Electronic Journal of Differential Equations, Vol. 2006(2006), No. 64, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A BOUNDARY BLOW-UP FOR SUB-LINEAR ELLIPTIC PROBLEMS WITH A NONLINEAR GRADIENT TERM

ZHIJUN ZHANG

Abstract

By a perturbation method and constructing comparison functions, we show the exact asymptotic behaviour of solutions to the semilinear elliptic problem $$
\Delta u-|\nabla u|^{q}=b(x) g(u), \quad u>0 \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=+\infty
$$ where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary, $q \in(1,2], g \in$ $C[0, \infty) \cap C^{1}(0, \infty), g(0)=0, g$ is increasing on $[0, \infty)$, and b is non-negative non-trivial in Ω, which may be singular or vanishing on the boundary.

1. Introduction and statement of main results

The purpose of this paper is to investigate the exact asymptotic behaviour of solutions near the boundary for the problem

$$
\begin{equation*}
\Delta u-|\nabla u|^{q}=b(x) g(u), \quad u>0 \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=+\infty \tag{1.1}
\end{equation*}
$$

where the last condition means that $u(x) \rightarrow+\infty$ as $d(x)=\operatorname{dist}(x, \partial \Omega) \rightarrow 0$, and the solution is called "a large solution" or "an explosive solution", Ω is a bounded domain with smooth boundary in $\mathbb{R}^{N}(N \geq 1), q \in(1,2]$. The functions g and b satisfy
(G1) $g \in C^{1}(0, \infty) \cap C[0, \infty), g(0)=0, g$ is increasing on $[0, \infty)$.
(G2) $\int_{t}^{\infty} \frac{d s}{\sqrt{2 G(s)}}=\infty$, for all $t>0, G(s)=\int_{0}^{s} g(z) d z$.
(B1) $b \in C^{\alpha}(\Omega)$ for some $\alpha \in(0,1)$, is non-negative and non-trivial in Ω.
The main feature of this paper is the presence of the three terms: The nonlinear term $g(u)$ which is sub-linear at infinity, the nonlinear gradient term $|\nabla u|^{q}$, and the weight $b(x)$ which may be singular or vanishing on the boundary.

First, we review the model

$$
\begin{equation*}
\Delta u=b(x) g(u) \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=+\infty . \tag{1.2}
\end{equation*}
$$

For g satisfying (G1) and the Keller-Osserman condition
(G3) $\int_{t}^{\infty} \frac{d s}{\sqrt{2 G(s)}}<\infty$,

[^0]problem 1.2 arises in many branches of applied mathematics and has been discussed by many authors; see for instance [2, 4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28.

For $g(s)=s^{p}, p \in(0,1]$, little is known. Lair and Wood [15] showed that if $b \in C(\bar{\Omega})$ then 1.2 has no solution. Then Lair 14] showed that if g satisfies (G1), $b \in C(\bar{\Omega})$ is non-negative in Ω and is positive near the boundary then 1.2 has no solution if and only if (G2) holds. Bachar and Zeddini [1. Theorem 3] showed that if $b \in C(\bar{\Omega})$ and there exist positive constants c_{1}, c_{2} such that $g(s) \leq c_{1} s+c_{2}$, for all $s \geq 0$, then (1.2) has no solution. Chuaqui et al. [4 showed that when $\Omega=B$, $g(s)=s^{p}, p \in(0,1)$, and $b(|x|)=b(r)$ satisfies
(B2) $\lim _{r \rightarrow 0^{+}}(1-r)^{\gamma} b(r)=c_{0}>0$ for some $\gamma>0$,
then 1.2 has at least one solution if and only if $\gamma \geq 2$. Moreover, if $\gamma>2$, then, for any solution u, to problem 1.2 ,

$$
\lim _{r \rightarrow 0^{+}}(1-r)^{\beta} u(r)=\left(\frac{c_{0}}{\beta(\beta+1)}\right)^{1 /(1-p)}
$$

where $\beta=(\gamma-2) /(1-p)$. If $\gamma=2$, then, for any solution u to problem (1.2),

$$
\lim _{r \rightarrow 0^{+}} \frac{u(r)}{(-\ln (1-r))^{1 /(1-p)}}=\left(c_{0}(1-p)\right)^{1 /(1-p)}
$$

