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A BOUNDARY BLOW-UP FOR SUB-LINEAR ELLIPTIC
PROBLEMS WITH A NONLINEAR GRADIENT TERM

ZHIJUN ZHANG

Abstract. By a perturbation method and constructing comparison functions,

we show the exact asymptotic behaviour of solutions to the semilinear elliptic

problem

∆u− |∇u|q = b(x)g(u), u > 0 in Ω, u
˛̨
∂Ω

= +∞,

where Ω is a bounded domain in RN with smooth boundary, q ∈ (1, 2], g ∈
C[0,∞) ∩ C1(0,∞), g(0) = 0, g is increasing on [0,∞), and b is non-negative

non-trivial in Ω, which may be singular or vanishing on the boundary.

1. Introduction and statement of main results

The purpose of this paper is to investigate the exact asymptotic behaviour of
solutions near the boundary for the problem

∆u− |∇u|q = b(x)g(u), u > 0 in Ω, u
∣∣
∂Ω

= +∞, (1.1)

where the last condition means that u(x) → +∞ as d(x) = dist(x, ∂Ω) → 0, and
the solution is called “a large solution” or “an explosive solution”, Ω is a bounded
domain with smooth boundary in RN (N ≥ 1), q ∈ (1, 2]. The functions g and b
satisfy

(G1) g ∈ C1(0,∞) ∩ C[0,∞), g(0) = 0, g is increasing on [0,∞).
(G2)

∫∞
t

ds√
2G(s)

= ∞, for all t > 0, G(s) =
∫ s

0
g(z)dz.

(B1) b ∈ Cα(Ω) for some α ∈ (0, 1), is non-negative and non-trivial in Ω.
The main feature of this paper is the presence of the three terms: The nonlinear

term g(u) which is sub-linear at infinity, the nonlinear gradient term |∇u|q, and
the weight b(x) which may be singular or vanishing on the boundary.

First, we review the model

∆u = b(x)g(u) in Ω, u
∣∣
∂Ω

= +∞. (1.2)

For g satisfying (G1) and the Keller-Osserman condition
(G3)

∫∞
t

ds√
2G(s)

< ∞,
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problem (1.2) arises in many branches of applied mathematics and has been dis-
cussed by many authors; see for instance [2, 4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28].

For g(s) = sp, p ∈ (0, 1], little is known. Lair and Wood [15] showed that if
b ∈ C(Ω̄) then (1.2) has no solution. Then Lair [14] showed that if g satisfies (G1),
b ∈ C(Ω̄) is non-negative in Ω and is positive near the boundary then (1.2) has no
solution if and only if (G2) holds. Bachar and Zeddini [1, Theorem 3] showed that
if b ∈ C(Ω̄) and there exist positive constants c1, c2 such that g(s) ≤ c1s + c2, for
all s ≥ 0, then (1.2) has no solution. Chuaqui et al. [4] showed that when Ω = B,
g(s) = sp, p ∈ (0, 1), and b(|x|) = b(r) satisfies

(B2) limr→0+(1− r)γb(r) = c0 > 0 for some γ > 0,
then (1.2) has at least one solution if and only if γ ≥ 2. Moreover, if γ > 2, then,
for any solution u, to problem (1.2),

lim
r→0+

(1− r)βu(r) =
( c0

β(β + 1)

)1/(1−p)

,

where β = (γ − 2)/(1− p). If γ = 2, then, for any solution u to problem (1.2),

lim
r→0+

u(r)
(− ln(1− r))1/(1−p)

=
(
c0(1− p)

)1/(1−p)
.

Yang [26] showed that if b ∈ C[0, 1) is non-negative non-trivial in [0, 1), g satisfies
(G1) and ∫ ∞

1

ds

g(s)
= ∞, (1.3)

then (1.2) has one solution if and only if∫ 1

0

(1− r)b(r)dr = ∞. (1.4)

Moreover, if b(r) ∼ (1 − r)−γ as r → 1, γ ≥ 2, and p ∈ (0, 1), g(s) ∼ s(ln s)p as
s →∞, then, for any solution u to problem (1.2),

u(r) ∼

{
(1− r)−(γ−2)/(2−p) if γ > 2;
(− ln(1− r))2/(2−p) if γ = 2.

