{\{|u_n| \geq k-1\}} |g_n| dx \qquad (2.15)$$

$$+ c \int_{\{k-1 < |u_n| < k\}} |F|^{p'} dx.$$

Using (1.5) and that $\psi(s)$ has the same sign as s, and that is zero if $|s| \le k - 1$, we get

$$\begin{split} \int_{\Omega} f(x, u_n, \nabla u_n) \psi(u_n) dx &= \int_{\{|u_n| > k-1\}} f(x, u_n, \nabla u_n) \psi(u_n) dx \\ &\leq \int_{\{|u_n| > k-1\}} [-\rho |\nabla u_n|^p |\psi(u_n)| + \alpha' |u_n|^{p-1} |\psi(u_n)| \\ &+ \beta' |\nabla u_n|^{p-1} |\psi(u_n)| + a_1(x) |\psi(u_n)|] dx. \end{split}$$

From (2.15), we have

$$\rho \int_{\{|u_n| > k-1\}} |\nabla u_n|^p |\psi(u_n)| dx
\leq \int_{\{|u_n| \ge k-1\}} |g_n| dx + c \int_{\{k-1 < |u_n| < k\}} |F|^{p'} dx + \alpha' \int_{\{|u_n| > k-1\}} |u_n|^{p-1} |\psi(u_n)| dx
+ \beta' \int_{\{|u_n| > k-1\}} |\nabla u_n|^{p-1} |\psi(u_n)| dx + \int_{\{|u_n| > k-1\}} a_1(x) |\psi(u_n)| dx.$$
(2.16)

Since $u_n \to u$ in $L^p(\Omega)$, there exists $v \in L^p(\Omega)$ such that $|u_n| \le |v|$. Since $|g_n| \le |\tilde{g}|$, $|\tilde{g}| \in L^1(\Omega)$ and $|\psi(s)| \le 1$, we have

$$\rho \int_{\{|u_n|>k-1\}} |\nabla u_n|^p |\psi(u_n)| dx
\leq \int_{\Omega} [|\tilde{g}| + c|F|^{p'} + \alpha' |v|^{p-1} + a_1(x)] \chi_{\{|v| \ge k-1\}} dx + \beta' \int_{\{|v|>k-1\}} |\nabla u_n|^{p-1} dx
\leq \int_{\Omega} r(x) \chi_{\{|v| \ge k-1\}} dx + \beta' ||u_n||_{1,p}^{p-1} (\int_{\Omega} \chi_{\{|v| \ge k-1\}} dx)^{1/p},$$

where $r(x) = |\tilde{g}| + c|F|^{p'} + \alpha'|v|^{p-1} + a_1(x)$. We have $r \in L^1(\Omega)$ and $(u_n)_n$ is bounded in $W_0^{1,p}(\Omega)$, so that

$$\lim_{k \to +\infty} \sup_{n \in \mathbb{N}} \int_{\{|u_n| > k-1\}} |\nabla u_n|^p |\psi(u_n)| dx] = 0.$$

Since

$$\begin{split} \int_{\{|u_n| \ge k\}} |\nabla u_n|^p dx &= \int_{\{|u_n| \ge k\}} |\nabla u_n|^p |\psi(u_n)| dx \\ &\leq \int_{\{|u_n| > k-1\}} |\nabla u_n|^p |\psi(u_n)| dx, \end{split}$$

it follows that

$$\lim_{k \to +\infty} [\sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |\nabla u_n|^p dx] = 0.$$

For the second limit, we let $l: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ defined by $l(x, s, \xi) = f(x, s, \xi) - \alpha |s|^{p-1} \operatorname{sgn}(s) - \beta |\xi|^{p-2} \xi - (|s|^{p-1} + |\xi|^{p-1} + a_1(x)) \operatorname{sgn}(s).$ From (1.4), we get $l(x, s, \xi)s \leq -\rho |\xi|^p |s|$ for almost every $x \in \Omega$, and for all $(\xi, s) \in \mathbb{R}^N \times \mathbb{R}.$