Yang [26] showed that if $b \in C[0,1)$ is non-negative non-trivial in $[0,1), g$ satisfies (G1) and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d s}{g(s)}=\infty \tag{1.3}
\end{equation*}
$$

then $\sqrt{1.2}$ has one solution if and only if

$$
\begin{equation*}
\int_{0}^{1}(1-r) b(r) d r=\infty \tag{1.4}
\end{equation*}
$$

Moreover, if $b(r) \sim(1-r)^{-\gamma}$ as $r \rightarrow 1, \gamma \geq 2$, and $p \in(0,1), g(s) \sim s(\ln s)^{p}$ as $s \rightarrow \infty$, then, for any solution u to problem (1.2),

$$
u(r) \sim \begin{cases}(1-r)^{-(\gamma-2) /(2-p)} & \text { if } \gamma>2 \\ (-\ln (1-r))^{2 /(2-p)} & \text { if } \gamma=2\end{cases}
$$

He also showed that $(1.2$ has no solution provided that Ω is a bounded domain with smooth boundary in $\mathbb{R}^{N}(N \geq 1), g$ satisfies (G1) and 1.3), b satisfies (B1) and

$$
\begin{equation*}
b(x) \leq C(d(x))^{-2}(-\ln (d(x)))^{-p} \tag{1.5}
\end{equation*}
$$

where $p>1$ and $C>0$.
Let's return to problem (1.1). When $b \equiv 1$ on Ω : for $g(u)=u$, Lasry and Lions [15] established the model (1.1) which arises from the description of the basic stochastic control problem, and showed by a perturbation method and a subsupersolutions method that if $q \in(1,2]$ then problem (1.1) has a unique solution $u \in C^{2}(\Omega)$. Moreover,
(i) when $1<q<2$,

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} u(x)(d(x))^{(2-q) /(q-1)}=(2-q)^{-1}(q-1)^{-(2-q) /(q-1)} \tag{1.6}
\end{equation*}
$$

(ii) when $q=2$,

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} u(x) /(-\ln (d(x)))=1 . \tag{1.7}
\end{equation*}
$$

For $g(u)=u^{p}, p>0$, by the theory of ordinary differential equation and the comparison principle, Bandle and Giarrusso [3] showed that
(iii) if $1<q \leq 2$, then problem 1.1 has one solution in $C^{2}(\Omega)$;
(iv) if $\max \{2 p /(p+1), 1\}<q<2$, then every solution u to problem (1.1) satisfies (1.6);
(v) if $q=2$, then every solution u to problem 1.1) satisfies 1.7.

For the other results of large solutions to elliptic problems with nonlinear gradient terms, see [8, 9, 29, 30, 31, 32] and the references therein. In this note, by a perturbation method and constructing comparison functions, we show how the weight b affects the exact asymptotic behaviour of solutions near the boundary, to problems (1.1).

Our main results are state in the following theorems.
Theorem 1.1. Let $1<q<2$, and assume (G1) and (B1).
(I) If the following convergence is uniform for $\xi \in[a, b]$ with $0<a<b$,

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} b(x)(d(x))^{\frac{q}{q-1}} g\left(\xi(d(x))^{-\frac{2-q}{q-1}}\right)=0 \tag{1.8}
\end{equation*}
$$

then every solution to problem (1.1) satisfies (1.6);
(II) if $g(u)=u^{p}, p \in(0,1]$ and

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} b(x)(d(x))^{\frac{q-p(2-q)}{q-1}}=C_{0}>0, \tag{1.9}
\end{equation*}
$$

then every solution to problem (1.1) satisfies

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} u(x)(d(x))^{(2-q) /(q-1)}=\xi_{0} \tag{1.10}
\end{equation*}
$$

provided that
(i) $p=1, C_{0} \in\left(0, \frac{2-q}{(q-1)^{2}}\right)$. In this case,

$$
\xi_{0}=\left(\frac{q-1}{2-q}\right)^{q /(q-1)}\left(\frac{2-q}{(q-1)^{2}}-C_{0}\right)^{1 /(q-1)}
$$

(ii) $p \in(0,1), C_{0} \in(0, \bar{C})$ where

$$
\bar{C}=\left(\frac{q(1-p)}{p(q-p)(q-1)}\right)^{\frac{q-p}{q-1}}\left(\frac{p(1-p)}{q(q-1)}\right)^{\frac{1-p}{q-1}}\left(\frac{2-q}{q-1}\right)^{\frac{q(1-p)}{q-1}}
$$