He also showed that (1.2) has no solution provided that Ω is a bounded domain
with smooth boundary in RN (N ≥ 1), g satisfies (G1) and (1.3), b satisfies (B1)
and

b(x) ≤ C(d(x))−2(− ln(d(x)))−p, (1.5)
where p > 1 and C > 0.

Let’s return to problem (1.1). When b ≡ 1 on Ω: for g(u) = u, Lasry and
Lions [15] established the model (1.1) which arises from the description of the
basic stochastic control problem, and showed by a perturbation method and a sub-
supersolutions method that if q ∈ (1, 2] then problem (1.1) has a unique solution
u ∈ C2(Ω). Moreover,
(i) when 1 < q < 2,

lim
d(x)→0

u(x)(d(x))(2−q)/(q−1) = (2− q)−1(q − 1)−(2−q)/(q−1); (1.6)

(ii) when q = 2,
lim

d(x)→0
u(x)/(− ln(d(x))) = 1. (1.7)
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For g(u) = up, p > 0, by the theory of ordinary differential equation and the
comparison principle, Bandle and Giarrusso [3] showed that
(iii) if 1 < q ≤ 2, then problem (1.1) has one solution in C2(Ω);
(iv) if max{2p/(p + 1), 1} < q < 2, then every solution u to problem (1.1) satisfies
(1.6);
(v) if q = 2, then every solution u to problem (1.1) satisfies (1.7).

For the other results of large solutions to elliptic problems with nonlinear gradient
terms, see [8, 9, 29, 30, 31, 32] and the references therein. In this note, by a
perturbation method and constructing comparison functions, we show how the
weight b affects the exact asymptotic behaviour of solutions near the boundary, to
problems (1.1).

Our main results are state in the following theorems.

Theorem 1.1. Let 1 < q < 2, and assume (G1) and (B1).
(I) If the following convergence is uniform for ξ ∈ [a, b] with 0 < a < b,

lim
d(x)→0

b(x)(d(x))
q

q−1 g
(
ξ(d(x)

)− 2−q
q−1 ) = 0, (1.8)

then every solution to problem (1.1) satisfies (1.6);
(II) if g(u) = up, p ∈ (0, 1] and

lim
d(x)→0

b(x)(d(x))
q−p(2−q)

q−1 = C0 > 0, (1.9)

then every solution to problem (1.1) satisfies

lim
d(x)→0

u(x)(d(x))(2−q)/(q−1) = ξ0, (1.10)

provided that
(i) p = 1, C0 ∈

(
0, 2−q

(q−1)2

)
. In this case,

ξ0 =
(q − 1
2− q

)q/(q−1)( 2− q

(q − 1)2
− C0

)1/(q−1);

(ii) p ∈ (0, 1), C0 ∈ (0, C̄) where

C̄ =
( q(1− p)

p(q − p)(q − 1)

) q−p
q−1

(p(1− p)
q(q − 1)

) 1−p
q−1

(2− q

q − 1

) q(1−p)
q−1

.

In this case, ξ0 = ξ2, where the equation

2− q

q − 1
= C0ξ

p−1 + (
2− q

q − 1
)qξq−1, (1.11)

has just two positive solutions ξ1 and ξ2 with

0 < ξ1 <
(C0(1− p)

q − 1

)1/(q−p)(2− q

q − 1

)q/(q−p)

< ξ2.

Theorem 1.2. Let q = 2, and assume (G1) and (B1).
(I) If the following convergence is uniform for ξ ∈ [a, b] with 0 < a < b,

lim
d(x)→0

b(x)(d(x))2g(−ξ ln(d(x))) = 0, (1.12)

then every solution to problem (1.1) satisfies (1.7);
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(II) if g(u) = up, p ∈ (0, 1] and

lim
d(x)→0

b(x)(d(x))2(− ln(d(x)))p = C0 > 0, (1.13)

then every solution u to problem (1.1) satisfies

lim
d(x)→0

u(x)/(− ln(d(x))) = ξ0, (1.14)

provided that
(i) p = 1, C0 ∈ (0, 1), ξ0 = 1− C0;
(ii) p ∈ (0, 1), C0 = 2p/4, ξ0 = 1/2;
(iii) p ∈ (0, 1), C0 ∈ (0, 2p/4), ξ0 = ξ2, where the equation

ξ − ξ2 = C0ξ
p,

has just two positive solutions ξ1 and ξ2 with 0 < ξ1 < 1/2 < ξ2 < 1.