By (2.15) and using that $\psi(s)$ has the same sign as s and that it is zero if $|s| \le k - 1$, we have

$$0 \leq \int_{\{|u_n| \geq k-1\}} |g_n| dx + c \int_{\{k-1 < |u_n| < k\}} |F|^{p'} dx + \int_{\Omega} l(x, u_n, \nabla u_n) \psi(u_n) dx + \int_{\Omega} [\alpha' |u_n|^{p-1} + \beta' |\nabla u_n|^{p-1} + a_1(x)] |\psi(u_n)| dx.$$

Since $l(x, u_n, \nabla u_n)\psi(u_n) \leq -|l(x, u_n, \nabla u_n)|\chi_{\{|u_n| \geq k\}}$, we have

$$\begin{split} \int_{\{|u_n| \ge k\}} |l(x, u_n, \nabla u_n)| dx &\leq \int_{\{|u_n| \ge k-1\}} |g_n| dx + c \int_{\{k-1 < |u_n| < k\}} |F|^{p'} dx \\ &+ \int_{\{|u_n| \ge k-1\}} \alpha' |u_n|^{p-1} |\psi(u_n)| dx \\ &+ \int_{\{|u_n| \ge k-1\}} \beta' |\nabla u_n|^{p-1} |\psi(u_n)| dx \\ &+ \int_{\{|u_n| \ge k-1\}} a_1(x) |\psi(u_n)| dx. \end{split}$$

In the same way as in the first limit, we prove that

$$\lim_{k \to +\infty} \left[\sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |l(x, u_n, \nabla u_n)| dx \right] = 0.$$

Also

$$|f(x, u_n, \nabla u_n)| \le |l(x, u_n, \nabla u_n)| + \alpha' |u_n|^{p-1} + \beta' |\nabla u_n|^{p-1} + a_1(x),$$
$$\lim_{k \to +\infty} [\sup_{n \in \mathbb{N}} \int_{\{|u_n| \ge k\}} |f(x, u_n, \nabla u_n)| dx] = 0.$$

Lemma 2.8. The sequence $(u_n)_n$ converges strongly to u in $W_0^{1,p}(\Omega)$.

Proof. We begin by proving that the sequence $\{|\nabla u_n|^p\}$ is equi-integrable in $L^1(\Omega)$. Let $\varepsilon > 0$ be fixed. Let now E be a measurable subset of Ω , we have

$$\int_E |\nabla u_n|^p dx = \int_{E \cap \{|u_n| \le k\}} |\nabla u_n|^p dx + \int_{E \cap \{|u_n| > k\}} |\nabla u_n|^p dx.$$

By lemma 2.7 there exists k > 0 such that for all $n \in \mathbb{N}$,

$$\int_{\{|u_n|>k\}} |\nabla u_n|^p dx \le \frac{\varepsilon}{2}.$$

For k fixed, we have

$$\int_{E \cap \{|u_n| \le k\}} |\nabla u_n|^p dx \le \int_E |\nabla T_k(u_n)|^p dx.$$

Since $T_k(u_n)$ converges strongly to $T_k(u)$ in $W_0^{1,p}(\Omega)$, there exists $\gamma > 0$ such that

$$\operatorname{meas}(E) < \gamma \Rightarrow \forall n \in \mathbb{N} \quad \int_E |\nabla T_k(u_n)|^p dx \le \frac{\varepsilon}{2},$$

so that

$$\forall n \in \mathbb{N} \quad \int_{E \cap \{|u_n| \le k\}} |\nabla u_n|^p dx \le \frac{\varepsilon}{2}.$$

Then, there exists $\gamma > 0$ such that

$$\operatorname{meas}(E) < \gamma \Rightarrow \forall n \in \mathbb{N} \int_E |\nabla u_n|^p dx \le \varepsilon.$$

Therefore, the sequence $\{|\nabla u_n|^p\}$ is equi-integrable in $L^1(\Omega)$. By Lemma 2.6 we have $\nabla u_n \to \nabla u$ for almost every $x \in \Omega$, so, $|\nabla u_n|^p \to |\nabla u|^p$ strongly in $L^1(\Omega)$, thus the sequence $(u_n)_n$ converges strongly to u in $W_0^{1,p}(\Omega)$.