In this case, $\xi_{0}=\xi_{2}$, where the equation

$$
\begin{equation*}
\frac{2-q}{q-1}=C_{0} \xi^{p-1}+\left(\frac{2-q}{q-1}\right)^{q} \xi^{q-1} \tag{1.11}
\end{equation*}
$$

has just two positive solutions ξ_{1} and ξ_{2} with

$$
0<\xi_{1}<\left(\frac{C_{0}(1-p)}{q-1}\right)^{1 /(q-p)}\left(\frac{2-q}{q-1}\right)^{q /(q-p)}<\xi_{2}
$$

Theorem 1.2. Let $q=2$, and assume (G1) and (B1).
(I) If the following convergence is uniform for $\xi \in[a, b]$ with $0<a<b$,

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} b(x)(d(x))^{2} g(-\xi \ln (d(x)))=0 \tag{1.12}
\end{equation*}
$$

then every solution to problem (1.1) satisfies (1.7);
(II) if $g(u)=u^{p}, p \in(0,1]$ and

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} b(x)(d(x))^{2}(-\ln (d(x)))^{p}=C_{0}>0 \tag{1.13}
\end{equation*}
$$

then every solution u to problem (1.1) satisfies

$$
\begin{equation*}
\lim _{d(x) \rightarrow 0} u(x) /(-\ln (d(x)))=\xi_{0} \tag{1.14}
\end{equation*}
$$

provided that
(i) $p=1, C_{0} \in(0,1), \xi_{0}=1-C_{0}$;
(ii) $p \in(0,1), C_{0}=2^{p} / 4, \xi_{0}=1 / 2$;
(iii) $p \in(0,1), C_{0} \in\left(0,2^{p} / 4\right), \xi_{0}=\xi_{2}$, where the equation

$$
\xi-\xi^{2}=C_{0} \xi^{p}
$$

has just two positive solutions ξ_{1} and ξ_{2} with $0<\xi_{1}<1 / 2<\xi_{2}<1$.

2. Proof of theorems

Lemma 2.1 (The comparison principle, [10, Theorem 10.1]). Let $\Psi(x, s, \xi)$ satisfy the following two conditions
(D1) Ψ is non-increasing in s for each $(x, \xi) \in\left(\Omega \times \mathbb{R}^{N}\right)$;
(D2) Ψ is continuously differentiable with respect to the variable ξ in $\Omega \times(0, \infty) \times$ \mathbb{R}^{N}.
If $u, v \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfy $\Delta u+\Psi(x, u, \nabla u) \geq \Delta v+\Psi(x, v, \nabla v)$ in Ω and $u \leq v$ on $\partial \Omega$, then $u \leq v$ in Ω.

Lemma 2.2 (Taylor's formula). Let $\alpha \in \mathbb{R}, x \in\left[-x_{0}, x_{0}\right]$ with $x_{0} \in(0,1)$. Then there exists $\varepsilon_{1}>0$ small enough such that for $\varepsilon \in\left(0, \varepsilon_{1}\right)$

$$
\begin{equation*}
(1+\varepsilon x)^{\alpha}=1+\alpha \varepsilon x+o\left(\varepsilon^{2}\right) \tag{2.1}
\end{equation*}
$$

Proof of Theorem 1.1. Given an arbitrary $\varepsilon \in\left(0, \xi_{0} / 2\right)$, let $\xi_{2 \varepsilon}=\xi_{0}+\varepsilon, \xi_{1 \varepsilon}=\xi_{0}-\varepsilon$. It follows that

$$
\frac{1}{2} \xi_{0}<\xi_{1 \varepsilon}<\xi_{2 \varepsilon}<2 \xi_{0}
$$

For $\delta>0$, we define

$$
\Omega_{\delta}=\{x \in \Omega: 0<d(x)<\delta\} .
$$

Since $\partial \Omega \in C^{2}$, there exists a constant $\delta>0$ which only depends on Ω such that

$$
\begin{equation*}
d(x) \in C^{2}\left(\bar{\Omega}_{2 \delta}\right) \quad \text { and } \quad|\nabla d| \equiv 1 \quad \text { on } \Omega_{2 \delta} \tag{2.2}
\end{equation*}
$$