2. Proof of theorems

Lemma 2.1 (The comparison principle, [10, Theorem 10.1]). Let Ψ(x, s, ξ) satisfy
the following two conditions

(D1) Ψ is non-increasing in s for each (x, ξ) ∈ (Ω× RN );
(D2) Ψ is continuously differentiable with respect to the variable ξ in Ω×(0,∞)×

RN .

If u, v ∈ C(Ω̄)∩C2(Ω) satisfy ∆u+Ψ(x, u,∇u) ≥ ∆v+Ψ(x, v,∇v) in Ω and u ≤ v
on ∂Ω, then u ≤ v in Ω.

Lemma 2.2 (Taylor’s formula). Let α ∈ R, x ∈ [−x0, x0] with x0 ∈ (0, 1). Then
there exists ε1 > 0 small enough such that for ε ∈ (0, ε1)

(1 + εx)α = 1 + αεx + o(ε2). (2.1)

Proof of Theorem 1.1. Given an arbitrary ε ∈ (0, ξ0/2), let ξ2ε = ξ0+ε, ξ1ε = ξ0−ε.
It follows that

1
2
ξ0 < ξ1ε < ξ2ε < 2ξ0.

For δ > 0, we define
Ωδ = {x ∈ Ω : 0 < d(x) < δ}.

Since ∂Ω ∈ C2, there exists a constant δ > 0 which only depends on Ω such that

d(x) ∈ C2(Ω̄2δ) and |∇d| ≡ 1 on Ω2δ. (2.2)

(I) When (1.8) holds, ξ0 = (2− q)−1(q− 1)−(2−q)/(q−1). It follows from Lemma 2.2
that there exists ε1 > 0 small enough such that for ε ∈ (0, ε1)

2− q

(q − 1)2
ξ2ε − (

2− q

q − 1
)qξq

2ε =
2− q

(q − 1)2
(ξ0 + ε)− (

2− q

q − 1
)q(ξ0 + ε)q

=
2− q

(q − 1)2
ε− (

2− q

q − 1
)qξq

0

(
(1 +

ε

ξ0
)q − 1

)
= − (q − 1)(2− q)

(q − 1)2
ε + o(ε2);
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and

2− q

(q − 1)2
ξ1ε − (

2− q

q − 1
)qξq

1ε =
2− q

(q − 1)2
(ξ0 − ε)− (

2− q

q − 1
)q(ξ0 − ε)q

=
(q − 1)(2− q)

(q − 1)2
ε + o(ε2).

Denote

c1 =
(q − 1)(2− q)

(q − 1)2
.

It follows by (2.2) and (1.8) that corresponding to ε ∈ (0, ε1), there is δε ∈ (0, δ)
sufficiently small such that

2− q

q − 1
|ξiεd(x)∆d(x)|+ |b(x)(d(x))2g (−ξiε ln(d(x))) | < c1

2
ε, (2.3)

for all x ∈ Ω2δε , i = 1, 2.
(II) (i) When p = 1, C0 ∈

(
0, 2−q

(q−1)2

)
. As the result of (I), we see that for ε ∈ (0, ε1),(

2− q

(q − 1)2
− C0

)
ξ2ε −

(
2− q

q − 1

)q

ξq
2ε = −(q − 1)

(
2− q

(q − 1)2
− C0

)
ε + o(ε2);

and (
2− q

(q − 1)2
− C0

)
ξ1ε −

(
2− q

q − 1

)q

ξq
1ε = (q − 1)

(
2− q

(q − 1)2
− C0

)
ε + o(ε2).

(ii) When p ∈ (0, 1), C0 ∈ (0, C̄). Since(
C0(1− p)

q − 1
(
q − 1
2− q

)q

)1/(q−p)

< ξ0,

it follows that

(q − 1)(
2− q

q − 1
)qξq−p

0 − C0(1− p) > 0.