Lemma 2.9. The sequence $(f(x, u_n, \nabla u_n))_n$ converges to $f(x, u, \nabla u)$ in $L^1(\Omega)$.

Proof. We begin by proving that the sequence $\{|f(x, u_n, \nabla u_n)|\}$ is equi-integrable in $L^1(\Omega)$. Let $\varepsilon > 0$ be fixed. Let now E be a measurable subset of Ω , we have

$$\int_{E} |f(x, u_n, \nabla u_n)| dx$$

=
$$\int_{E \cap \{|u_n| \le k\}} |f(x, u_n, \nabla u_n)| dx + \int_{E \cap \{|u_n| > k\}} |f(x, u_n, \nabla u_n)| dx.$$

By Lemma 2.7, there exists k > 0 such that

$$\forall n \in \mathbb{N}, \ \int_{E \cap \{|u_n| > k\}} |f(x, u_n, \nabla u_n)| dx \le \frac{\varepsilon}{2}.$$

When k is fixed, by (1.3) we have

$$\int_{E \cap \{|u_n| \le k\}} |f(x, u_n, \nabla u_n)| dx \le \int_E [b_k |\nabla T_k(u_n)|^p + \phi_k(x)] dx.$$

Since $\phi_k \in L^1(\Omega)$ and $T_k(u_n) \to T_k(u)$ strongly in $W_0^{1,p}(\Omega)$, there exists $\gamma > 0$ such that

$$\operatorname{meas}(E) < \gamma \Rightarrow \forall n \in \mathbb{N} \ \int_{E} [b_k |\nabla T_k(u_n)|^p + \phi_k(x)] dx \leq \frac{\varepsilon}{2},$$

so that

$$\forall n \in \mathbb{N} \ \int_{E \cap \{|u_n| \le k\}} |f(x, u_n, \nabla u_n)| dx \le \frac{\varepsilon}{2}.$$

Therefore, the sequence $\{|f(x, u_n, \nabla u_n)|\}_n$ is equi-integrable in $L^1(\Omega)$. Since $f : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function, we have $f(x, u_n, \nabla u_n) \to f(x, u, \nabla u)$ for almost every $x \in \Omega$. so $f(x, u_n, \nabla u_n) \to f(x, u, \nabla u)$ strongly in $L^1(\Omega)$. \Box

Going back to the the proof of Theorem 1.1, by (2.4) we have that for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla v \, dx = \int_{\Omega} f(x, u_n, \nabla u_n) v \, dx + \int_{\Omega} g_n v + \int_{\Omega} F \nabla v.$$

As *n* approaches infinity, we get that for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \int_{\Omega} gv + \int_{\Omega} F \nabla v.$$

Thus the problem

$$-\Delta_p u = f(x, u, \nabla u) + \mu \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega$$

admits a solution $u \in W_0^{1,p}(\Omega)$ in the sense that $f(x, u, \nabla u) \in L^1(\Omega)$, and for every $v \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$,

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx + \int_{\Omega} v \, d\mu.$$

References

- A. Anane, O. Chakrone, J. P. Gossez; Spectre d'ordre supérieur et problèmes aux limites quasi-linéaires, Bollettino U.M.I. (8) 4-B (2001), 483-519.
- [2] J. Berkovits, V. Mustonen; Nonlinear mapping of monotone type (classification and degree theory), 1988, Math. Univer. Oulu, Linnanmaa, Oulu, Finland.
- [3] L. Boccardo, T. Gallouet, L. Orsina; Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 75. (1997), 203-223.
- [4] L. Boccardo, T. Gallouet, L. Orsina; Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 5 (1996), 539-551.

Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address, Aomar Anane: anane@sciences.univ-oujda.ac.ma

E-mail address, Omar Chakrone: chakrone@sciences.univ-oujda.ac.ma

E-mail address, Mohammed Chehabi: chehb_md@yahoo.fr