(I) When 1.8 holds, $\xi_{0}=(2-q)^{-1}(q-1)^{-(2-q) /(q-1)}$. It follows from Lemma 2.2 that there exists $\varepsilon_{1}>0$ small enough such that for $\varepsilon \in\left(0, \varepsilon_{1}\right)$

$$
\begin{aligned}
\frac{2-q}{(q-1)^{2}} \xi_{2 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{2 \varepsilon}^{q} & =\frac{2-q}{(q-1)^{2}}\left(\xi_{0}+\varepsilon\right)-\left(\frac{2-q}{q-1}\right)^{q}\left(\xi_{0}+\varepsilon\right)^{q} \\
& =\frac{2-q}{(q-1)^{2}} \varepsilon-\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{q}\left(\left(1+\frac{\varepsilon}{\xi_{0}}\right)^{q}-1\right) \\
& =-\frac{(q-1)(2-q)}{(q-1)^{2}} \varepsilon+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{2-q}{(q-1)^{2}} \xi_{1 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{1 \varepsilon}^{q} & =\frac{2-q}{(q-1)^{2}}\left(\xi_{0}-\varepsilon\right)-\left(\frac{2-q}{q-1}\right)^{q}\left(\xi_{0}-\varepsilon\right)^{q} \\
& =\frac{(q-1)(2-q)}{(q-1)^{2}} \varepsilon+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Denote

$$
c_{1}=\frac{(q-1)(2-q)}{(q-1)^{2}}
$$

It follows by (2.2) and (1.8) that corresponding to $\varepsilon \in\left(0, \varepsilon_{1}\right)$, there is $\delta_{\varepsilon} \in(0, \delta)$ sufficiently small such that

$$
\begin{equation*}
\frac{2-q}{q-1}\left|\xi_{i \varepsilon} d(x) \Delta d(x)\right|+\left|b(x)(d(x))^{2} g\left(-\xi_{i \varepsilon} \ln (d(x))\right)\right|<\frac{c_{1}}{2} \varepsilon \tag{2.3}
\end{equation*}
$$

for all $x \in \Omega_{2 \delta_{\varepsilon}}, i=1,2$.
(II) (i) When $p=1, C_{0} \in\left(0, \frac{2-q}{(q-1)^{2}}\right)$. As the result of (I), we see that for $\varepsilon \in\left(0, \varepsilon_{1}\right)$,

$$
\left(\frac{2-q}{(q-1)^{2}}-C_{0}\right) \xi_{2 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{2 \varepsilon}^{q}=-(q-1)\left(\frac{2-q}{(q-1)^{2}}-C_{0}\right) \varepsilon+o\left(\varepsilon^{2}\right)
$$

and

$$
\left(\frac{2-q}{(q-1)^{2}}-C_{0}\right) \xi_{1 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{1 \varepsilon}^{q}=(q-1)\left(\frac{2-q}{(q-1)^{2}}-C_{0}\right) \varepsilon+o\left(\varepsilon^{2}\right)
$$

(ii) When $p \in(0,1), C_{0} \in(0, \bar{C})$. Since

$$
\left(\frac{C_{0}(1-p)}{q-1}\left(\frac{q-1}{2-q}\right)^{q}\right)^{1 /(q-p)}<\xi_{0}
$$

it follows that

$$
(q-1)\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{q-p}-C_{0}(1-p)>0
$$

Then by Lemma 2.2 there exists $\varepsilon_{1}>0$ small enough such that for $\varepsilon \in\left(0, \varepsilon_{1}\right)$

$$
\begin{aligned}
& \frac{2-q}{(q-1)^{2}} \xi_{2 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{2 \varepsilon}^{q}-C_{0} \xi_{2 \varepsilon}^{p} \\
& =\frac{2-q}{(q-1)^{2}}\left(\xi_{0}+\varepsilon\right)-\left(\frac{2-q}{q-1}\right)^{q}\left(\xi_{0}+\varepsilon\right)^{q}-C_{0}\left(\xi_{0}+\varepsilon\right)^{p} \\
& =\frac{2-q}{(q-1)^{2}} \varepsilon-C_{0} \xi_{0}^{p}\left(\left(1+\frac{\varepsilon}{\xi_{0}}\right)^{p}-1\right)-\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{q}\left(\left(1+\frac{\varepsilon}{\xi_{0}}\right)^{q}-1\right) \\
& =-\xi_{0}^{-1}\left(q\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{q}+p C_{0} \xi_{0}^{p}-\frac{2-q}{(q-1)^{2}} \xi_{0}\right) \varepsilon+o\left(\varepsilon^{2}\right) \\
& =-\xi_{0}^{-(2-p)}\left((q-1)\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{(q-p)}-C_{0}(1-p)\right) \varepsilon+o\left(\varepsilon^{2}\right) ;
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{2-q}{(q-1)^{2}} \xi_{1 \varepsilon}-\left(\frac{2-q}{q-1}\right)^{q} \xi_{1 \varepsilon}^{q}-C_{0} \xi_{1 \varepsilon}^{p} \\
& =\frac{2-q}{(q-1)^{2}}\left(\xi_{0}-\varepsilon\right)-\left(\frac{2-q}{q-1}\right)^{q}\left(\xi_{0}-\varepsilon\right)^{q}-C_{0}\left(\xi_{0}-\varepsilon\right)^{p} \\
& =\xi_{0}^{-(2-p)}\left((q-1)\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{(q-p)}-C_{0}(1-p)\right) \varepsilon+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Denote