Then by Lemma 2.2, there exists ε1 > 0 small enough such that for ε ∈ (0, ε1)

2− q

(q − 1)2
ξ2ε −

(
2− q

q − 1

)q

ξq
2ε − C0ξ

p
2ε

=
2− q

(q − 1)2
(ξ0 + ε)−

(
2− q

q − 1

)q

(ξ0 + ε)q − C0(ξ0 + ε)p

=
2− q

(q − 1)2
ε− C0ξ

p
0

(
(1 +

ε

ξ0
)p − 1

)
−

(
2− q

q − 1

)q

ξq
0

(
(1 +

ε

ξ0
)q − 1

)
= −ξ−1

0

(
q

(
2− q

q − 1

)q

ξq
0 + pC0ξ

p
0 −

2− q

(q − 1)2
ξ0

)
ε + o(ε2)

= −ξ
−(2−p)
0

(
(q − 1)

(
2− q

q − 1

)q

ξ
(q−p)
0 − C0(1− p)

)
ε + o(ε2);



6 Z. ZHANG EJDE-2006/64

and
2− q

(q − 1)2
ξ1ε −

(
2− q

q − 1

)q

ξq
1ε − C0ξ

p
1ε

=
2− q

(q − 1)2
(ξ0 − ε)−

(
2− q

q − 1

)q

(ξ0 − ε)q − C0(ξ0 − ε)p

= ξ
−(2−p)
0

(
(q − 1)

(
2− q

q − 1

)q

ξ
(q−p)
0 − C0(1− p)

)
ε + o(ε2).

Denote

c2 = ξ
−(2−p)
0

(
(q − 1)

(
2− q

q − 1

)q

ξ
(q−p)
0 − C0(1− p)

)
.

We see by (2.2) and (1.9) that corresponding to ε ∈ (0, ε1), there is δε ∈ (0, δ)
sufficiently small such that

2− q

q − 1
|ξiεd(x)∆d(x)|+ |b(x)(d(x))2g(−ξiε ln(d(x)))| < C0ξ

p
iε +

c2

2
ε, (2.4)

for all x ∈ Ω2δε
, i = 1, 2. Let β ∈ (0, δε) be arbitrary, we define

uβ = ξ2ε(d(x)− β)−(2−q)/(q−1), x ∈ D−β = Ω2δε/Ω̄β ;

uβ = ξ1ε(d(x) + β)−(2−q)/(q−1), x ∈ D+
β = Ω2δε−β .

It follows that for (x, β) ∈ D−β × (0, δε),

∆uβ(x)− |∇uβ(x)|q − b(x)g(uβ(x))

= (d(x)− β)−q/(q−1)
(ξ2ε(2− q)

(q − 1)2
− ξ2ε(2− q)

q − 1
(d(x)− β)∆d(x)− ξq

2ε(
2− q

q − 1
)q

− b(x)g
(
ξ2ε(d(x)− β)−(2−q)/(q−1)

)
(d(x)− β)q/(q−1)

)
≤ 0;

and for (x, β) ∈ D+
β × (0, δε)

∆uβ(x)− |∇uβ(x)|q − b(x)g(uβ(x))

= (d(x) + β)−q/(q−1)
(ξ1ε(2− q)

(q − 1)2
− ξ1ε(2− q)

q − 1
(d(x) + β)∆d(x)− ξq

1ε(
2− q

q − 1
)q

− b(x)g
(
ξ2ε(d(x) + β)−(2−q)/(q−1)

)
(d(x) + β)q/(q−1)

)
≥ 0.

Now let u be an arbitrary solution of problem (1.1) and Mu(2δε) = maxd(x)≥2δε
u(x).

We see that
u ≤ Mu(2δε) + uβ on ∂D−β .

Since uβ = ξ1ε(2δε)−(2−q)/(q−1) = Mu(2δε) whenever d(x) = 2δ2ε − β, we see that

uβ ≤ u + Mu(2δε) on ∂D+
β .

It follows by (G1) and Lemma 2.1 that

u ≤ Mu(2δε) + uβ , x ∈ D−β ;

uβ ≤ u + Mu(2δε), x ∈ D+
β .
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Hence, for x ∈ D−β ∩D+
β , and letting β → 0, we have

ξ1ε −
Mu(2δε)

(d(x))−(2−q)/(q−1)
≤ u(x)

(d(x))−(2−q)/(q−1)
≤ ξ2ε +

Mu(2δε)
(d(x))−(2−q)/(q−1)

;

i.e.,

ξ1ε ≤ lim
d(x)→0

inf
u(x)

(d(x))−(2−q)/(q−1)
≤ lim

d(x)→0
sup

u(x)
(d(x))−(2−q)/(q−1)

≤ ξ2ε.