$$
c_{2}=\xi_{0}^{-(2-p)}\left((q-1)\left(\frac{2-q}{q-1}\right)^{q} \xi_{0}^{(q-p)}-C_{0}(1-p)\right)
$$

We see by (2.2) and (1.9) that corresponding to $\varepsilon \in\left(0, \varepsilon_{1}\right)$, there is $\delta_{\varepsilon} \in(0, \delta)$ sufficiently small such that

$$
\begin{equation*}
\frac{2-q}{q-1}\left|\xi_{i \varepsilon} d(x) \Delta d(x)\right|+\left|b(x)(d(x))^{2} g\left(-\xi_{i \varepsilon} \ln (d(x))\right)\right|<C_{0} \xi_{i \varepsilon}^{p}+\frac{c_{2}}{2} \varepsilon \tag{2.4}
\end{equation*}
$$

for all $x \in \Omega_{2 \delta_{\varepsilon}}, i=1,2$. Let $\beta \in\left(0, \delta_{\varepsilon}\right)$ be arbitrary, we define

$$
\begin{gathered}
\bar{u}_{\beta}=\xi_{2 \varepsilon}(d(x)-\beta)^{-(2-q) /(q-1)}, x \in D_{\beta}^{-}=\Omega_{2 \delta_{\varepsilon}} / \bar{\Omega}_{\beta} \\
\underline{u}_{\beta}=\xi_{1 \varepsilon}(d(x)+\beta)^{-(2-q) /(q-1)}, x \in D_{\beta}^{+}=\Omega_{2 \delta_{\varepsilon}-\beta}
\end{gathered}
$$

It follows that for $(x, \beta) \in D_{\beta}^{-} \times\left(0, \delta_{\varepsilon}\right)$,

$$
\begin{aligned}
& \Delta \bar{u}_{\beta}(x)-\left|\nabla \bar{u}_{\beta}(x)\right|^{q}-b(x) g\left(\bar{u}_{\beta}(x)\right) \\
& =(d(x)-\beta)^{-q /(q-1)}\left(\frac{\xi_{2 \varepsilon}(2-q)}{(q-1)^{2}}-\frac{\xi_{2 \varepsilon}(2-q)}{q-1}(d(x)-\beta) \Delta d(x)-\xi_{2 \varepsilon}^{q}\left(\frac{2-q}{q-1}\right)^{q}\right. \\
& \left.\quad-b(x) g\left(\xi_{2 \varepsilon}(d(x)-\beta)^{-(2-q) /(q-1)}\right)(d(x)-\beta)^{q /(q-1)}\right) \\
& \leq 0
\end{aligned}
$$

and for $(x, \beta) \in D_{\beta}^{+} \times\left(0, \delta_{\varepsilon}\right)$

$$
\begin{aligned}
& \Delta \underline{u}_{\beta}(x)-\left|\nabla \underline{u}_{\beta}(x)\right|^{q}-b(x) g\left(\underline{u}_{\beta}(x)\right) \\
& =(d(x)+\beta)^{-q /(q-1)}\left(\frac{\xi_{1 \varepsilon}(2-q)}{(q-1)^{2}}-\frac{\xi_{1 \varepsilon}(2-q)}{q-1}(d(x)+\beta) \Delta d(x)-\xi_{1 \varepsilon}^{q}\left(\frac{2-q}{q-1}\right)^{q}\right. \\
& \left.\quad-b(x) g\left(\xi_{2 \varepsilon}(d(x)+\beta)^{-(2-q) /(q-1)}\right)(d(x)+\beta)^{q /(q-1)}\right)
\end{aligned}
$$

$$
\geq 0
$$

Now let u be an arbitrary solution of problem (1.1) and $M_{u}\left(2 \delta_{\varepsilon}\right)=\max _{d(x) \geq 2 \delta_{\varepsilon}} u(x)$. We see that

$$
u \leq M_{u}\left(2 \delta_{\varepsilon}\right)+\bar{u}_{\beta} \quad \text { on } \partial D_{\beta}^{-}
$$

Since $\underline{u}_{\beta}=\xi_{1 \varepsilon}\left(2 \delta_{\varepsilon}\right)^{-(2-q) /(q-1)}=M_{\underline{u}}\left(2 \delta_{\varepsilon}\right)$ whenever $d(x)=2 \delta_{2 \varepsilon}-\beta$, we see that

$$
\underline{u}_{\beta} \leq u+M_{\underline{u}}\left(2 \delta_{\varepsilon}\right) \quad \text { on } \partial D_{\beta}^{+} .
$$

It follows by (G1) and Lemma 2.1 that

$$
\begin{array}{ll}
u \leq M_{u}\left(2 \delta_{\varepsilon}\right)+\bar{u}_{\beta}, & x \in D_{\beta}^{-} \\
\underline{u}_{\beta} \leq u+M_{\underline{u}}\left(2 \delta_{\varepsilon}\right), & x \in D_{\beta}^{+}
\end{array}
$$

Hence, for $x \in D_{\beta}^{-} \cap D_{\beta}^{+}$, and letting $\beta \rightarrow 0$, we have

$$
\xi_{1 \varepsilon}-\frac{M_{\underline{u}}\left(2 \delta_{\varepsilon}\right)}{(d(x))^{-(2-q) /(q-1)}} \leq \frac{u(x)}{(d(x))^{-(2-q) /(q-1)}} \leq \xi_{2 \varepsilon}+\frac{M_{u}\left(2 \delta_{\varepsilon}\right)}{(d(x))^{-(2-q) /(q-1)}}
$$

i.e.,

$$
\xi_{1 \varepsilon} \leq \lim _{d(x) \rightarrow 0} \inf \frac{u(x)}{(d(x))^{-(2-q) /(q-1)}} \leq \lim _{d(x) \rightarrow 0} \sup \frac{u(x)}{(d(x))^{-(2-q) /(q-1)}} \leq \xi_{2 \varepsilon}
$$

Letting $\epsilon \rightarrow 0$, and using the definitions of $\xi_{1 \varepsilon}$ and $\xi_{2 \varepsilon}$, we have

$$
\lim _{d(x) \rightarrow 0} \frac{u(x)}{(d(x))^{-(2-q) /(q-1)}}=\xi_{0} .
$$

Proof of Theorem 1.2. We proceed as in the proof of Theorem 1.1. Given an arbitrary $\varepsilon \in\left(0, \xi_{0} / 2\right)$, let

$$
\xi_{2 \varepsilon}=\xi_{0}+\varepsilon, \quad \xi_{1 \varepsilon}=\xi_{0}-\varepsilon
$$

Note that

$$
\frac{1}{2} \xi_{0}<\xi_{1 \varepsilon}<\xi_{2 \varepsilon}<2 \xi_{0}
$$

When $p=1, C_{0} \in(0,1), \xi_{0}=1-C_{0}$, we see that

$$
\left(1-C_{0}\right) \xi_{2 \varepsilon}-\xi_{2 \varepsilon}^{2}=-\varepsilon \xi_{0}-o\left(\varepsilon^{2}\right) \quad \text { and } \quad\left(1-C_{0}\right) \xi_{1 \varepsilon}-\xi_{1 \varepsilon}^{2}=\varepsilon \xi_{0}-o\left(\varepsilon^{2}\right)
$$