Letting ε → 0, and using the definitions of ξ1ε and ξ2ε, we have

lim
d(x)→0

u(x)
(d(x))−(2−q)/(q−1)

= ξ0.

�

Proof of Theorem 1.2. We proceed as in the proof of Theorem 1.1. Given an arbi-
trary ε ∈ (0, ξ0/2), let

ξ2ε = ξ0 + ε, ξ1ε = ξ0 − ε.

Note that
1
2
ξ0 < ξ1ε < ξ2ε < 2ξ0.

When p = 1, C0 ∈ (0, 1), ξ0 = 1− C0, we see that

(1− C0)ξ2ε − ξ2
2ε = −εξ0 − o(ε2) and (1− C0)ξ1ε − ξ2

1ε = εξ0 − o(ε2).

It follows by (2.2) and (1.12) that there is δε ∈ (0, δ) sufficiently small such that

|ξiεd(x)∆d(x)|+ |b(x)(d(x))2g(−ξiε ln(d(x)))| < ξ0

2
ε, (2.5)

for all x ∈ Ω2δε
, i = 1, 2. When p ∈ (0, 1) and ξ0 ≥ 1

2 , we see that ξ0 > 1−p
2−p and for

ε ∈ (0, ε1),

ξ2ε − ξ2
2ε − C0ξ

p
2ε = ξ0 + ε− (ξ0 + ε)2 − C0(ξ0 + ε)p

= −(2− p)
(

ξ0 −
1− p

2− p

)
ε + o(ε2);

and

ξ1ε − ξ2
1ε − C0ξ

p
1ε = ξ0 − ε− (ξ0 − ε)2 − C0(ξ0 − ε)p

= (2− p)
(

ξ0 −
1− p

2− p

)
ε + o(ε2).

Denote

c3 = (2− p)
(
ξ0 −

1− p

2− p

)
.

It follows by (2.2) and (1.13) that there is δε ∈ (0, δ) sufficiently small such that

|ξiεd(x)∆d(x)|+ |b(x)(d(x))2g(−ξiε ln(d(x)))| < C0ξ
p
iε +

c3

2
ε, (2.6)

for all x ∈ Ω2δε
, i = 1, 2. Let β ∈ (0, δε) be arbitrary, we define

uβ = −ξ2ε ln(d(x)− β), x ∈ D−β = Ω2δε
/Ω̄β ;

uβ = −ξ1ε ln(d(x) + β), x ∈ D+
β = Ω2δε−β .
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It follows that for (x, β) ∈ D−β × (0, δε),

∆uβ(x)− |∇uβ(x)|2 − b(x)g(uβ(x)) = (d(x)− β)2
(
ξ2ε − ξ2ε(d(x)− β)∆d(x)− ξ2

2ε

− b(x)(d(x)− β)2g(ξ2ε ln(d(x)− β))
)

≤ 0;

and for (x, β) ∈ D+
β × (0, δε),

∆uβ(x)− |∇uβ(x)|2 − b(x)g(uβ(x)) = (d(x) + β)2
(
ξ2ε − ξ2ε(d(x) + β)∆d(x)− ξ2

2ε

− b(x)(d(x) + β)2g(ξ2ε ln(d(x) + β))
)

≥ 0.

The rest of the proof is the same as in Theorem 1.1, we omit it. �
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[20] M. Marcus, L. Véron, Existence and uniqueness results for large solutions of general nonlin-

ear elliptic equations, J. Evol. Equations 63 (2003), 637-652.

[21] A. Mohammed, Boundary asymtotic and uniqueness of solutions to the p-Laplacian with
infinite boundary value, J. Math. Anal. Appl., in press.

[22] R. Osserman, On the inequality ∆u ≥ f(u), Pacific J. Math. 7 (1957), 1641-1647.

[23] S. Tao, Z. Zhang, On the existence of explosive solutions for semilinear elliptic problems,
Nonlinear Anal. 48 (2002), 1043-1050.
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