It follows by 2.2 and 1.12 that there is $\delta_{\varepsilon} \in(0, \delta)$ sufficiently small such that

$$
\begin{equation*}
\left|\xi_{i \varepsilon} d(x) \Delta d(x)\right|+\left|b(x)(d(x))^{2} g\left(-\xi_{i \varepsilon} \ln (d(x))\right)\right|<\frac{\xi_{0}}{2} \varepsilon \tag{2.5}
\end{equation*}
$$

for all $x \in \Omega_{2 \delta_{\varepsilon}}, i=1,2$. When $p \in(0,1)$ and $\xi_{0} \geq \frac{1}{2}$, we see that $\xi_{0}>\frac{1-p}{2-p}$ and for $\varepsilon \in\left(0, \varepsilon_{1}\right)$,

$$
\begin{aligned}
\xi_{2 \varepsilon}-\xi_{2 \varepsilon}^{2}-C_{0} \xi_{2 \varepsilon}^{p} & =\xi_{0}+\varepsilon-\left(\xi_{0}+\varepsilon\right)^{2}-C_{0}\left(\xi_{0}+\varepsilon\right)^{p} \\
& =-(2-p)\left(\xi_{0}-\frac{1-p}{2-p}\right) \varepsilon+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\xi_{1 \varepsilon}-\xi_{1 \varepsilon}^{2}-C_{0} \xi_{1 \varepsilon}^{p} & =\xi_{0}-\varepsilon-\left(\xi_{0}-\varepsilon\right)^{2}-C_{0}\left(\xi_{0}-\varepsilon\right)^{p} \\
& =(2-p)\left(\xi_{0}-\frac{1-p}{2-p}\right) \varepsilon+o\left(\varepsilon^{2}\right)
\end{aligned}
$$

Denote

$$
c_{3}=(2-p)\left(\xi_{0}-\frac{1-p}{2-p}\right)
$$

It follows by 2.2 and 1.13 that there is $\delta_{\varepsilon} \in(0, \delta)$ sufficiently small such that

$$
\begin{equation*}
\left|\xi_{i \varepsilon} d(x) \Delta d(x)\right|+\left|b(x)(d(x))^{2} g\left(-\xi_{i \varepsilon} \ln (d(x))\right)\right|<C_{0} \xi_{i \varepsilon}^{p}+\frac{c_{3}}{2} \varepsilon \tag{2.6}
\end{equation*}
$$

for all $x \in \Omega_{2 \delta_{\varepsilon}}, i=1,2$. Let $\beta \in\left(0, \delta_{\varepsilon}\right)$ be arbitrary, we define

$$
\begin{gathered}
\bar{u}_{\beta}=-\xi_{2 \varepsilon} \ln (d(x)-\beta), \quad x \in D_{\beta}^{-}=\Omega_{2 \delta_{\varepsilon}} / \bar{\Omega}_{\beta} ; \\
\underline{u}_{\beta}=-\xi_{1 \varepsilon} \ln (d(x)+\beta), \quad x \in D_{\beta}^{+}=\Omega_{2 \delta_{\varepsilon}-\beta} .
\end{gathered}
$$

It follows that for $(x, \beta) \in D_{\beta}^{-} \times\left(0, \delta_{\varepsilon}\right)$,

$$
\begin{aligned}
\Delta \bar{u}_{\beta}(x)-\left|\nabla \bar{u}_{\beta}(x)\right|^{2}-b(x) g\left(\bar{u}_{\beta}(x)\right)= & (d(x)-\beta)^{2}\left(\xi_{2 \varepsilon}-\xi_{2 \varepsilon}(d(x)-\beta) \Delta d(x)-\xi_{2 \varepsilon}^{2}\right. \\
& \left.-b(x)(d(x)-\beta)^{2} g\left(\xi_{2 \varepsilon} \ln (d(x)-\beta)\right)\right) \\
\leq & 0
\end{aligned}
$$

and for $(x, \beta) \in D_{\beta}^{+} \times\left(0, \delta_{\varepsilon}\right)$,

$$
\begin{aligned}
\Delta \underline{u}_{\beta}(x)-\left|\nabla \underline{u}_{\beta}(x)\right|^{2}-b(x) g\left(\underline{u}_{\beta}(x)\right)= & (d(x)+\beta)^{2}\left(\xi_{2 \varepsilon}-\xi_{2 \varepsilon}(d(x)+\beta) \Delta d(x)-\xi_{2 \varepsilon}^{2}\right. \\
& \left.-b(x)(d(x)+\beta)^{2} g\left(\xi_{2 \varepsilon} \ln (d(x)+\beta)\right)\right)
\end{aligned}
$$

The rest of the proof is the same as in Theorem 1.1, we omit it.

References

[1] I. Bachar, N. Zeddini, On the existence of positive solutions for a class of semilinear elliptic equations, Nonlinear Anal. 52 (2003), 1239-1247.
[2] C. Bandle, M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analyse Math. 58 (1992), 9-24.
[3] C. Bandle, E. Giarrusso, Boundary blowup for semilinear elliptic equations with nonlinear gradient terms, Adv. Differential Equations 1 (1996), 133-150.
[4] M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, J. García Melián, R. Letelier, On an elliptic problem with boundary blow-up and a singular weight: radial case, Proc. Royal Soc. Edinburgh 133A (2003), 1283-1297.
[5] F. Cîrstea, V.D. Rǎdulescu, Uniqueness of the blow-up boundary solutions of logistic equations with absorbtion, C.R. Acad. Sci. Paris Ser. I. 335 (2002), 447-452.
[6] F. Cîrstea, V. D. Rǎdulescu, Asymptotics for the blow-up boundary solutions of the logistic equation with absorption, C. R. Acad. Sci. Paris, Ser. I. 336 (2003) 231-236.
[7] Y. Du, Q. Huang, Blowup solutions for a class of semilinear elliptic and parabolic equations, SIAM. J. Math. Anal. 31 (1999) 1-18.
[8] E. Giarrusso, Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case, C.R. Acad. Sci. Paris Ser. I 331 (2000), 777-782.
[9] E. Giarrusso, On blow up solutions of a quasilinear elliptic equation, Math. Nachr. 213 (2000), 89-104.
[10] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3nd edition, Springer - Verlag, Berlin, 1998.
[11] J. B. Keller, On solutions of $\Delta u=f(u)$, Commun. Pure Appl. Math. 10 (1957), 503-510.
[12] S. Kichenassamy, Boundary behavior in the Loewner-Nirenberg problem, J. Functional Anal. 222 (2005), 98-113.
[13] A. V. Lair, A. W. Wood, Large solutions of sublinear elliptic equations, Nonlinear Anal. 39 (2000), 745-753.
[14] A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J Math. Anal. Appl. 240 (1999), 205-218.
[15] J.M. Lasry, P.L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, Math. Ann. 283 (1989), 583-630.
[16] A. C. Lazer, P. J. McKenna, Asymptotic behavior of solutions of boundary blowup problems, Differential and Integral Equations 7 (1994), 1001-1019.
[17] C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers 245-272, Academic Press, 1974.
[18] J. López-Gómez, The boundary blow-up rate of large solutions, J. Differential Equations 195 (2003), 25-45.
[19] M. Marcus, L. Véron, Uniqueness of solutions with blowup on the boundary for a class of nonlinear elliptic equations, C.R. Acad. Sci. Paris Ser. I 317 (1993), 557-563.
[20] M. Marcus, L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evol. Equations 63 (2003), 637-652.
[21] A. Mohammed, Boundary asymtotic and uniqueness of solutions to the p-Laplacian with infinite boundary value, J. Math. Anal. Appl., in press.
[22] R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7 (1957), 1641-1647.
[23] S. Tao, Z. Zhang, On the existence of explosive solutions for semilinear elliptic problems, Nonlinear Anal. 48 (2002), 1043-1050.
[24] L. Véron, Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math. 59 (1992), 231-250.
[25] L. Véron, Large solutions of elliptic equations with strong absorption, Elliptic and parabolic problems, Nonlinear Differential Equations Appl. Birkhuser, Basel, 63 (2005), 453-464.
[26] H. Yang, Existence and nonexistence blow-up boundary solutions for sublinear elliptic equations, J. Math. Anal. Appl. 314 (2006), 85-96.
[27] Z. Zhang, A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal. 41 (2000), 143-148.
[28] Z. Zhang, The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems, J. Math. Anal. Appl. 308 (2005), 532-540.
[29] Z. Zhang, The asymptotical behaviour of solutions with boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Nonlinear Anal. 62 (2005), 1137-1148
[30] Z. Zhang, Existence of large solutions for a semilinear elliptic problem via explosive subsupersolutions, Electronic. J. Differential Equations 2006 (2006), No, 2, 1-8.
[31] Z. Zhang, Nonlinear elliptic equations with singular boundary conditions, J. Math. Anal. Appl. 216 (1997), 390-397.
[32] Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Differential Equations, in press.

Zhijun Zhang
Department of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China

E-mail address: zhangzj@ytu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B25, 35B50, 35R05.
 Key words and phrases. Semilinear elliptic equations; large solutions; asymptotic behaviour. (C) 2006 Texas State University - San Marcos.

 Submitted February 5, 2006. Published May 20, 2006.
 Supported by grant 10071066 from the National Natural Science Foundation of China.

